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Abstract

In this paper, we give a sufficient condition for a graph to contain
vertex-disjoint stars of a given size. It is proved that if the minimum
degree of the graph is at least £k +t — 1 and the order is at least
(t+ 1)k + O(t?), then the graph contains k vertex-disjoint copies of a
star K1 ;. The condition on the minimum degree is sharp, and there is
an example showing that the term O(t?) for the number of uncovered
vertices is necessary in a sense.
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1. Introduction

We consider only undirected graphs without loops or multiple edges. For a
graph G, we denote by V(G), E(G) and §(G) the vertex set, the edge set
and the minimum degree of G, respectively.

For a graph F' and a positive integer k, kF denotes the vertex-disjoint
union of k£ copies of F. A spanning subgraph isomorphic to kF for some
integer k is called an F'-factor. There are several results concerning mini-
mum degree conditions for a graph to have an F-factor for several specific
graphs F. The result of Corradi and Hajnal [3] implies that 6(G) > 2|V(G)|
suffices for the existence of a Ks3-factor. (When we consider an F-factor
of a graph G, we always assume that |V(G)| is a multiple of |V(F)]).
Dirac [4] generalized this result by showing that if §(G) > 1 (|V(G)| + k),
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then G contains k vertex-disjoint triangles for any integer k with 3k <
|V(G)|. Enomoto, Kaneko and Tuza [7] proved for F' = P; (the path of order
three) that 6(G) > +|V(G)| is sufficient for the existence of an F-factor if we
assume that G is connected. Hajnal and Szemerédi [8] proved that for F' =
K; §(G) > Z1|V(G)| suffices. More generally, Alon and Yuster [2] proved

an asymptotic result, which states that 6(G) > (X;@Sl + 0(1)>|V(G)|
assures the existence of an F-factor, where x(F') denotes the chromatic
number of F.

On the other hand, if we want to find k vertex-disjoint copies of F'in a
graph G of order slightly larger than k|F|, and if F' admits a x(F)-coloring
in which some color classes are tiny, then a much weaker condition may
guarantee the existence. Komlés [9] (and Alon and Fischer [1] for bipartite

case) have proved that the required minimum degree of G is

T (X(F) = 2+ iy ) IV (G,

where « is the smallest possible color class size in any x(F)-coloring of F'.

In the case where F is a star Kj;, Alon and Yuster’s result implies
that 6(G) > (5 +0(1))|V(G)| is sufficient for the existence of a Kj 4-factor,
and Komlds, Alon and Fischer’s result implies that §(G) > H%W(G)\ is
sufficient for the existence of k copies of K1 ; if [V (G)] is large. In this paper,
we prove the following theorem, in which the required minimum degree of
G does not depend on |V(G)|. The proof is given in the next section.

Theorem 1. Let t be an integer with t > 3. If G is a graph of order
n > (t+ 1)k + 2t2 — 3t — 1 with minimum degree at least k +t — 1, then G
contains k vertex-disjoint copies of K1 .

The minimum degree condition in the theorem cannot be replaced by any
weaker condition even if the order of the graph is assumed much larger. To
see this, let H be a t — 1 regular graph of order sufficiently large, and let
G be obtained from H by adding k — 1 new vertices which are joined to all
other vertices. Then §(G) = k 4+t — 2. Since any K, subgraph of G must
contain one of the new vertices, G does not contain k vertex-disjoint copies
of Kl,t-

On the other hand, the following example shows that the term O(t?) for
the number of uncovered vertices is necessary. Let k1 +ko+- -+ k =k —1
so that |k; —k;| < 1 for any ¢ and j. We define the graph G to be the vertex-
disjoint union of the complete graphs Ky 1)k, 465 Kt 1)kotts - -+ » Kt 1) ket
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Then, |V(G)| = t+1)(k—1)+t* = (t+ 1Dk +t* -t —1 and §(G) =
t+1)| £ +t—1>k+t—1 (if k> t). However, it is obvious that G
contains at most k — 1 copies of Kj ;.

This example suggests that the same conclusion as in Theorem 1 follows
if [V(G)| > (t+ 1)k +t* —t. In fact, it is known to be true for t < 3. The
case t = 1 is an easy exercise. The case t = 3 is proved in [6].

Theorem 2 [6]. If G is a graph with |V(G)| > 4k + 6 and 6(G) > k + 2,
then G contains k vertex-disjoint copies of K1 3.

The case t = 2 can be proved in the following way. We use the following
theorem due to Enomoto [5].

Theorem 3 [5]. Let G be a connected graph of order n andn = ni+---+ny
withn; > 2 (1 <i < k). If 6(G) > k, then V(G) can be partitioned into
Vi,..., Vi so that for each i, |V;| = n; and V; induces a subgraph without
isolated vertices.

Corollary 4. Let G be a connected graph of order n, and k be an integer
with 3k < n. If

k, if n— 3k is even,
>
2(G) _{ k+1, if n—3k is odd,

then G contains k vertex-disjoint copies of Pj.

Proof. If n—3k is even, then put ny =--- =ng_1 = 3 and np = n—3k+3,
and apply Theorem 3. If n — 3k is odd, then by deleting one vertex from G
so that the resulting graph is connected, we can apply the previous case. m

Now we can prove the following theorem.

Theorem 5. Let G be a graph of order n with n > 3k+2. If §(G) > k+1,
then G contains k vertex-disjoint copies of Ps.

Proof. If G is connected, or if G has a component of order at least 3k,
then the result follows immediately from Corollary 4. Suppose that G is
disconnected and each component is order less than 3k. Note that by Corol-
lary 4, each component C of G contains ||V (C)|/3] vertex-disjoint copies of
P5. Also, since §(G) > k + 1, each component has at least k + 2 vertices.
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If G has at least three components, then G contains at least 3L%J >k

copies of P3, and we are done. If G consists of two components of orders

n1 and ne, then the number of vertex-disjoint copies of Ps in G is at least
—4 3k4+2—4

5]+ %) > TRt > [3h42-4) .

However, for the general case of the stronger statement, we need more crucial
argument than the one used in this paper.

2. Proof of Theorem 1

Let ¢ be an integer with ¢ > 3, and let G be a graph of order at least
(t 4+ 1)k + 2t? — 3t — 1 and minimum degree at least k + ¢ — 1.
We use the following notation and terminology. For S C V(G), we write
(S) for the subgraph of G induced by S. For disjoint vertex sets S and T,
we denote the set of edges joining S and T by E(S,T).
We consider a partition V(G) = X UY U Z satisfying the following
conditions:
(a) |X| = (t+1)p and X contains p vertex-disjoint copies of K4, say C1,
Cy,...,Cp.
(b) The vertices of Y can be labelled y1, ya,...,y4 so that for each r (1 <
r<q), [INa(yr) N Z| = rt + (2t = 1).
Note that X =Y = () and Z = V(G) satisfy the above conditions with
p = q = 0. We choose such a partition so that p + ¢ is maximum, and
subject to this condition, ¢ is maximum possible.

Claim 1. For any subset A C Z with |A] < 2t —1, G — X — A contains ¢
vertex-disjoint copies of K ;. In particular, G contains p 4 ¢ vertex-disjoint
copies of Kj ;.

Proof. By the condition (b), it follows that |Ng(y.) N (Z — A)| > rt 4+ 2t —
1 —|A] > rt for each 1 < r < q. Therefore we can complete to take ¢ stars
in (Y U (Z — A)) whose centers are y1,y2, - - -, Yq, respectively. [ |

Claim 2. For any subset A C Z with |A| < 2t—1, (X UA) does not contain
p + 1 vertex-disjoint copies of K7 ;.

Proof. Suppose that (X U A) contains (p + 1)K ;. Then by Claim 1, G
contains (p+¢+1)K; ;. Let V(G) = X'UY'UZ’ be a partition such that X’
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is the set of vertices contained in (p+ ¢+ 1)K;,; and Y’ = (). This partition
satisfies the condition (a) and (b), and contradicts the maximality of p + q.

|
In particular, we have the following.

Claim 3. The maximum degree of (Z) is less than . |

Let a be the center of any star C; in X. If |[Ng(a) N Z| > tq+ 2t — 1,
then we put X’ = X — V(C;), Y = Y U {a} with ys41 = a, and Z’' =
Z U (V(C;) — {a}). Then (X') contains p — 1 vertex-disjoint K1 ,’s, and
ING(yg+1) N Z'| = [Ng(a) N Z| +t > t(qg+ 1) + 2t — 1. This contradicts the
maximality of ¢q. Hence we have

(1) |INg(a) N Z| < tq+2t—2.

By a similar argument, for each leaf b of any star C; in X, we have

(2) |INg(b)N Z| < tq+ 3t — 3.

Claim 4. For each 1 <i <p, |E(C;, Z)| < max{tq + t* +t — 2,2t> — 2t}.
Proof. Let a be the center and by, bo, ..., b; be the leaves of C;.

Case 1. |E(a,Z)| >t + 1.
In this case, each b; is adjacent to at most ¢ —1 vertices in Z. For otherwise,
we can take A C N(bj) N Z with |A] = ¢ and z € N(a) N Z — A so that
({b;} U A) and ((V(C;) — {b;}) U {2}) contain a K;,;. This contradicts
Claim 2. Hence |E(bj,Z)] < t—1for all j (1 < j < t). Then, since
B(a, 7)| < tq+2t 2 by (1),

[E(V(Ci),2)| = [E(a, 2)] + Z_: |E(bj, 7))

< tqH+2t—2+4t(t—1) = tg+t> 4+t —2.

Case 2. 1 < |E(a,Z)| < t.
If |E(b;, Z)| > t+ 1 for some j (1 < j <t), then we can take z € N(a) N Z
and A C N(bj) N Z — {z} with |A| =t so that (V(C;) U AU {z}) contains
2K+, a contradiction. Hence |E(b;, Z)| <t for all j. Thus, |[E(V(C;), Z)| <
(t 4+ 1)t < 2t2 — 2t, since t > 3.
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Case 3. |E(a, Z)| = 0.

If each leaf of C; is adjacent to at most 2t — 2 vertices in Z, then we have
|E(V(Cy), Z)| < 2t* — 2t. Hence we may assume that there exists a vertex
by, (1 < h <t)with |E(by, Z)| > 2t —1. If |E(b;, Z)| > t — 1 for some j with
J # h, then we can take A C N(b;)NZ with |A| = t—1and A" C N(b,)NZ—A
with |A'| =t so that ({bs,b;,a} U AU A’) contains 2K 4’s, a contradiction.
Hence |E(b;, Z)| <t —2 for all j # h. Since |E(bp, Z)| < tq+ 3t — 3 by (2),
we have |[E(V(C;),2)| <tq+3t—3+(t—1)(t—2) <tqg+t*+t—2.

This completes the proof of Claim 4. [
Now, we shall estimate the number of edges joining X and Z in two ways,
by assuming that G does not contain £ vertex-disjoint Ki;’s. By Claim 3,
each vertex in Z is adjacent to at least (k+¢t—1)—(t—1)—q =k —¢q
vertices of X. Hence,

E(X,Z)| > (k=q)|Z| = (k—q)(n—(t+1)p—q).

On the other hand, it follows from Claim 4 that
p
i=1

< p-max{tq+t> +t—2,2t* — 2t}.
If tg+ 12 4+t — 2 > 2t — 2¢, or equivalently if ¢ > ¢ — 2, then
(k—q)(n—(t+1Dp—q) < |[E(X,2)| < pltq+t*+1t—2),
and hence
(k—q)n—q) < p((t+Dk+t*+t—-2—q).

By Claim 1, we may assume that p +¢ < k — 1. Thus the above inequality
implies that

(k—q)n—q) < (k=1-q)((t+Dk+t+t-2—g),
and hence

(t+1D)k+t2+t—2—¢q

< (t+Dk+t2+t—2—
n < (t+1Dk+t"+ -

(t—l)k+t2+t—2—|—q)

= (t+Dk+22—3t—1— (12 —4t+3
(t+ 1)k + ( +3+ —

< (t+1D)k+2t> =3t — 1.
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This contradicts the assumption that n > (t + 1)k + 2t — 3t — 1.
If ¢ <t— 3, then since tq +t> +t —2 < 2t> — 2t,

(k—q)(n—(t+1)p—q) < |E(X,Z) < p2t* —2t),
and hence
(k—q)(n—q) < p((t+1)(k—q) +2t* - 2t).
Sincep+q <k —1,

(k—q)(n—q) < (k—=1-q)((t+1)(k—q)+ 26> —20),
n < (t+1)k+2t2—3t—1—tq—27:__;t
< (t+1)k+2t2 -3t —1.
This is a contradiction.
This completes the proof of Theorem 1. |
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