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Abstract

In this paper, we give a sufficient condition for a graph to contain
vertex-disjoint stars of a given size. It is proved that if the minimum
degree of the graph is at least k + t − 1 and the order is at least
(t + 1)k + O(t2), then the graph contains k vertex-disjoint copies of a
star K1,t. The condition on the minimum degree is sharp, and there is
an example showing that the term O(t2) for the number of uncovered
vertices is necessary in a sense.
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1. Introduction

We consider only undirected graphs without loops or multiple edges. For a
graph G, we denote by V (G), E(G) and δ(G) the vertex set, the edge set
and the minimum degree of G, respectively.

For a graph F and a positive integer k, kF denotes the vertex-disjoint
union of k copies of F . A spanning subgraph isomorphic to kF for some
integer k is called an F -factor. There are several results concerning mini-
mum degree conditions for a graph to have an F -factor for several specific
graphs F . The result of Corrádi and Hajnal [3] implies that δ(G) ≥ 2

3 |V (G)|
suffices for the existence of a K3-factor. (When we consider an F -factor
of a graph G, we always assume that |V (G)| is a multiple of |V (F )|).
Dirac [4] generalized this result by showing that if δ(G) ≥ 1

2 (|V (G)| + k),
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then G contains k vertex-disjoint triangles for any integer k with 3k ≤
|V (G)|. Enomoto, Kaneko and Tuza [7] proved for F = P3 (the path of order
three) that δ(G) ≥ 1

3 |V (G)| is sufficient for the existence of an F -factor if we
assume that G is connected. Hajnal and Szemerédi [8] proved that for F =
Kt δ(G) ≥ t−1

t |V (G)| suffices. More generally, Alon and Yuster [2] proved
an asymptotic result, which states that δ(G) ≥

(
χ(F )−1

χ(F ) + o(1)
)
|V (G)|

assures the existence of an F -factor, where χ(F ) denotes the chromatic
number of F .

On the other hand, if we want to find k vertex-disjoint copies of F in a
graph G of order slightly larger than k|F |, and if F admits a χ(F )-coloring
in which some color classes are tiny, then a much weaker condition may
guarantee the existence. Komlós [9] (and Alon and Fischer [1] for bipartite
case) have proved that the required minimum degree of G is

1
χ(F )−1

(
χ(F )− 2 + α

|V (F )|
)
|V (G)|,

where α is the smallest possible color class size in any χ(F )-coloring of F .
In the case where F is a star K1,t, Alon and Yuster’s result implies

that δ(G) ≥ ( 1
2 + o(1))|V (G)| is sufficient for the existence of a K1,t-factor,

and Komlós, Alon and Fischer’s result implies that δ(G) ≥ 1
t+1 |V (G)| is

sufficient for the existence of k copies of K1,t if |V (G)| is large. In this paper,
we prove the following theorem, in which the required minimum degree of
G does not depend on |V (G)|. The proof is given in the next section.

Theorem 1. Let t be an integer with t ≥ 3. If G is a graph of order
n ≥ (t + 1)k + 2t2 − 3t− 1 with minimum degree at least k + t− 1, then G
contains k vertex-disjoint copies of K1,t.

The minimum degree condition in the theorem cannot be replaced by any
weaker condition even if the order of the graph is assumed much larger. To
see this, let H be a t − 1 regular graph of order sufficiently large, and let
G be obtained from H by adding k − 1 new vertices which are joined to all
other vertices. Then δ(G) = k + t− 2. Since any K1,t subgraph of G must
contain one of the new vertices, G does not contain k vertex-disjoint copies
of K1,t.

On the other hand, the following example shows that the term O(t2) for
the number of uncovered vertices is necessary. Let k1 + k2 + · · ·+ kt = k− 1
so that |ki−kj | ≤ 1 for any i and j. We define the graph G to be the vertex-
disjoint union of the complete graphs K(t+1)k1+t, K(t+1)k2+t, . . . ,K(t+1)kt+t.
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Then, |V (G)| = (t + 1)(k − 1) + t2 = (t + 1)k + t2 − t − 1 and δ(G) =
(t + 1)b k−1

t c + t − 1 ≥ k + t − 1 (if k À t). However, it is obvious that G
contains at most k − 1 copies of K1,t.

This example suggests that the same conclusion as in Theorem 1 follows
if |V (G)| ≥ (t + 1)k + t2 − t. In fact, it is known to be true for t ≤ 3. The
case t = 1 is an easy exercise. The case t = 3 is proved in [6].

Theorem 2 [6]. If G is a graph with |V (G)| ≥ 4k + 6 and δ(G) ≥ k + 2,
then G contains k vertex-disjoint copies of K1,3.

The case t = 2 can be proved in the following way. We use the following
theorem due to Enomoto [5].

Theorem 3 [5]. Let G be a connected graph of order n and n = n1+· · ·+nk

with ni ≥ 2 (1 ≤ i ≤ k). If δ(G) ≥ k, then V (G) can be partitioned into
V1, . . . , Vk so that for each i, |Vi| = ni and Vi induces a subgraph without
isolated vertices.

Corollary 4. Let G be a connected graph of order n, and k be an integer
with 3k ≤ n. If

δ(G) ≥
{

k, if n− 3k is even,
k + 1, if n− 3k is odd,

then G contains k vertex-disjoint copies of P3.

Proof. If n−3k is even, then put n1 = · · · = nk−1 = 3 and nk = n−3k+3,
and apply Theorem 3. If n− 3k is odd, then by deleting one vertex from G
so that the resulting graph is connected, we can apply the previous case.

Now we can prove the following theorem.

Theorem 5. Let G be a graph of order n with n ≥ 3k + 2. If δ(G) ≥ k + 1,
then G contains k vertex-disjoint copies of P3.

Proof. If G is connected, or if G has a component of order at least 3k,
then the result follows immediately from Corollary 4. Suppose that G is
disconnected and each component is order less than 3k. Note that by Corol-
lary 4, each component C of G contains b|V (C)|/3c vertex-disjoint copies of
P3. Also, since δ(G) ≥ k + 1, each component has at least k + 2 vertices.
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If G has at least three components, then G contains at least 3b k+2
3 c ≥ k

copies of P3, and we are done. If G consists of two components of orders
n1 and n2, then the number of vertex-disjoint copies of P3 in G is at least
b n1

3 c+ b n2
3 c ≥ d n1+n2−4

3 e ≥ d 3k+2−4
3 e = k.

However, for the general case of the stronger statement, we need more crucial
argument than the one used in this paper.

2. Proof of Theorem 1

Let t be an integer with t ≥ 3, and let G be a graph of order at least
(t + 1)k + 2t2 − 3t− 1 and minimum degree at least k + t− 1.

We use the following notation and terminology. For S ⊂ V (G), we write
〈S〉 for the subgraph of G induced by S. For disjoint vertex sets S and T ,
we denote the set of edges joining S and T by E(S, T ).

We consider a partition V (G) = X ∪ Y ∪ Z satisfying the following
conditions:
(a) |X| = (t + 1)p and X contains p vertex-disjoint copies of K1,t, say C1,

C2, . . . , Cp.
(b) The vertices of Y can be labelled y1, y2, . . . , yq so that for each r (1 ≤

r ≤ q), |NG(yr) ∩ Z| ≥ rt + (2t− 1).
Note that X = Y = ∅ and Z = V (G) satisfy the above conditions with
p = q = 0. We choose such a partition so that p + q is maximum, and
subject to this condition, q is maximum possible.

Claim 1. For any subset A ⊂ Z with |A| ≤ 2t − 1, G −X − A contains q
vertex-disjoint copies of K1,t. In particular, G contains p + q vertex-disjoint
copies of K1,t.

Proof. By the condition (b), it follows that |NG(yr)∩ (Z −A)| ≥ rt+2t−
1− |A| ≥ rt for each 1 ≤ r ≤ q. Therefore we can complete to take q stars
in 〈Y ∪ (Z −A)〉 whose centers are y1, y2, · · · , yq, respectively.

Claim 2. For any subset A ⊂ Z with |A| ≤ 2t−1, 〈X ∪A〉 does not contain
p + 1 vertex-disjoint copies of K1,t.

Proof. Suppose that 〈X ∪ A〉 contains (p + 1)K1,t. Then by Claim 1, G
contains (p+q+1)K1,t. Let V (G) = X ′∪Y ′∪Z ′ be a partition such that X ′
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is the set of vertices contained in (p + q + 1)K1,t and Y ′ = ∅. This partition
satisfies the condition (a) and (b), and contradicts the maximality of p + q.

In particular, we have the following.

Claim 3. The maximum degree of 〈Z〉 is less than t.

Let a be the center of any star Ci in X. If |NG(a) ∩ Z| ≥ tq + 2t − 1,
then we put X ′ = X − V (Ci), Y ′ = Y ∪ {a} with yq+1 = a, and Z ′ =
Z ∪ (V (Ci) − {a}). Then 〈X ′〉 contains p − 1 vertex-disjoint K1,t’s, and
|NG(yq+1) ∩ Z ′| = |NG(a) ∩ Z|+ t ≥ t(q + 1) + 2t− 1. This contradicts the
maximality of q. Hence we have

|NG(a) ∩ Z| ≤ tq + 2t− 2.(1)

By a similar argument, for each leaf b of any star Ci in X, we have

|NG(b) ∩ Z| ≤ tq + 3t− 3.(2)

Claim 4. For each 1 ≤ i ≤ p, |E(Ci, Z)| ≤ max{tq + t2 + t− 2, 2t2 − 2t}.

Proof. Let a be the center and b1, b2, . . . , bt be the leaves of Ci.

Case 1. |E(a, Z)| ≥ t + 1.
In this case, each bj is adjacent to at most t−1 vertices in Z. For otherwise,
we can take A ⊂ N(bj) ∩ Z with |A| = t and z ∈ N(a) ∩ Z − A so that
〈{bj} ∪ A〉 and 〈(V (Ci) − {bj}) ∪ {z}〉 contain a K1,t. This contradicts
Claim 2. Hence |E(bj , Z)| ≤ t − 1 for all j (1 ≤ j ≤ t). Then, since
|E(a, Z)| ≤ tq + 2t− 2 by (1),

|E(V (Ci), Z)| = |E(a, Z)|+
t∑

j=1

|E(bj , Z)|

≤ tq + 2t− 2 + t(t− 1) = tq + t2 + t− 2.

Case 2. 1 ≤ |E(a, Z)| ≤ t.
If |E(bj , Z)| ≥ t + 1 for some j (1 ≤ j ≤ t), then we can take z ∈ N(a) ∩ Z
and A ⊂ N(bj) ∩ Z − {z} with |A| = t so that 〈V (Ci) ∪ A ∪ {z}〉 contains
2K1,t, a contradiction. Hence |E(bj , Z)| ≤ t for all j. Thus, |E(V (Ci), Z)| ≤
(t + 1)t ≤ 2t2 − 2t, since t ≥ 3.



184 K. Ota

Case 3. |E(a, Z)| = 0.
If each leaf of Ci is adjacent to at most 2t − 2 vertices in Z, then we have
|E(V (Ci), Z)| ≤ 2t2 − 2t. Hence we may assume that there exists a vertex
bh (1 ≤ h ≤ t) with |E(bh, Z)| ≥ 2t− 1. If |E(bj , Z)| ≥ t− 1 for some j with
j 6= h, then we can take A ⊂ N(bj)∩Z with |A| = t−1 and A′ ⊂ N(bh)∩Z−A
with |A′| = t so that 〈{bh, bj , a} ∪A ∪A′〉 contains 2K1,t’s, a contradiction.
Hence |E(bj , Z)| ≤ t− 2 for all j 6= h. Since |E(bh, Z)| ≤ tq + 3t− 3 by (2),
we have |E(V (Ci), Z)| ≤ tq + 3t− 3 + (t− 1)(t− 2) < tq + t2 + t− 2.
This completes the proof of Claim 4.

Now, we shall estimate the number of edges joining X and Z in two ways,
by assuming that G does not contain k vertex-disjoint K1,t’s. By Claim 3,
each vertex in Z is adjacent to at least (k + t − 1) − (t − 1) − q = k − q
vertices of X. Hence,

|E(X,Z)| ≥ (k − q)|Z| = (k − q)(n− (t + 1)p− q).

On the other hand, it follows from Claim 4 that

|E(X,Z)| =
p∑

i=1

|E(V (Ci), Z)|

≤ p ·max{tq + t2 + t− 2, 2t2 − 2t}.
If tq + t2 + t− 2 ≥ 2t2 − 2t, or equivalently if q ≥ t− 2, then

(k − q)(n− (t + 1)p− q) ≤ |E(X,Z)| ≤ p(tq + t2 + t− 2),

and hence

(k − q)(n− q) ≤ p((t + 1)k + t2 + t− 2− q).

By Claim 1, we may assume that p + q ≤ k − 1. Thus the above inequality
implies that

(k − q)(n− q) ≤ (k − 1− q)((t + 1)k + t2 + t− 2− q),

and hence

n ≤ (t + 1)k + t2 + t− 2− (t + 1)k + t2 + t− 2− q

k − q

= (t + 1)k + 2t2 − 3t− 1−
(
t2 − 4t + 3 +

(t− 1)k + t2 + t− 2 + q

k − q

)

< (t + 1)k + 2t2 − 3t− 1.
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This contradicts the assumption that n ≥ (t + 1)k + 2t2 − 3t− 1.
If q ≤ t− 3, then since tq + t2 + t− 2 < 2t2 − 2t,

(k − q)(n− (t + 1)p− q) ≤ |E(X, Z)| ≤ p(2t2 − 2t),

and hence

(k − q)(n− q) ≤ p((t + 1)(k − q) + 2t2 − 2t).

Since p + q ≤ k − 1,

(k − q)(n− q) ≤ (k − 1− q)((t + 1)(k − q) + 2t2 − 2t),

n ≤ (t + 1)k + 2t2 − 3t− 1− tq − 2t2 − 2t

k − q

< (t + 1)k + 2t2 − 3t− 1.

This is a contradiction.
This completes the proof of Theorem 1.
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