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Abstract

Denote the total domination number of a graph G by γt(G).
A graph G is said to be total domination edge critical, or simply γt-
critical, if γt(G + e) < γt(G) for each edge e ∈ E(G). For 3t-critical
graphs G, that is, γt-critical graphs with γt(G) = 3, the diameter
of G is either 2 or 3. We characterise the 3t-critical graphs G with
diam G = 3.

1. Introduction

Let G = (V, E) be a graph with order |V | = n. The open neighbourhood of a
vertex v is the set of vertices adjacent to v, that is, N(v) = {w | vw ∈ E(G)},
and the closed neighbourhood of v is N [v] = N(v) ∪ {v}. For S ⊆ V (G) we
define the open and closed neighbourhoods N(S) and N [S] of S by N(S) =⋃

v∈S N(v) and N [S] =
⋃

v∈S N [v], respectively. The private neighbourhood
of x ∈ S, S ⊆ V (G), consists of all vertices in the closed neighbourhood of x
but not in the closed neighbourhood of S−{x}, and is denoted by pn(x, S),
that is, pn(x, S) = N [x] − N [S − {x}]. If v ∈ pn(x, S), then v is called a
private neighbour of x relative to S, or simply a private neighbour of x, if
confusion is unlikely. If G is a graph with diam G = k and d(u, v) = k, then
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we say that u and v are diametrical vertices. A shortest u-v path in G is a
diametrical path. Two subsets X and Y of V are called diametrical sets if
d(x, y) = diam G for each x ∈ X and y ∈ Y . If X and Y are diametrical
sets, then (X, Y ) is a maximal diametrical pair if for each z ∈ V − (X ∪ Y ),
d(x, z) < diam G for some x ∈ X and d(y, z) < diam G for some y ∈ Y .

For sets S, X ⊆ V , if N [S] = X (N(S) = X, respectively), we say
that S dominates X, written S Â X (S totally dominates X, respectively,
written S Ât X). If S = {s} or X = {x}, we also write s Â X, S Ât x,
etc. If S Â V (S Ât V , respectively), we say that S is a dominating set
(total dominating set) of G, and we also write S Â G (S Ât G, respectively).
The cardinality of a minimum dominating (minimum total dominating) set
of G is called the domination number (total domination number) of G and
is denoted by γ(G) (γt(G), respectively); if S is a minimum dominating
(minimum total dominating) set, we also call S a γ-set (γt-set) of G. We
note that the parameter γt(G) is only defined for graphs G without isolated
vertices. Domination-related concepts not defined here can be found in [2].

The addition of an edge to a graph can change the domination number
by at most one. Sumner and Blitch [5, 6] studied domination edge critical
graphs G, that is, graphs G for which γ(G) = γ(G) − 1 for each e ∈ E(G).
We consider the same concept for total domination. A graph G is total
domination edge critical or just γt-critical if γt(G + e) < γt(G) for any edge
e ∈ E(G) 6= ∅. It is shown in [3] that the addition of an edge to a graph can
change the total domination number by at most two.

Proposition 1 [3]. For any edge e ∈ E(G),

γt(G)− 2 ≤ γt(G + e) ≤ γt(G).

Graphs G with the property γt(G + e) = γt(G) − 2 for any e ∈ E(G) are
called supercritical and are characterised in [4].

In this paper, we restrict our attention to 3t-critical graphs G, that is,
γt-critical graphs G with γt(G) = 3. Note that since γt(G) ≥ 2 for any
graph G, the addition of an edge to a 3t-critical graph reduces the total
domination number by exactly one. Also, observe that any graph G with
γt(G) = 3 is connected. Sharp bounds on the diameter of a 3t-critical graph
are determined in [3].

Proposition 2 [3]. If G is a 3t-critical graph, then

2 ≤ diam G ≤ 3.
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The graphs in Figures 1 and 2 illustrate sharpness of these bounds. Our
goal is to investigate the 3t-critical graphs with diameter three.
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Figure 1. A 3t-critical graph G with diam G = 2

2. 3t-Critical Graphs with Diameter Three

In [3] the authors showed that any 3t-critical graph G with a cutvertex has
exactly one cutvertex and it is adjacent to an endvertex. Moreover, they
proved that such graphs G have diam G = 3 and are the only 3t-critical
graphs with an endvertex. Figure 2 illustrates a 3t-critical graph with an
endvertex.
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Figure 2. A 3t-critical graph with an endvertex
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Theorem 3 [3]. A graph G with a cutvertex v is 3t-critical if and only if v
is adjacent to an endvertex x, and for W = N(v)− {x} and Y = V −N [v],

(1) 〈W 〉 is complete and |W | ≥ 2,
(2) 〈Y 〉 is complete and |Y | ≥ 2,

and
(3) every vertex in W is adjacent to |Y | − 1 vertices in Y and every vertex

in Y is adjacent to at least one vertex in W .

We begin with a straightforward but useful observation.

Observation 4. For any 3t-critical graph G and non-adjacent vertices u
and v, either

(1) {u, v} dominates G
or

(2) (without loss of generality) {u,w} dominates G−v, but not v, for some
w ∈ N(u). In this case, we write uw 7→ v.

Next we develop some structural properties of 3t-critical graphs G with
diam G = 3. Although it is possible in a 3t-critical graph G of diameter
two for every pair of nonadjacent vertices to dominate G (see Figure 1, for
example), we now show this is not possible if diam G = 3.

Proposition 5. If G is a 3t-critical graph with diam G = 3, then G has a
pair of nonadjacent vertices that does not dominate G.

Proof. Let G be a 3t-critical graph with diam G = 3 and suppose that
every pair of nonadjacent vertices of G dominates G. Let x and y be diamet-
rical vertices of G where x, a, b, y is a shortest x-y path. Since {x, b} Â G,
every neighbour of y is also dominated by b. Similarly, every neighbour of x
is dominated by a. Hence {a, b} is a total dominating set of G, contradicting
the fact that γt(G) = 3.

Also, it is possible for a 3t-critical graph G with diam G = 2 to have the
property that for every pair of nonadjacent vertices u and v, there is a vertex
x such that ux 7→ v, and there is a vertex y such that vy 7→ u. See Figure 3
for an example. We now show that a 3t-critical graph with diameter three
cannot have this property.
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Figure 3. A 3t-critical graph with diam G = 2

Proposition 6. If G is a 3t-critical graph with diam G = 3, then G has a
pair of nonadjacent vertices u and v such that ux 7→ v, for some x ∈ V , but
there is no vertex y such that vy 7→ u.

Proof. Let G be a 3t-critical graph with diameter three. Let x and y be
diametrical vertices of G where x, a, b, y is a shortest x-y path. By the proof
of Proposition 5, at least one of {x, b} and {a, y} does not dominate G.
Assume then, without loss of generality, that {x, b} does not dominate G.
If xw 7→ b, then w ∈ N(x) by Observation 4 and w ∈ N(y) to dominate y,
thus d(x, y) ≤ 2, a contradiction. Hence the only possibility is that bw 7→ x.

It is useful to know more about the diametrical sets of vertices of a 3t-critical
graph with diameter three.

Theorem 7. If G is a 3t-critical graph with diam G = 3, then G has a
unique maximal diametrical pair (X, Y ). Moreover, X (say) has cardinality
one and 〈Y 〉 is complete.

Proof. Let G be a 3t-critical graph with diam G = 3. The proof of the
theorem is a direct consequence of the following three lemmas.

Lemma 8. For any maximal diametrical pair (Y1, Y2) of G, 〈Yi〉 is complete
for each i and |Yi| = 1 for at least one i.

Proof. Let (Y1, Y2) be a maximal diametrical pair of G. First we show
that if |Yi| ≥ 2, then 〈Yi〉 is complete. Let x ∈ Y1 and {y, z} ⊆ Y2 and
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suppose that yz /∈ E(G). Since {y, z} 6Â G, we may assume without loss
of generality that yw 7→ z for some vertex w, contradicting the fact that
d(x, y) = 3. Hence 〈Y2〉 is complete. A similar argument shows that 〈Y1〉 is
complete.

Next we show that |Yi| = 1 for at least one i. Suppose to the contrary
that both Y1 and Y2 have cardinality at least two. Let x ∈ Y1 and y ∈ Y2

and consider {x, y}. Since |Yi| ≥ 2 for i ∈ {1, 2}, there is no vertex w such
that xw 7→ y or yw 7→ x. It follows that {x, y} Â G. This is the case for
every x ∈ Y1 and every y ∈ Y2. Let A (B, respectively) be the set of vertices
that are distance one from every vertex of Y1 (Y2, respectively). If both 〈A〉
and 〈B〉 are complete, then γt(G) = 2, a contradiction. Thus let a, b ∈ A
where ab /∈ E(G). Consider {a, y}. Since neither a nor y is adjacent to b,
{a, y} 6Â G. Hence, yc 7→ a or ac 7→ y. Since no vertex in N [y] dominates Y1,
ac 7→ y. Therefore, c dominates Y2 − {y}. Furthermore, since {x, y} Â G,
c is adjacent to x, implying that y is the only vertex at distance three from
x, contradicting the fact that |Yi| > 1 for i ∈ {1, 2}.
Consider the maximal diametrical pair ({x}, Y ) of G. Note that by Lemma 8
and the definition of maximal diametrical pair, Y = {y ∈ V | d(x, y) = 3}.

Lemma 9. For every vertex u ∈ V − {x}, d(u, y) ≤ 2 for every y ∈ Y .

Proof. If |Y | = 1, then x is the only vertex at distance three from Y .
Assume then that |Y | ≥ 2. Let y, z ∈ Y and suppose there is a vertex u
such that d(u, y) = 3 and d(u, z) = 2; note that u 6= x. Let uaby be a u-y
path and let ucz be a u-z path (c may equal a). Note that cy /∈ E(G).
Since neither x nor y is adjacent to c, xw 7→ y or yw 7→ x. If xw 7→ y, then
d(x, z) = 2, contradicting that z ∈ Y and that {x} and Y are diametrical
sets. If yw 7→ x, then d(u, y) = 2, again a contradiction.

Lemma 10. ({x}, Y ) is the unique maximal diametrical pair of G.

Proof. Consider any maximal diametrical pair ({u}, W ) of G. If u = x,
then W = {w ∈ V | d(u,w) = 3} = {w ∈ V | d(x,w) = 3} = Y and
we are done. If u ∈ Y , then d(x, u) = 3, i.e., x ∈ W and by Lemma 9,
d(u, z) ≤ 2 for each z ∈ V − {x}. Hence W = {x} and since ({u}, {x}) is
a maximal diametrical pair, it follows that Y = {u} and the result follows.
Hence we may assume that u /∈ Y ∪ {x}. It follows from Lemma 9 that
W ∩ (Y ∪ {x}) = ∅.
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Consider any w ∈ W and suppose firstly that {u,w} Â G. Note that no
vertex is adjacent to x as well as to a vertex in Y . Hence either ux ∈ E(G)
and wy ∈ E(G) for each y ∈ Y , or wx ∈ E(G) and uy ∈ E(G) for each
y ∈ Y . Suppose the former case holds and consider an arbitrary vertex
y ∈ Y . By Lemma 9, d(u, y) = 2 and d(w, x) = 2. Let uay and wbx be a u-y
path and a w-x path, respectively and note that {ub, yb} ∩E(G) = ∅. Thus
{u, y} 6Â G and so uc 7→ y or yc 7→ u for some vertex c. If uc 7→ y, then
cw ∈ E(G) and so d(u,w) = 2, a contradiction since u and w are diametrical
vertices. If yc 7→ u, then d(x, y) = 2, also a contradiction. Similarly, the
case wx ∈ E(G) and uy ∈ E(G) for each y ∈ Y is impossible. We conclude
that {u,w} 6Â G.

Thus there is some vertex d such that {u,w, d} is independent. Since
neither d nor u is adjacent to w, uc 7→ d or dc 7→ u. If uc 7→ d, then
d(u,w) = 2, a contradiction. Thus we may assume that dc 7→ u. Then
without loss of generality, d ∈ N(Y ) and c ∈ N(x). Now we consider {x, d}.
Since d is not adjacent to u or w, and x cannot be adjacent to both u and
w, xd is not a dominating edge for G + xd. Then xs 7→ d or ds 7→ x. If
xs 7→ d, then d(x, y) = 2, a contradiction. If ds 7→ x, then s is adjacent to
both u and w, contradicting the fact that d(u, w) = 3. Hence ({x}, Y ) is
the unique diametrical pair of G.

3. Characterisation

In the rest of this paper we characterise the 3t-critical graphs with diameter
three. We introduce more notation to simplify the characterisation. Let G be
a graph with diam G = 3 and let ({x}, Y ) be a maximal diametrical pair of
G. Let A = N(x), B = {b | b /∈ Y and b Â Y }, and C = V −(A∪B∪Y ∪{x}).
Note that at least one of B and C is not empty. Let F be the family of
all graphs G with diam G = 3 and the maximal diametrical pair ({x}, Y ).
Then F = F1 ∪ F2 ∪ F3 ∪ F4, where

G ∈ F1 if C = ∅ and |Y | ≥ 2,

G ∈ F2 if C = ∅ and |Y | = 1,

G ∈ F3 if B = ∅,
G ∈ F4 if B 6= ∅ and C 6= ∅.

To characterise the 3t-critical graphs with diameter 3, we characterise the
3t-critical graphs in each family Fi, 1 ≤ i ≤ 4. We begin with a lemma.
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Lemma 11. Let G ∈ F be 3t-critical with |Y | ≥ 2. If either B = ∅ or
C = ∅, then 〈A〉 is complete.

Proof. Let G ∈ F with |Y | ≥ 2 and suppose that 〈A〉 is not complete.
First assume that C = ∅. Let u, v ∈ A with uv /∈ E(G). Consider {u, y}
for some vertex y ∈ Y . Since neither u nor y is adjacent to v, uw 7→ y or
yw 7→ u for some vertex w. If uw 7→ y, then w ∈ A ∪ {x} since w /∈ N(y).
But then Y − {y} is not dominated by {u,w}, a contradiction. If yw 7→ u,
then d(x, y) ≤ 2, again a contradiction. Next assume that B = ∅. Since
{u, v} 6Â G, we may assume, without loss of generality, that uw 7→ v. But
this implies that w Â Y , contradicting the fact that B = ∅.
Lemma 11 requires that the graph G has a diametrical set Y with cardinality
greater than one. (See Figure 4(b)). The graph in Figure 4(a) is an example
of a graph with a diametrical set Y such that |Y | = 1 and 〈A〉 complete.
However, the condition of the lemma is necessary as can be seen by the
3t-critical graph in Figure 5 that has |Y | = 1 and 〈A〉 is not complete.
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Figure 4. Two 3t-critical graphs with diameter three
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We first characterise the 3t-critical graphs G ∈ F1.

Theorem 12. A graph G ∈ F1 is 3t-critical if and only if the following
conditions hold:

(1) ({x}, Y ) is the unique maximal diametrical pair of G and 〈Y 〉 is com-
plete.

(2) 〈A〉 is complete.
(3) For every nonadjacent pair u, v ∈ B, there is a vertex a ∈ A such that

ua 7→ v. Also, no pair of adjacent vertices dominates G.
(4) For every vertex b ∈ B, there is a vertex d ∈ B ∪ Y such that bd 7→ x.
(5) For every pair {a, b} of nonadjacent vertices where a ∈ A and b ∈ B,

{a, b} Â G or aw 7→ b for some w ∈ B.

Proof. Let G ∈ F1 be 3t-critical. By Theorem 10, ({x}, Y ) is the unique
maximal diametrical pair of G and 〈Y 〉 is complete.

Since C = ∅, it follows that {x, y} Â G for every y ∈ Y . From Lemma 11
we have that 〈A〉 is complete. Furthermore, since ({x}, Y ) is a maximal
diametrical pair, each b ∈ B is adjacent to at least one vertex a ∈ A. If
there is a vertex b ∈ B that dominates B, then {a, b} Ât G for an a ∈ A,
contradicting the fact that γt(G) = 3. Let u, v ∈ B with uv /∈ E(G).
Obviously, {u, v} 6Â x, so without loss of generality, there is a vertex a ∈ A
such that au 7→ v. Since γt(G) = 3, no pair of adjacent vertices dominates
G. To show that (4) holds, let b be any vertex in B. Since there is at least
one vertex in B not adjacent to b, {x, b} 6Â G. No vertex in N [x] dominates
Y , so bd 7→ x for some d ∈ B ∪ Y . Condition (5) follows directly from
Observation 4 and the fact that if bw 7→ a, then w ∈ A to dominate x;
hence w Â a since 〈A〉 is complete, a contradiction.

Conversely, let G ∈ F1 such that the stated properties hold. Since no
pair of adjacent vertices dominates G, γt(G) ≥ 3. Further, {a, b, y} is a
γt-set for every a ∈ A, b ∈ B, y ∈ Y where ab ∈ E(G), implying that
γt(G) ≤ 3. Hence γt(G) = 3. To show that G is 3t-critical we consider first
{x, y} for y ∈ Y . Since C = ∅, {x, y} Â G. Similarly, {a, y} Â G for every
a ∈ A. We next consider {x, b}. Since condition (4) holds, there is a vertex
d ∈ B ∪ Y such that bd 7→ x. We also consider {a, b}, a ∈ A and b ∈ B.
Property (5) implies that either {a, b} Â G or there is a vertex w ∈ B such
that aw 7→ b. Finally we consider {b, c}, where b, c ∈ B. Since condition (3)
holds, there is a vertex a ∈ A such that ab 7→ c. Thus G is 3t-critical.
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Note that {x, y} Â G for every y ∈ Y . We state this result as a corollary.

Corollary 13. If G ∈ F1 is 3t-critical, then γ(G) = 2.

We now give a more descriptive characterisation of the 3t-critical graphs
G ∈ F1 with δ(G) = 2. We first show that if δ(G) = 2, then deg(x) = 2.
Recall that 〈A〉 is complete.

Lemma 14. If G ∈ F1 and G is 3t-critical with δ(G) = 2, then deg(x) = 2
and deg(v) ≥ 3 for all v ∈ V (G)− {x}.

Proof. Let G ∈ F1 be 3t-critical. Since G has no cutvertices (Theorem
3), |A| , |B| ≥ 2. Every vertex b ∈ B is adjacent to some vertex a ∈ A and
to every vertex y ∈ Y . Thus deg(b) ≥ 3 for every b ∈ B, since |Y | ≥ 2.
By Theorem 10, 〈Y 〉 is complete. Therefore deg(y) ≥ 3 for each y ∈ Y .
Finally, every vertex a ∈ A has at least one neighbour in A, implying that
deg(a) ≥ 3.

We use the following notation for the characterisation. Let A = N(x) =
{x1, x2} and B1 = (N(x1)∩N(x2))−{x}, B2 = N(x1)− (B1∪{x, x2}), and
B3 = N(x2)−(B1∪{x, x1}). Recall that C = ∅ and hence B = B1∪B2∪B3.

We need the following lemmas for the characterisation. To simplify
notation we refer to the 3t-critical graphs G ∈ F1 with δ(G) = 2 as family G2.

Lemma 15. If G ∈ G2 and Bi 6= ∅, then 〈Bi〉 is complete for i ∈ {1, 2, 3}.

Proof. Let G ∈ G2 and assume that Bi 6= ∅. Suppose that u, v ∈ Bi and
uv /∈ E(G). Since neither u nor v dominates x, without loss of generality,
uw 7→ v. Then w ∈ N(u) ∩N(x). But since u and v are in Bi, v ∈ N(w),
contradicting that uw 7→ v.

Lemma 16. If G ∈ G2 and B1 6= ∅, then each vertex in B1 dominates
exactly |Bi| − 1 vertices in Bi for i ∈ {2, 3}.

Proof. It is easy to see that no vertex b ∈ B1 dominates B2 or B3. Suppose,
without loss of generality, a vertex b ∈ B1 is not adjacent to two vertices
in B2, say u and v, and consider {b, u}. Since neither b nor u dominates
x, {b, u} 6Â G. Furthermore, ux1 67→ b since x1 ∈ N(b). Hence bx2 7→ u,
implying that v ∈ B3, a contradiction.

Lemma 17. If G ∈ G2, then |Bi| ≥ 2 for i ∈ {2, 3}.
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Proof. Let G ∈ G2. Since ({x}, Y ) is a maximal diametrical pair, each
a ∈ A is adjacent to some b ∈ B. Hence B1∪Bi 6= ∅ for i ∈ {2, 3}. If B2 = ∅
(or B3 = ∅, respectively), then {x2, b3} Ât G for b3 ∈ B1∪B3 ({x1, b2} Ât G
for b2 ∈ B1 ∪B2, respectively). Hence neither B2 nor B3 is empty. Suppose
without loss of generality that |B2| = 1, say B2 = {b2}. By Lemma 16, b2

is not adjacent to any vertex in B1. Also, b2 is not adjacent to any vertex
in B3, for otherwise {x2, b3} Ât G for some b3 ∈ B3 ∪N(b2). Now consider
{b2, x}. Since {b2, x} 6Â B3 6= ∅ and {x, xi} 6Â Y , there exists a vertex w
such that b2w 7→ x. But no vertex adjacent to b2 dominates x2 as well as
B3, a contradiction. Hence |Bi| ≥ 2 for i ∈ {2, 3}.

Lemma 18. If G ∈ G2, then 〈B2 ∪B3〉 is the disjoint union of non-trivial
stars.

Proof. Note that 〈B2 ∪B3〉 has no isolates, for if u ∈ B2 (say) dominates
B3, then {u, x1} Ât G, contradicting the fact that γt(G) = 3. Assume
without loss of generality that a vertex u ∈ B2 is not adjacent to vertices
b1, . . . , bk ∈ B3, where k ≥ 2 and where b1 (say) is not adjacent to v ∈ B2,
v 6= u. Since {u, b1} 6Â x, we may assume without loss of generality that
uw 7→ b1 for some vertex w. Then w = x1 to dominate x, but {u, x1} 6Â b2,
a contradiction. The result follows since 〈Bi〉 is complete for i = 2, 3.

Theorem 19. A graph G ∈ G2 if and only if the following conditions hold:

(1) ({x}, Y ) is the unique maximal diametrical pair and 〈Y 〉 is complete.

(2) deg(x) = 2 and 〈A〉 is complete.

(3) B1 = ∅ or 〈B1〉 is complete.

(4) |Bi| ≥ 2 and 〈Bi〉 for i ∈ {2, 3} is complete.

(5) 〈B2 ∪B3〉 is the disjoint union of non-trivial stars.

(6) If B1 6= ∅, then every vertex in B1 dominates exactly |Bi| − 1 vertices
in Bi for i ∈ {2, 3}. Also, if u ∈ B2 (u ∈ B3, respectively) does
not dominate B1, then there is a vertex v ∈ B1 ∪ B3 (v ∈ B1 ∪ B2,
respectively ) such that {u, v} Ât B.

Proof. Let G ∈ G2. By Theorem 12, ({x}, Y ) is the unique maximal
diametrical pair of G, 〈Y 〉 is complete, and 〈A〉 is complete. By Lemma 14,
deg(x) = 2. By Lemmas 15, 17, and 18, conditions (3), (4), and (5) hold.
Assume without loss of generality that u ∈ B2 does not dominate B1. Since
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{x, u} 6Â G and {x, xi} 6Â Y , it follows that uv 7→ x for some v. To dominate
x2 but not x, v ∈ B1 ∪ B3, and clearly {u, v} Ât B. Thus by Lemma 16,
condition (6) holds.

Conversely, let G be graph such that all the conditions of the theorem
hold. There is no edge uv ∈ E(G) such that {u, v} Â G. Hence γt(G) ≥ 3.
The path x1, x2, bi, for bi ∈ B, is a total dominating set. Therefore
γt(G) = 3.

To show that G is γt-critical we first consider {x, y} for any y ∈ Y . Since
C = ∅, {x, y} Â G for every y ∈ Y . Next consider {x, b} for any b ∈ B1.
Since b Â A∪Y , by 7→ x for any y ∈ Y . Now consider {x, u} for any u ∈ B2.
If u is not adjacent to any vertex in B3, then by (5), every c ∈ B2−{u} 6= ∅
is adjacent to all vertices in B3, i.e., {x1, c} Ât G, a contradiction. So, if
B1 = ∅ or u Â B1, let v ∈ B3 be adjacent to u. Clearly, uv 7→ x. If u 6Â B1,
then by (6) there is a vertex v ∈ B1∪B3 such that {u, v} Ât B and it is easy
to see that uv 7→ x. The set {x, u} for any u ∈ B3 is dealt with in exactly
the same way. Further, it is easy to see that {x1, v} and {x2, u} dominate G
for every v ∈ B3 and every u ∈ B2. Also, {xi, y} Â G for i = 1, 2 and every
y ∈ Y . By Condition (6) a vertex b ∈ B1 dominates exactly |Bi|− 1 vertices
in Bi, i = 2, 3. Let u ∈ B2 be non-adjacent to b ∈ B1. Then bx2 7→ u.
Similarly, bx1 7→ v, for v ∈ B3 and bv /∈ E(G). Finally, we consider {u, v}
with u ∈ B2 and v ∈ B3, where uv /∈ E. Since 〈B2 ∪B3〉 is the disjoint
union of non-trivial stars, we may assume without loss of generality that u
has degree 1 in 〈B2 ∪B3〉. Then ux1 7→ v. It now follows that G ∈ G2.

For an example of a 3t-critical graph G ∈ G2, see Figure 6.
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Figure 6. A 3t-critical graph G ∈ G2

For 3t-critical graphs G ∈ F1, the cardinality of Y is greater than one. A
necessary condition for these graphs is that 〈A〉 is complete. However, when
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the cardinality of Y is equal to one, this condition is no longer required.
Figure 4(a) is an example of G ∈ F2 and 3t-critical with 〈A〉 complete and
Figure 5 is an example of a graph G ∈ F2 and 3t-critical with |Y | = 1 and
〈A〉 not complete.

Theorem 20. A graph G ∈ F2 is 3t-critical if and only if the following
conditions hold:

(1) ({x}, {y}) is the unique diametrical pair of G.
(2) For each a ∈ A and b ∈ B with ab ∈ E(G) there exists a vertex w /∈

N(a) ∪N(b).
(3) For each a, a′ ∈ A, with aa′ /∈ E(G), there exists b′ ∈ B such that

ab′ 7→ a′. A similar statement holds for each b, b′ ∈ B with bb′ /∈ E(G).
(4) For every a ∈ A, {a, y} Â G or there exists a′ ∈ A such that aa′ 7→ y.

A similar statement holds for every b ∈ B and {x}.
(5) For each a ∈ A and b ∈ B with ab /∈ E(G), {a, b} Â G or, without loss

of generality, there exists b′ ∈ B such that ab′ 7→ b.

Proof. Let G ∈ F2 be 3t-critical. By Theorem 7 ({x}, {y}) is the unique
diametrical pair of G. Condition (2) follows from the fact that γt(G) = 3.
Since 〈A〉 and 〈B〉 cannot both be complete, let a, a′ ∈ A with aa′ /∈ E(G).
Neither a nor a′ is adjacent to y. Therefore without loss of generality there
exists b′ ∈ B such that ab′ 7→ a′. Let a ∈ A be an arbitrary vertex. If
{a, y} Â G, then Condition (4) holds. Otherwise there exists w such that
yw 7→ a or aw 7→ y. If yw 7→ a, then x ∈ N(w) implying d(x, y) = 2,
a contradiction. Hence aw 7→ y for some w ∈ A. A similar argument shows
that for every b ∈ B, {b, x} Â G or there exists b′ ∈ B such that bb′ 7→ x.
Let a ∈ A and b ∈ B with ab /∈ E(G). If {a, b} Â G, then Condition (5)
holds. Otherwise, without loss of generality, there exists b′ ∈ B such that
ab′ 7→ b.

Conversely, let G be a graph such that the stated conditions hold. By
Condition (2) there is no edge that dominates G. Thus, γt(G) ≥ 3. Consider
{a, y} for any a ∈ A. If {a, y} Â G, then with b ∈ N(a) ∩ N(y), {a, b, y}
is a total dominating set. If {a, y} 6Â G, then by Condition (4) there exists
a′ ∈ A such that aa′ 7→ y. Again with b ∈ N(a) ∩N(y), {a, a′, b} is a total
dominating set, so γt(G) ≤ 3. Hence γt(G) = 3. That G is γt-critical follows
from the fact that {x, y} Â G and from Conditions (2) through (5).

Two additional lemmas are needed for the remaining characterisations.
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Lemma 21. If G ∈ F is 3t-critical, then every vertex in C is adjacent to
exactly |Y | − 1 vertices in Y .

Proof. By definition, there is no vertex in C that dominates Y . Suppose
there is a vertex c ∈ C that is not adjacent to at least two vertices in Y ,
say u and v. Clearly, {c, u} 6Â G. Therefore cw 7→ u or uw 7→ c for some
vertex w. If cw 7→ u, then w ∈ N(x) and w Â v, contradicting the fact that
d(x, v) = 3. If uw 7→ c, then w Â x, again contradicting that d(x, u) = 3.

It was shown in Theorem 7 that 〈Y 〉 is complete. We now consider 〈C〉.

Lemma 22. If G ∈ F is 3t-critical and C 6= ∅, then 〈C〉 is complete.

Proof. Let u, v ∈ C and uv /∈ E(G). Since {u, v} 6Â G, assume without
loss of generality that uw 7→ v. By definition there is a vertex y ∈ Y not
adjacent to u. Therefore, w Â y and w Â x. But this contradicts the fact
that d(x, y) = 3.

We now characterise the 3t-critical graphs in family F3.

Theorem 23. A graph G ∈ F3 is 3t-critical if and only if the following
conditions hold:

(1) ({x}, Y ) is the unique maximal diametrical pair of G and 〈Y 〉 is com-
plete.

(2) 〈A ∪ C〉 is complete.
(3) |C| ≥ 2, |Y | ≥ 2 and every vertex in C is adjacent to exactly |Y | − 1

vertices in Y .

Proof. Let G ∈ F3 be 3t-critical. From Theorem 7 we have that ({x}, Y )
is the unique maximal diametrical pair and 〈Y 〉 is complete.

By Lemmas 11 and 22, 〈A〉 and 〈C〉 are complete. We show that 〈A∪C〉
is complete. Let a ∈ A and c ∈ C with ac /∈ E(G). Since there is at least
one vertex in Y not adjacent to c, {a, c} 6Â G. The only possibility is that
aw 7→ c. Thus w Â Y , contradicting the fact that B = ∅.

By Lemma 21, if Y = {y} (say), then no vertex in C is adjacent to y and
since B = ∅, it follows that y is isolated in G, which is impossible. Hence
|Y | ≥ 2. Suppose that |C| = 1. Since |Y | ≥ 2, there is a vertex y ∈ Y that
is not adjacent to a vertex of C. But then diam(G) > 3, a contradiction.
Hence |C| ≥ 2.
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For the necessity, let G ∈ F3 and assume that the conditions of the theorem
hold. It is easy to see that there is no edge ac ∈ E(G) such that {a, c}
dominates G. Thus γt(G) ≥ 3. On the other hand, every shortest y-a path,
y ∈ Y and a ∈ A, is a total dominating set of cardinality three, implying
that γt(G) = 3. We now show that G is 3t-critical. First consider {x, c}, for
any c ∈ C. Since c Â A ∪ C, cy 7→ x for any y ∈ Y adjacent to c. Next,
consider {x, y}, for any y ∈ Y . Here it is also easy to see that yc 7→ x for any
c ∈ N(y) ∩ C. For any a ∈ A and y ∈ Y , {a, y} Â G. Finally we consider
{c, y} with cy /∈ E. Since y is the only vertex in Y not adjacent to c, ca 7→ y
for any a ∈ A.

Corollary 24. If G ∈ F3 is 3t-critical, then γ(G) = 2.

See Figures 2 and 4(b) for examples of 3t-critical graphs in F3. Note that
this family of 3t-critical graphs includes those graphs with minimum degree
one characterised in Theorem 3 where x is the endvertex of G.

Next we consider the family F4. See Figure 7 for an example.
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Figure 7. A 3t-critical graph G ∈ F4

We now characterise the 3t-critical graphs G ∈ F 4 using the same notation
as before.

Theorem 25. A graph G ∈ F 4 is 3t-critical if and only if the following
conditions hold:
(1) (x, Y ) is the unique maximal diametrical pair of G and 〈Y 〉 is complete.
(2) 〈C〉 is complete and each c ∈ C dominates exactly |Y |−1 vertices in Y .
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(3) If |Y | ≥ 2, then for every y ∈ Y , {x, y} Â G or there exists w ∈ B ∪ C
such that yw 7→ x. If |Y | = 1 (say Y = {y}), then {x, y} 6Â G and there
exists y′ ∈ B such that y′ Â A ∪ C or x′ ∈ A such that x′ Â B ∪ C.

(4) For every c ∈ C, there exists w ∈ B ∪ C ∪ Y such that cw 7→ x.
(5) For every b ∈ B, {x, b} Â G or there exists w ∈ B ∪ C ∪ Y such that

bw 7→ x.
(6) For every a ∈ A and y ∈ Y , {a, y} Â G or there exists w ∈ A ∪ C if

Y = {y} (w ∈ C if |Y | ≥ 2) such that aw 7→ y.
(7) For each a ∈ A and c ∈ C with ac /∈ E(G), there exists b ∈ B such that

ab 7→ c.
(8) For each a ∈ A and b ∈ B with ab /∈ E(G), {a, b} Â G or there exists

a′ ∈ A such that a′b 7→ a or b′ ∈ B such that ab′ 7→ b. For each
ab ∈ E(G) with a ∈ A and b ∈ B, there exists w ∈ A∪B ∪C such that
w /∈ (N(a) ∪N(b)).

(9) For each b ∈ B and c ∈ C with bc /∈ E(G), there exists a ∈ A such that
ab 7→ c.

(10) For each c ∈ C and y ∈ Y with cy /∈ E(G), there exists a ∈ A such
that ac 7→ y.

Proof. Let G ∈ F4 be 3t-critical. Condition (1) follows directly from
Theorem 7. By Lemma 22, 〈C〉 is complete. By Lemma 21, each vertex in
C is adjacent to exactly |Y | − 1 vertices in Y .

Consider arbitrary y ∈ Y . If {x, y} Â G, then |Y | ≥ 2 since C 6= ∅ and
y must dominate C. Hence Condition (3) holds in this case. Therefore we
may assume that {x, y} does not dominate G. Since G is 3t-critical, xw 7→ y
or yw 7→ x. If xw 7→ y, then w ∈ A implying that w Â B ∪ C and that
Y = {y}. Thus if |Y | ≥ 2, then yw 7→ x and we have shown that Condition
(3) holds if |Y | ≥ 2. Therefore we may assume that |Y | = 1. Now G has the
unique maximal diametrical pair ({x}, {y}) and neither x nor y dominates
any vertex in C. Hence xx′ 7→ y with x′ ∈ A or yy′ 7→ x with y′ ∈ B, and
Condition (3) follows.

Condition (4) follows from the fact that each c ∈ C dominates at most
|Y |−1 vertices in Y and there is no x′ ∈ A such that xx′ 7→ c for any c ∈ C.

Let b be an arbitrary vertex in B. If {x, b} Â G, then Condition (5)
holds. Otherwise xx′ 7→ b for x′ ∈ A or bb′ 7→ x for b′ ∈ B ∪ C ∪ Y . If
xx′ 7→ b, then x′ Â Y implying d(x, y) = 2, a contradiction. Hence bb′ 7→ x.
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If for a ∈ A and y ∈ Y , {a, y} Â G, then Condition (6) holds. Otherwise
yy′ 7→ a for y′ ∈ N(y) or aa′ 7→ y for a′ ∈ A∪C. If yy′ 7→ a, then x ∈ N(y′)
implying d(x, y) < 3, a contradiction. Hence aa′ 7→ y.

Consider {a, c} where a ∈ A and c ∈ C are not adjacent. Since neither
a nor c dominates Y , {a, c} 6Â G. Therefore, ca′ 7→ a with a′ ∈ A (to
dominate x) or ab′ 7→ c with b′ ∈ B (to dominate Y ). If ca′ 7→ a, then
c Â Y , contradicting that each c ∈ C dominates at most |Y | − 1 vertices in
Y . Hence ab′ 7→ c and Condition (7) holds.

Condition (8) follows directly from the definition of 3t-critical graphs.
If b ∈ B and c ∈ C with bc /∈ E(G), then {b, c} 6Â G since neither b nor c is
adjacent to x. Since there is no c′ ∈ N(c) such that cc′ 7→ b, ba′ 7→ c with
a′ ∈ A. Hence Condition (9) holds.

Finally we consider {c, y} with cy /∈ E(G). Again since neither c nor
y is adjacent to x, {c, y} 6Â G. Also, since y has no neighbour y′ such that
y′ Â x, ca′ 7→ y with a′ ∈ A.

Let G be a graph such that the stated properties hold. By Condition
(8) there is no ab ∈ E(G) with a ∈ A and b ∈ B such that {a, b} Â G,
and since no other edge dominates G, γt(G) ≥ 3. By Condition (10), there
is a ∈ A for every c ∈ C such that ac 7→ y for some y ∈ Y . Further,
each a ∈ A is adjacent to some b ∈ B since ({x}, Y ) is the unique maximal
diametrical pair. Therefore, {a, b, c} is a total dominating set of G, implying
that γt(G) ≤ 3. Hence γt(G) = 3. That G is γt-critical, follows from
Conditions (3) through (10).

Finally we consider a subclass of the family F4.

Lemma 26. If G ∈ F4 is 3t-critical and 〈A〉 is not complete, then every
y ∈ Y dominates at most |C| − 1 vertices in C.

Proof. Let u, v ∈ A with uv 6∈ E(G) and suppose there is a vertex y ∈ Y
such that y Â C. Consider {u, y}. Since {u, y} 6Â G and there is no vertex
c ∈ C such that uc 7→ y, there must be a vertex w ∈ N(y) such that yw 7→ u.
But then d(y, x) ≤ 2, contradicting diam(G) = 3.

Lemma 27. If G ∈ F4 is 3t-critical and 〈A〉 is not complete, then |C| ≥ |Y |.

Proof. Let |C| = k and |Y | = p. Since every vertex in C is adjacent
to exactly |Y | − 1 vertices in Y , there are exactly k(p − 1) edges from C
to Y . By Lemma 26, every y ∈ Y dominates at most |C| − 1 vertices in C.
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Therefore there are at most p(k − 1)− s edges from Y to C, s ≥ 0. Thus

p(k − 1)− s = k(p− 1),

hence
k − s = p

and it follows that k ≥ p.

Restricting our attention to the graphs G ∈ F4 with 〈A〉 not complete and
|Y | = |C|, we are able to obtain a more concise and descriptive characteri-
sation than the one given for the family F4.

Theorem 28. Let G be a graph in F4 with 〈A〉 not complete and |Y | = |C|.
Then G is 3t-critical if and only if the following conditions hold:
(1) ({x}, Y ) is the unique maximal diametrical pair of G and 〈Y 〉 is com-

plete.
(2) 〈C〉 is complete and 〈C ∪ Y 〉 is complete minus a perfect matching

between C and Y .
(3) Every vertex c ∈ C dominates A ∪B.
(4) For every ab ∈ E(〈A ∪ B〉), there is a vertex ai ∈ A or bj ∈ B not

adjacent to a and b and if a1, a2 (b1, b2, respectively) are nonadjacent
vertices in A (B, respectively), then there is a vertex b ∈ B (a ∈ A,
respectively) such that a1b 7→ a2 (b1a 7→ b2, respectively). Also for every
a ∈ A and b ∈ B that are not adjacent, {a, b} Â G or there is a vertex
w such that aw 7→ b or bw 7→ a.

Proof. Let G ∈ F4 with 〈A〉 not complete and |Y | = |C| be 3t-critical.
Condition (1) follows directly from Theorem 7. By Lemma 22, 〈C〉 is com-
plete. By Lemmas 21 and 26, we have that each vertex in C is adjacent to
|Y | − 1 vertices in Y and if 〈A〉 is not complete, then each vertex in Y is
adjacent to at most |C| − 1 vertices is C. Thus there are |C|(|Y | − 1) edges
from C to Y and at most |Y |(|C| − 1) edges from Y to C. Since |C| = |Y |,
there are exactly |Y |(|C| − 1) edges from Y to C and so every vertex in Y
is adjacent to exactly |C| − 1 vertices in C. Therefore, all edges minus a
perfect matching are present between C and Y .

To show that (3) holds, suppose that ac /∈ E(G), a ∈ A and c ∈ C.
Consider {a, y} where y ∈ Y and cy /∈ E(G). Obviously, {a, y} 6Â G. Since
no vertex in N [y] dominates x, it follows that az 7→ y and z ∈ C. But this
contradicts condition (2). Hence c Â A for each c ∈ C.
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Now suppose that cb /∈ E(G), c ∈ C and b ∈ B, and consider {b, c}. Since
neither b nor c is adjacent to x, {c, b} 6Â G. Therefore cw 7→ b or bw 7→ c
for w ∈ A (to dominate x). But if cw 7→ b, then Y is not dominated, a
contradiction. And if bw 7→ c, then w 6∈ N(c), contradicting the fact that
every vertex c ∈ C dominates A. Hence c Â B for each c ∈ C. Thus,
condition (3) holds. Condition (4) follows from the fact that every b ∈ B
dominates C ∪ Y and every a ∈ A dominates C.

Let G ∈ F4 with 〈A〉 not complete and |Y | = |C| and assume that the
conditions of the theorem hold. Since no pair of adjacent vertices dominate
G, γt(G) ≥ 3. Further, {a, b, c}, where a ∈ A, b ∈ B and c ∈ C, is a total
dominating set, so γt(G) = 3. To show that G is 3t-critical, we first consider
{x, y} for y ∈ Y . Then cy 7→ x where c ∈ N(y). A similar argument holds
for {x, c}. Next consider {x, b} for b ∈ B. Then bc 7→ x for any c ∈ C. For
{a, y}, ac 7→ y where c ∈ C −N(y). It now follows from condition (4) that
G is 3t-critical.
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