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Abstract

In this paper we investigate varieties of orgraphs (that is, oriented
graphs) as classes of orgraphs closed under isomorphic images, sub-
orgraph identifications and induced suborgraphs, and we study the
lattice of varieties of tournament-free orgraphs.
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1. Introduction

In mathematics we often study classes of structures of the same type closed
under some constructions. In particular in universal algebra we consider
classes of algebras of the same type closed under direct products, subal-
gebras and homomorphic images [4]. In theory of posets, some authors
investigated classes of posets closed under direct products and retracts [7].
The mentioned classes of algebras and posets are called varieties of algebras
and varieties of posets, respectively. Analogously, there is a literature on
varieties (properties) of graphs closed under isomorphic images and more-
over, closed under induced subgraphs [11], closed under induced subgraphs
and identifications [8], closed under induced subgraphs and contractions [9],
closed under generalized hereditary operators [3], [10], etc. An interesting
survey paper on additive and hereditary properties of graphs is [2].
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In this paper we pay attention to varieties of oriented graphs (called or-
graphs [1]). Throughout this paper by orgraph we mean a directed graph
G(V, E) without loops with the following property:

for every two distinct vertices u, v ∈ V at most one of edges uv

and vu is an arc from E.
We briefly write uv instead of [u, v] for vertices u, v ∈ V . The cardinality of
a set A we will denote by |A|.

An orgraph G(V, E) is called a tournament if for each pair of vertices
u, v ∈ V either uv ∈ E or vu ∈ E (see [5]).

Let G(V,E) be an orgraph. Whenever uv is an arc the vertex u is
called an adjacent vertex to v and v is called an adjacent vertex from u.
An outdegree (an indegree) of a vertex v ∈ V in the orgraph G(V,E) is the
number of vertices adjacent from v (to v). If the outdegree of a vertex v is i

and the indegree of v is j we will say that v is of type v
(i)
(j) and write simply

vi
j , when no confusion can arise.

A suborgraph P(V1, E1) of an orgraph G(V, E) is called a weak path
(of length n) if the next three conditions are satisfied:

(i) V1 = {v0, v1, . . . , vn}, where the vertices v0, v1, . . . , vn ∈ V are all
distinct;

(ii) either vivi+1 ∈ E1 or vi+1vi ∈ E1, for each i = 0, 1, . . . , n− 1;
(iii) if {i, j} 6= {k, k + 1}, for each k ∈ {0, 1, . . . , n− 1}, then vivj /∈ E1.

We often refer to a weak path by the natural sequence of its vertices, e.g.
P = v0v1 . . . vn, and we call P a weak path between v0 and vn. By a path
from u to w we mean a weak path v0v1 . . . vn for which u = v0, w = vn and
vivi+1 is an arc for each i = 0, 1, . . . n− 1.

Let P = v0v1 . . . vn be a weak path in an orgraph G(V,E) and let n ≥ 2.
If vnv0 ∈ E or v0vn ∈ E then the corresponding suborgraph C = P + vnv0

or C = P + v0vn is called a weak circle of G. As with weak paths, we often
denote a weak circle by its (cyclic) sequence of vertices; the above weak
circle might be written as v0v1 . . . vnv0. A weak circle v0v1 . . . vnv0 is called
a circle if v0v1, v1v2, . . . , vnv0 are its arcs.

We will briefly write w-path and w-circle instead of weak path and weak
circle, respectively. Analogously to the notions of w-path and path, and w-
circle and circle, the notions of a w-tree and tree (with a fixed root) can be
introduced.
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An orgraph G(V, E) is called weakly connected if there exists a weak path
between u and v for every pair of vertices u, v ∈ V .

Let C = v0v1 . . . vnv0 be a w-circle. Suppose that the vertex v0 is (in
the orgraph C) of type v2

0. Denote successively by P1, P2, . . . ,Pk paths in
the orgraph C from vertices vi of type v2

0 to vertices vj of type v0
2, for which

i < j and v1 ∈ V (P1) and analogously by N1, N2, . . . ,Nk opposite paths
from vertices vi of type v2

0 to vertices vj of type v0
2 for which i > j or i = 0

(and so vn ∈ V (Nk)). In this case we will say that the w-circle C is of
type C(p1,n1,p2,n2,...,pk,nk), where pi, ni are the lengths of the paths Pi, Ni,
respectively, for each i ∈ {1, . . . , k}. If the w-circle C does not contain a
vertex of type v2

0 then C is of the type C(l,0), where l is the length of the
circle C.

The circle C(4,0) and the w-circles C(3,1), C(2,2) and C(1,1,1,1) are depicted
in Figure 1a-d.
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Note that the notation of w-circles is ambiguous. For instance, the w-circle
of the type C(3,1,2,2,1,4) is also of the type C(2,2,1,4,3,1), C(1,4,3,1,2,2) (we have
moved the members in two positions), C(4,1,2,2,1,3) (here we have taken the
inverse order), C(2,2,1,3,4,1), C(1,3,4,1,2,2) (we have again moved the members
in two positions). However, we often identify a w-circle with its type.

Definition 1.1. Let C(p1,n1,p2,n2,...,pk,nk) be a w-circle. The number

|p1 + · · ·+ pk − n1 · · · − nk|

is said to be the characteristic of the w-circle C(p1,n1,p2,n2,...,pk,nk). We will
denote it by ch(C).

The operator of suborgraph identification is a modification of the subgraph
identification from [8].
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Definition 1.2. Let G1(V1, E1), G2(V2, E2) be disjoint weakly connected or-
graphs, let G′1(V ′

1 , E
′
1), G′2(V ′

2 , E
′
2) be weakly connected induced suborgraphs

of G1 and G2, respectively and let f : G′1 → G′2 be an isomorphism. The subor-
graph identification of G1 with G2 under f is the orgraph G(V,E) = G1∪f G2,
where
V = V1 ∪ (V2 − V ′

2),
E = {uv; u, v ∈ V and uv ∈ E1 ∪ E2 or f(u)v ∈ E2 or uf(v) ∈ E2}.

Where no confusion can arise we will call it simply the suborgraph identifica-
tion under the suborgraph G′1 instead of the suborgraph identification under
the isomorphism f ; or we briefly call it gluing in the suborgraph G′1.

As we focus on varieties of orgraphs in the case when orgraphs G1 and
G2 are not disjoint we may take instead of the orgraph G2 an orgraph G3

isomorphic with G2 and disjoint with G1 (for details see [8]).
The fact that f : G′1 → G′2 is an isomorphism of a weakly connected

induced suborgraph G′1 ⊆ G1 onto a weakly connected induced suborgraph
G′2 ⊆ G2 will be denoted by f : G1 ½ G2.

It is obvious that G1 ∪f G2
∼= G2 ∪f−1 G1.

Let K be a family of weakly connected orgraphs. Denote

γ(K) = {G1 ∪f G2; G1,G2 ∈ K, f : G1 ½ G2}
and

Γ(K) = γ(K) ∪ γ2(K) ∪ · · · = ∪∞n=1γ
n(K),

where γk(K) = γ(γk−1(K)), for every k > 1.
Since G ∪id G = G, where id is the identity on the orgraph G, we get

K ⊆ γ(K) ⊆ γ2(K) ⊆ . . . .

Further, let S(K) and I(K) denote the set of all weakly connected induced
suborgraphs of orgraphs inK and the set of all isomorphic images of orgraphs
in K, respectively.

To put things in the right context within set theory, we will assume that
vertex sets of all orgraphs are subsets of a fixed countable infinite set W .

Definition 1.3. A set K of orgraphs closed under isomorphic images, in-
duced weakly connected suborgraphs and suborgraph identifications will be
called a variety, i.e., K is a variety if

I(K) ⊆ K , S(K) ⊆ K and Γ(K) ⊆ K .



On Varieties of Orgraphs 211

Obviously, I, S, Γ are closure operators on the system of all sets of weakly
connected orgraphs. By [5, Theorem 5.2] we obtain the next statement.

Theorem 1.1. The set of all varieties of orgraphs with set inclusion as the
partial ordering is a complete lattice.

The next statement comes from [8].

Lemma 1.2. Let G be a weakly connected orgraph. The orgraph G contains
a family T of tournaments (as induced suborgraphs) and a family C of w-
circles such that G ∈ IΓ(T ∪ C).

2. The Lattice of Varieties

Henceforth by an orgraph we will mean a weakly connected orgraph . The
lattice of varieties of orgraphs will be denoted by L(I, S,Γ) or briefly by L.
In this part we describe the lower part of the lattice L(I, S, Γ) which consists
of all varieties containing no nontrivial tournament.

Obviously, the least element of the lattice L is the variety 0 of all one-
vertex orgraphs. The smallest variety containing a set K of orgraphs will
be denoted by V(K) or 〈K〉 and we will say that it is generated by K. If
K = {G1, . . . ,Gn}, we denote it simply by V(G1, . . . ,Gn) or 〈G1, . . . ,Gn〉.

Denote by D the lattice of all nonnegative integers with the relation of
divisibility as the partial ordering, and by Dd the dual lattice of D (i.e.,
m ≤ n in Dd if n divides m). Further, denote by 3 the three-element chain
and by ⊕ the linear (ordinal) sum (i.e., P ⊕ Q is defined by taking the
following order relation on P ∪ Q: x ≤ y iff x ≤ y in P or in Q or x ∈ P ,
y ∈ Q).

We will say that a variety V is tournament-free if Tn /∈ V for each n ≥ 3
(i.e., if it contains no nontrivial tournament).

Theorem 2.1. (Main result) The lattice L1 of all tournament-free varieties
of orgraphs is isomorphic with the lattice 3⊕Dd (see Figure 2). Moreover,
the lattice L1 is an ideal of the lattice L(I, S, Γ).

In Figure 2 the generators are used to denote the corresponding varieties.
In the remaining part of the paper we are successively proving the main
Theorem 2.1.
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Figure 2

Proposition 2.2. The only atom of the lattice L(I, S,Γ) is the variety T =
V (T2) of all w-trees.

The proof is straightforward.
Let C1 and C2 be w-circles and let G = C1 ∪f C2. Suppose that the

w-circles C1 and C2 are glued in a w-path W = w1 . . . wk. Denote by CW
the circle obtained from G by deletion of the vertices w2, . . . , wk−1, if k > 2,
and obtained by deletion of the edge w1w2 if k = 2.

Lemma 2.3. Let C1 and C2 be w-circles and let G = C1 ∪f C2. Suppose
that the w-circles C1 and C2 are glued in a w-path W = w1 . . . wk. The
characteristic of the w-circle CW is ch(CW) = ch(C1) + ch(C2) or ch(CW) =
|ch(C1)− ch(C2)|.

Proof. Let the w-circle C1 be of the type C(p1,n1,p2,n2,...,pk,nk) and P1, . . . ,Pk

be all its paths from vertices vi of type v2
0 to vertices vj of type v0

2 for i < j
and N1, . . . ,Nk be its opposite paths. Put

Ep(C1) = E(P1) ∪ · · · ∪ E(Pk),
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En(C1) = E(N1) ∪ · · · ∪E(Nk),

and let analogously be defined Ep(C2) and En(C2). Further, let us denote
by x the cardinality of the set Ep(C1) ∩ E(W) and by y the cardinality of
the set En(C1) ∩ E(W ).

One can easily check that (with respect to the symmetry) either

ch(CW) =
(|Ep(C1)| − x) + (|Ep(C2)| − y)− ((|En(C1)| − y)

+(|En(C2)| − x))


=
|Ep(C1)| − |En(C1)|+ |Ep(C2)| − |En(C2)|



or

ch(CW) = |(|Ep(C1)| − x + |En(C2)| − y)− (|En(C1)| − y + |Ep(C2)| − x)|
=

|Ep(C1)| − |En(C1)| − (|Ep(C2)| − |En(C2)|)


and the lemma follows.

Proposition 2.4. The only variety covering the variety T of all w-trees is
the variety V1 = V(C(1,1,1,1)) generated by the w-circle C(1,1,1,1). An orgraph
G belongs to the variety V1 if and only if every w-circle in G is of the type
C(1,1,...,1).

Proof. 1. If V % T then there exists an orgraph G ∈ V containing a
w-circle C as an induced suborgraph. Thus, C ∈ V and we can show that
the variety V also contains a w-circle C1 with the induced suborgraph in
Figure 3.

s s s-

Figure 3

u v w
¾

By the suborgraph identification of two copies of C1 in the w-path C1 − v
we obtain an orgraph which contains the w-circle C(1,1,1,1) as an induced
suborgraph. Therefore C(1,1,1,1) ∈ V. It implies V1 ⊆ V, i.e., the variety
V1 = V(C(1,1,1,1)) is the only variety covering the variety T of all w-trees.

2. Obviously, every w-circle of the type C(1,...,1) belongs to V1. Hence
if every w-circle of an orgraph G is of the type C(1,...,1) then G ∈ V1 by
Lemma 1.2.
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Now, we will show that every w-circle of any orgraph from V1 is of the type
C(1,1,...,1). It is sufficient to show that if G = G1 ∪f G2, f : G′1 → G′2 and
every w-circle of both orgraphs G1 and G2 is of the type C(1,1,...,1) then every
w-circle of G is of the type C(1,1,...,1), too.

Let C = v1v2 . . . vnv1 be a w-circle of the orgraph G. If the w-circle
C is a suborgraph of the orgraph G1 or G2 then C is of the type C(1,1,...,1)

by the assumption. Let C be a suborgraph neither of G1 nor G2. Let
vi, vi+1, . . . , vi+j ∈ V (C); we say that vi y vi+j is a jump in G if vi ∈ V (G1)−
V (G′1), vi+1, . . . , vi+j−1 ∈ V (G′1), vi+j ∈ V (G2)−V (G′2) or vi ∈ V (G2)−V (G′2),
vi+1, . . . , vi+j−1 ∈ V (G′1), vi+j ∈ V (G1)− V (G′1) (see Figure 4).

Figure 4

We proceed by induction on the number of jumps of the w-circle C. Firstly,
we suppose that there are only two jumps (in G) vi y vi+j and vp y
vp+q, i < p. Since G1 ∪f G2 is the suborgraph identification under a weakly
connected suborgraph G′1 there exists a w-path vi+1w1w2 . . . wkvp+q−1 in G′1.
If this w-path is disjoint with the circle C we get a w-circle C1 of the orgraph
G1 and a w-circle C2 of the orgraph G2 which both contain the mentioned
w-path or its part (see Figure 4). Both w-circles C1 and C2 are of the type
C(1,1,...,1), hence the w-circle C is of the same type, too. If the mentioned w-
path is not disjoint with the circle C we get w-circles C1, . . . , Ck such that each
of them belongs to either G1 or G2 and each of them contains a part of the
w-path vi+1w1w2 . . . wkvp+q−1. Since we can get the circle C by successive
gluing the w-circles C1, . . . , Ck of the type C(1,1,...,1), the w-circle C is of the
same type, too.

Assuming the statement for w-circles with less than 2r jumps, we can
prove it for 2r jumps. Without loss of generality we can assume that
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vi y vi+j , vp y vp+q are jumps and that for each jump vk y vk+s of the
w-circle C, i ≤ k ≤ p holds. Analogously as in the case two jumps we can
get w-circles C1, . . . , Ck having less than 2r jumps and each of them belongs
to either G1 or G2. By the assumption C1, . . . , Ck are of the type C(1,1,...,1),
therefore the w-circle C is also of the same type.

Proposition 2.5. The variety V1 is covered only by the variety V2 =
V(C(2,2)) generated by the w-circle C(2,2). The variety V2 contains an or-
graph G if and only if characteristics of all w-circles of the orgraph G are
zero.

Proof. 1. If V > V1 holds then the variety V contains an orgraph G
containing a w-circle different from C(1,1,...,1) as an suborgraph. Hence the
variety V contains a w-circle C with the induced suborgraph in Figure 5.

s s s- -

Figure 5

u v w

By the suborgraph identification of two copies of the w-circle C we can get
the orgraph with the induced suborgraph C(2,2).

(2a) We will show that an orgraph G belongs to V2 if characteristics of
all its w-circles are zero.

Firstly we show by induction that every w-circle with the characteristic
zero belongs to the variety V2. Let every w-circle with the characteristic 0
of a length less 2n, n ≥ 3, belong to the variety V2. Let the characteristic
of a w-circle C be 0 and the length of C be 2n. If C = C(1,...,1) then C ∈ V2.
If C is not of this type then C contains the suborgraph depicted in Figure 6.
We distinguish two cases.

s s s s s s s s s¾--

Figure 6 Figure 7

s s s s s¾-- ¾ - ¾ - -

Figure 8

Let the w-circle C contain the suborgraph in Figure 7. The variety V2

contains the orgraph in Figure 9, hence V2 contains its induced suborgraph
C(3,3). By the suborgraph identification of the w-circle C with the orgraph
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C(3,3) under the w-path in Figure 7 we get the orgraph in Figure 10. We
can get this orgraph also by the suborgraph identification of the w-circle
C(3,3) with a w-circle C′ of the length 2n − 2 with the characteristic zero
(Figure 10). By the induction assumption C′ ∈ V2 hence C ∈ V2, too.

If the w-circle C contains the suborgraph in Figure 8 we can analogously
show that C ∈ V2.

If the characteristic of every w-circle of an orgraph G is zero then G
contains neither the w-circle C(3,0) nor the w-circle C(2,1). Therefore no tour-
nament Tn, n ≥ 3, is an suborgraph of G. Therefore G ∈ V2 by Lemma 1.2.

(2b) We can prove (similarly to the last part of the proof of Proposi-
tion 2.4) that the characteristic of any w-circle C of an orgraph G ∈ V2 is
zero (by induction under the number of jumps of the w-circle C).

Lemma 2.6. Let V be a variety for which V ≥ V2. Let C be a w-circle
different from w-circles of the type C(1,1,...,1). If C ∈ V and C′ is a w-circle
for which

ch(C′) = ch(C), C′ 6= C(3,0) and C′ 6= C(2,1)

then C′ ∈ V, too.

Proof. (a) Let C 6= C(3,0) and C 6= C(2,1). The w-circles C(2,2,1,1) and
C(2,1,1,2) belong to V by Proposition 2.5.

The suborgraph identification of C(2,2,1,1) with a w-circle enables us to
obtain a w-circle of the same characteristic and — longer than the mentioned
w-circle if we glue in the w-path

s s s s s s-¾¾- or

— shorter than the mentioned w-circle if we glue in the w-path
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s s s s s s ss ss ss ss s- - ¾¾ ¾ - ¾ - - ¾ ¾ -oror

Suborgraph identifications with C(2,2,1,1) and C(2,1,1,2), respectively, also en-
ables us to change the configurations of the arcs

s s s s s s s s

s s s s s s s s-¾ -¾- -

¾ - - - ¾ -with

with

and

Therefore we can obtain the w-circle C′ from the w-circle C by suborgraph
identifications with the w-circles C(2,2,1,1), C(2,1,1,2) and taking induced sub-
orgraphs.

(b) If C = C(3,0) we obtain C(4,1) as the induced suborgraph of the orgraph
in Figure 11, if C = C(2,1) we obtain C(3,2) as the induced suborgraph of the
orgraph in Figure 12 and the rest of the proof runs as in the case (a).
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Corollary 2.7. The variety V2 is generated by any w-circle C with the char-
acteristic zero and different from the type C(1,1...,1). If n is positive integer,
p, q nonnegative integers and neither C(n+p,p) nor C(n+q,q) is a tournament
then 〈C(n+p,p)〉 = 〈C(n+q,q)〉.

Lemma 2.8. Any variety V ≥ V1 which does not contain a tournament
Tn, n > 3, is generated by some set of circles.

Proof. The statement holds if V = V1 or V = V2. Let V > V2, G ∈ V
and C = v1v2 . . . vnv1 be a w-circle of the orgraph G. If vivj /∈ E(G) for every
j > i + 1 then C is an induced suborgraph of G, hence C ∈ V. Let i + 1 < j
and vivj ∈ E(G). There are two possibilities:
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If vi−1vivi+1 is not a path we consider a suborgraph identification of the
orgraph G with the w-circle C(1,1,1,1) under the weak path (vi−1, vi, vi+1).

If vi−1vivi+1 is the path we consider a suborgraph identification of the
orgraph G with the w-circle C(2,2) under the path vi−1vivi+1.

We obtain an orgraph G′ ∈ V containing a w-circle C′ = v1 . . . vi−1v
′
ivi+1

. . . vnv1 isomorphic with C, but v′ivj is not an arc of G′. After finite number
of the analogous transformations we get an orgraph G1 ∈ V which contains a
w-circle C1 isomorphic with the w-circle C and C1 is the induced suborgraph
of G1. Hence the variety V contains a w-circle isomorphic with C, so again
C ∈ V.

Let SG be a set of all w-circles of the orgraph G. From the previous
part and Lemma 1.2 follows 〈G〉 = 〈SG〉. If we denote M =

⋃
G∈V SG then

V = 〈M〉.
Proposition 2.9. Let V be a variety generated by a w-circle C(n,0), n ≥ 3,
or by C(3,1), or by C(3,2). Let G be an orgraph containing no nontrivial tourna-
ment (as an induced suborgraph). Then G ∈ V iff the characteristic of each
w-circle of the orgraph G is a multiple of the characteristic of the generating
w-circle.

Proof. Let V = 〈C(n,0)〉, n ≥ 3. Firstly, we show that if a characteristic of
a w-circle C is a multiple of the integer n then C ∈ V. By Lemma 2.6 it is
sufficient to prove the statement in the case when C is a circle.

Let x be a nonnegative integer and let C be a circle with the character-
istic n.x. If x = 0 then C ∈ V by Proposition 2.5. We now turn to the case
x > 0 (i.e., C = C(n.x,0)).

According to Lemma 2.6 we have C(n+1,1) ∈ V. The suborgraph identifi-
cation C(n+1,1) with itself (see Figure 13) in a w-path of the length two gives
an orgraph which contains the induced suborgraph C(2n,0). So, C(2n,0) ∈ V.
Similarly,

sss
s s

s s s
s

»»: XXz HHj

»»9XXyHHY

?

6

...

...

Figure 13

sss
s

s s s»»: XXz
6

»»:6
XXy

6 6

Figure 14

C(2n+1,1) ∈ V (by Lemma 2.6) and the suborgraph identification C(2n+1,1)

with C(n+1,1) in a w-path of the length 2 gives an orgraph which contains
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the induced suborgraph C(3n,0). We can continue in this fashion to obtain
the circle C(n.x,0).

It follows that if G contains only w-circles of characteristics which are
multiples of integer n then G ∈ V by Lemma 1.2.

If G ∈ V then analogously to the last part of Proposition 2.4 we can
show (with respect to Lemma 2.3) that each characteristic of a w-circle of
G is a multiple of the characteristic of the generating w-circle.

The proofs in the cases V = 〈C(3,1)〉 and V = 〈C(3,2)〉 are similar. But
in the case V = 〈C(3,2)〉 we also use gluing by Figure 14.

Proposition 2.10. Let n, m be any positive integers and p, q, r any non-
negative integers. If neither C(n+p,p) nor C(m+q,q) is nontrivial tournament
then

(a) 〈C(n+p,p)〉
∨〈C(m+q,q)〉 = 〈C(D(n,m)+r,r)〉 if D(n,m) > 3,

(b) 〈C(n+p,p)〉
∨〈C(m+q,q)〉 = 〈C(4+r,1+r)〉 if D(n,m) = 3,

(c) 〈C(n+p,p)〉
∨〈C(m+q,q)〉 = 〈C(3+r,1+r)〉 if D(n,m) = 2,

(d) 〈C(n+p,p)〉
∨〈C(m+q,q)〉 = 〈C(3+r,2+r)〉 if D(n,m) = 1,

where D(n, m) denotes the greatest common divisor of the integers n, m.

Proof. By Proposition 2.9 and Corollary 2.7 follows 〈C(n+p,p)〉, 〈C(m+q,q)〉
⊆ 〈C(D(n,m)+r,r)〉, hence 〈C(n+p,p)〉

∨〈C(m+q,q)〉 ⊆ 〈C(D(n,m)+r,r)〉, too.
For d = D(n,m) there exist positive integers x, y such that d =

nx − my or d = −nx + my. Without loss of generality we can assume
that d = nx − my. By Proposition 2.9 we get that C(n.x+r,r) ∈ 〈C(n+p,p)〉
and C(m.y+r,r) ∈ 〈C(m+q,q)〉 and so C(nx−m.y+r,r) ∈ 〈C(n+p,p), C(m+q,q)〉 by
Lemma 2.3 and Corollary 2.7. It yields 〈C(d+r,r)〉 ⊆ 〈C(n+p,p), C(m+q,q)〉 =
〈C(n+p,p)〉

∨〈C(m+q,q)〉.

Proposition 2.11. Let V > T be a variety which contains no nontrivial
tournament. Then V is generated by exactly one w-circle which is one of
C(1,1,1,1) or C(2,2) or C(3,2) or C(3,1) or C(4,1) or C(n,0), where n > 3.

Proof. If V = V1 or V = V2 then the statement is true by Proposition
2.4 and Proposition 2.5, respectively. Let V > V2; by Lemma 2.8 every
variety which contains no nontrivial tournament is generated by a set S of
circles. Let us denote by NS the set of characteristics of circles belonging to
S and by d the greatest common divisor of integers from NS. It is clear that
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there exists a finite set d1, d2, . . . , dk of integers from the set NS such that
d = D(d1, d2, . . . , dk).

Let d > 3. The inclusion V = 〈S〉 ⊇ 〈C(d1,0)〉
∨ · · ·∨〈C(dk,0)〉 is obvious

and hence we have V ⊇ 〈C(d,0)〉 by Proposition 2.10. According to Proposi-
tion 2.9 it follows 〈C〉 ⊆ 〈C(d,0)〉 for each circle C ∈ S, therefore 〈S〉 ⊆ 〈C(d,0)〉.

The statement can be checked for d ∈ {1, 2, 3}, too.

Corollary 2.12. The interval [〈C2,2)〉, 〈C(3,2)〉] of the lattice L(I, S, Γ) of va-
rieties is dually isomorphic to the lattice of all nonnegative integers with
the relation of divisibility as the partial ordering (i.e., isomorphic to the
lattice Dd).

Proof. Let V1 and V2 be varieties generated by w-circles C(n,0) and C(m,0),
n,m > 3, respectively. From the previous assertions follows that

〈C(n,0)〉 ⊆ 〈C(m,0)〉 ⇐⇒ m|n.

For any w-circle C such that C 6= C(3,0) and C 6= C(2,1) we get C ∈ 〈C(3,2)〉,
hence 〈C〉 ⊆ 〈C(3,2)〉. Similarly, 〈C(n,0)〉 ⊆ 〈C(3,1)〉 if n > 2 is an even number
and 〈C(n,0)〉 ⊆ 〈C(4,1)〉 if n > 3 and n is a multiple of the number 3.

Proposition 2.13. The lattice L1 of all tournament-free varieties is iso-
morphic with the lattice 3⊕Dd.

Proof. If a variety V contains the tournament C(3,0) then V also contains
the w-circle C(4,1) and therefore V > 〈C(4,1)〉. When a tournament Tn, n > 3,
belongs to V then the w-circle C(2,1) is its induced suborgraph and therefore
C(3,2) ∈ V, too. It implies V > 〈C(3,2)〉. Thus the set of all tournament-
free varieties (with set inclusion as the partial ordering) is (by previous
considerations) the lattice 3⊕Dd, and this lattice is an ideal of the lattice
L(I, S, Γ).
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