A σ_{3} TYPE CONDITION FOR HEAVY CYCLES IN WEIGHTED GRAPHS

Shenggui Zhang* and Xueliang Li
Department of Applied Mathematics
Northwestern Polytechnical University
Xi'an, Shaanxi 710072, P.R. China

AND
Hajo Broersma
Faculty of Mathematical Sciences
University of Twente
P.O. Box 217

7500 AE Enschede, The Netherlands

Abstract

A weighted graph is a graph in which each edge e is assigned a non-negative number $w(e)$, called the weight of e. The weight of a cycle is the sum of the weights of its edges. The weighted degree $d^{w}(v)$ of a vertex v is the sum of the weights of the edges incident with v. In this paper, we prove the following result: Suppose G is a 2 -connected weighted graph which satisfies the following conditions: 1. The weighted degree sum of any three independent vertices is at least m; 2. $w(x z)=w(y z)$ for every vertex $z \in N(x) \cap N(y)$ with $d(x, y)=2 ; 3$. In every triangle T of G, either all edges of T have different weights or all edges of T have the same weight. Then G contains either a Hamilton cycle or a cycle of weight at least $2 \mathrm{~m} / 3$. This generalizes a theorem of Fournier and Fraisse on the existence of long cycles in k-connected unweighted graphs in the case $k=2$. Our proof of the above result also suggests a new proof to the theorem of Fournier and Fraisse in the case $k=2$.

Keywords: weighted graph, (long, heavy, Hamilton) cycle, weighted degree, (weighted) degree sum.
2000 Mathematics Subject Classification: 05C45, 05C38, 05C35.

[^0]
1. Terminology and Notation

We use Bondy and Murty [4] for terminology and notation not defined here and consider finite simple graphs only.

Let $G=(V, E)$ be a simple graph. G is called a weighted graph if each edge e is assigned a non-negative number $w(e)$, called the weight of e. For any subgraph H of $G, V(H)$ and $E(H)$ denote the sets of vertices and edges of H, respectively. The weight of H is defined by

$$
w(H)=\sum_{e \in E(H)} w(e)
$$

An optimal cycle is one with maximum weight. For each vertex $v \in V$, $N_{H}(v)$ denotes the set, and $d_{H}(v)$ the number, of vertices in H that are adjacent to v. We define the weighted degree of v in H by

$$
d_{H}^{w}(v)=\sum_{h \in N_{H}(v)} w(v h) .
$$

When no confusion occurs, we will denote $N_{G}(v), d_{G}(v)$ and $d_{G}^{w}(v)$ by $N(v)$, $d(v)$ and $d^{w}(v)$, respectively. An (x, y)-path is a path connecting the two vertices x and y. The distance between two vertices x and y, denoted by $d(x, y)$, is the length of a shortest (x, y)-path. If u and v are two vertices on a path $P, P[u, v]$ denotes the segment of P from u to v. The number of vertices in a maximum independent set of G is denoted by $\alpha(G)$. For a positive integer $k \leq \alpha(G)$ we denote by $\sigma_{k}(G)$ the minimum value of the degree sum of any k independent vertices, and by $\sigma_{k}^{w}(G)$ the minimum value of the weighted degree sum of any k independent vertices. Instead of $\sigma_{1}(G)$ and $\sigma_{1}^{w}(G)$, we use the notations $\delta(G)$ and $\delta^{w}(G)$, respectively.

2. Results

There have been many results on the existence of long cycles in graphs. The following three theorems are well-known.

Theorem A (Dirac [5]). Let G be a 2 -connected graph such that $\delta(G) \geq r$. Then G contains either a Hamilton cycle or a cycle of length at least $2 r$.

Theorem B (Pósa [7]). Let G be a 2 -connected graph such that $\sigma_{2}(G) \geq s$. Then G contains either a Hamilton cycle or a cycle of length at least s.

Theorem C (Fournier and Fraisse [6]). Let G be a k-connected graph where $2 \leq k<\alpha(G)$, such that $\sigma_{k+1}(G) \geq m$. Then G contains either a Hamilton cycle or a cycle of length at least $2 m /(k+1)$.
It is easy to see that Theorem B generalizes Theorem A, and Theorem C in turn generalizes Theorem B.

An unweighted graph can be regarded as a weighted graph in which each edge e is assigned weight $w(e)=1$. Thus, in an unweighted graph, $d^{w}(v)=d(v)$ for every vertex v, and the weight of a cycle is simply the length of the cycle.

Theorem A and Theorem B were generalized to weighted graphs by the following two theorems, respectively.

Theorem 1 (Bondy and Fan [3]). Let G be 2-connected weighted graph such that $\delta^{w}(G) \geq r$. Then either G contains a cycle of weight at least $2 r$ or every optimal cycle is a Hamilton cycle.

Theorem 2 (Bondy et al. [2]). Let G be 2-connected weighted graph such that $\sigma_{2}^{w}(G) \geq s$. Then G contains either a Hamilton cycle or a cycle of weight at least s.

A natural question is whether Theorem C also admits an analogous generalization for weighted graphs. This leads to the following problem.

Problem 1. Let G be a k-connected weighted graph where $2 \leq k<\alpha(G)$, such that $\sigma_{k+1}^{w}(G) \geq m$. Is it true that G contains either a Hamilton cycle or a cycle of weight at least $2 m /(k+1)$?

If the answer to the question of this problem is positive, then the result would be best possible and it would generalize Theorem C and Theorem 2.

It seems very difficult to settle this problem, even for the case $k=2$. In the next section, we prove that the answer to the case $k=2$ of Problem 1 is positive if we add some extra conditions. These extra conditions were motivated by a recent generalization of a theorem of Fan to weighted graphs (cf. [8]). Our result is an analogue and also a generalization of Theorem C to weighted graphs in the case $k=2$.

Theorem 3. Let G be a 2-connected weighted graph which satisfies the following conditions:

1. The weighted degree sum of any three independent vertices is at least m;
2. $w(x z)=w(y z)$ for every vertex $z \in N(x) \cap N(y)$ with $d(x, y)=2$;
3. In every triangle T of G, either all edges of T have different weights or all edges of T have the same weight.

Then G contains either a Hamilton cycle or a cycle of weight at least $2 m / 3$.

3. Proof of Theorem 3

Let G be a 2 -connected weighted graph satisfying the conditions of Theorem 3. Suppose that G does not contain a Hamilton cycle. Then it suffices to prove that G contains a cycle of weight at least $2 m / 3$.

Choose a path $P=v_{1} v_{2} \cdots v_{p}$ in G such that
(a) P is as long as possible;
(b) $w(P)$ is as large as possible, subject to (a);
(c) $d^{w}\left(v_{1}\right)+d^{w}\left(v_{p}\right)$ is as large as possible, subject to (a) and (b).

From the choice of P, we can immediately see that $N\left(v_{1}\right) \cup N\left(v_{p}\right) \subseteq V(P)$.
Claim 1. There exists no cycle of length p.
Proof. Suppose there exists a cycle C of length p. Since G contains no Hamilton cycle and G is connected, we can find a vertex $u \in V(G) \backslash V(C)$ and a path Q from u to a vertex $v \in V(C)$, such that Q is internally disjoint from C. The subgraph $C \cup Q$ of G contains a path longer than P, contradicting the choice of P in (a).

Claim 2. $v_{1} v_{p} \notin E(G)$.
Proof. If $v_{1} v_{p} \in E(G)$, then we can find a cycle $C=v_{1} v_{2} \cdots v_{p} v_{1}$ of length p, contradicting Claim 1.

Claim 3. If $v_{i} \in N\left(v_{1}\right)$, then $v_{i-1} \notin N\left(v_{p}\right)$.
Proof. Suppose $v_{i} \in N\left(v_{1}\right)$ and $v_{i-1} \in N\left(v_{p}\right)$. Then we can form a cycle $C=v_{1} v_{i} v_{i+1} \cdots v_{p} v_{i-1} v_{i-2} \cdots v_{1}$ with length p, again contradicting Claim 1.

Claim 4. If $v_{i} \in N\left(v_{1}\right)$, then $w\left(v_{i-1} v_{i}\right) \geq w\left(v_{1} v_{i}\right)$. If $v_{j} \in N\left(v_{p}\right)$, then $w\left(v_{j} v_{j+1}\right) \geq w\left(v_{j} v_{p}\right)$.

Proof. If $v_{i} \in N\left(v_{1}\right)$, the path $P^{\prime}=v_{i-1} v_{i-2} \cdots v_{1} v_{i} \cdots v_{p}$ has the same length as P. So, because of (b), we must have $w(P) \geq w\left(P^{\prime}\right)$, hence $w\left(v_{i-1} v_{i}\right) \geq w\left(v_{1} v_{i}\right)$. The second assertion can be proved similarly.

Since G is 2-connected, by Lemma 1 of [1], there is a sequence of internally disjoint paths $P_{1}, P_{2}, \ldots, P_{m}$ such that
(1) P_{k} has end vertices x_{k} and y_{k}, and $V\left(P_{k}\right) \cap V(P)=\left\{x_{k}, y_{k}\right\}$ for $k=$ $1,2, \ldots, m$
(2) $v_{1}=x_{1}<x_{2}<y_{1} \leq x_{3}<y_{2} \leq x_{4}<\cdots<y_{m-2} \leq x_{m}<y_{m-1}<y_{m}=$ v_{p}, where the inequalities denote the order of the vertices on P.
By Claim 2, we have $m \geq 2$. It is not difficult to see that we can choose these paths such that
(3) if $v_{i} \in N\left(v_{1}\right)$, then $v_{i} \in P\left[v_{2}, x_{2}\right] \cup P\left[y_{1}, x_{3}\right]$ for $m \geq 3$, or $v_{i} \in P\left[v_{2}, x_{2}\right] \cup$ $P\left[y_{1}, v_{p-1}\right]$ for $m=2$;
(4) if $v_{j} \in N\left(v_{p}\right)$, then $v_{j} \in P\left[y_{m-2}, x_{m}\right] \cup P\left[y_{m-1}, v_{p-1}\right]$ for $m \geq 3$, or $v_{j} \in P\left[v_{2}, x_{2}\right] \cup P\left[y_{1}, v_{p-1}\right]$ for $m=2$.

Now denote by C_{k} the cycle $P_{k} \cup P\left[x_{k}, y_{k}\right]$ for $k=1,2, \ldots, m$, and let C be the cycle whose edge set is the symmetric difference of the edge sets of these cycles C_{k}. By (3), (4) and Claim 3 we have for all $v_{i} \in N\left(v_{1}\right) \backslash\left\{y_{1}\right\}$ and $v_{j} \in N\left(v_{p}\right) \backslash\left\{x_{m}\right\}$ that $v_{i-1} v_{i}, v_{j} v_{j+1} \in E(C)$ and $v_{i-1} v_{i} \neq v_{j} v_{j+1}$. Also note that since $N\left(v_{1}\right) \cup N\left(v_{p}\right) \subseteq V(P)$, we must have $P_{1}=v_{1} y_{1}$ and $P_{m}=x_{m} v_{p}$. Using Claim 4, this shows that

$$
\begin{aligned}
w(C) \geq & \sum_{v_{i} \in N\left(v_{1}\right) \backslash\left\{y_{1}\right\}} w\left(v_{i-1} v_{i}\right)+\sum_{v_{j} \in N\left(v_{p}\right) \backslash\left\{x_{m}\right\}} w\left(v_{j} v_{j+1}\right) \\
& +w\left(v_{1} y_{1}\right)+w\left(x_{m} y_{p}\right) \\
\geq & \sum_{v_{i} \in N\left(v_{1}\right)} w\left(v_{1} v_{i}\right)+\sum_{v_{j} \in N\left(v_{p}\right)} w\left(v_{j} v_{p}\right) \\
= & d^{w}\left(v_{1}\right)+d^{w}\left(v_{p}\right)
\end{aligned}
$$

Without loss of generality, we can assume that $d^{w}\left(v_{1}\right) \leq w(C) / 2$.
Since G is 2-connected, v_{1} is adjacent to at least one vertex on P other than v_{2}. Choose $v_{k} \in N\left(v_{1}\right) \cap V(P)$ such that k is as large as possible. By Claim 2 it is clear that $3 \leq k \leq p-1$.

Now we consider two cases.

Case 1. There exists a vertex $v_{i} \in V(P)$ such that $v_{1} v_{i} \in E(G)$ but $v_{1} v_{i-1} \notin E(G)$ for some i with $3 \leq i \leq k$.
By Claim 3 we know that $v_{i-1} v_{p} \notin E(G)$, so the three vertices v_{1}, v_{i-1} and v_{p} are independent. From Condition 2 of the theorem and the fact $d\left(v_{1}, v_{i-1}\right)=$ 2 we know that $v_{i-1} v_{i-2} \cdots v_{1} v_{i} \cdots v_{p}$ is another longest path with the same weight as P. By the choice of P in (c), we have $d^{w}\left(v_{i-1}\right) \leq d^{w}\left(v_{1}\right) \leq$ $w(C) / 2$. With $d^{w}\left(v_{1}\right)+d^{w}\left(v_{p}\right) \leq w(C)$, we have $d^{w}\left(v_{1}\right)+d^{w}\left(v_{i-1}\right)+d^{w}\left(v_{p}\right) \leq$ $3 w(C) / 2$. It follows from Condition 1 of the theorem that the weight of the cycle C is at least $2 m / 3$.

Case 2. $v_{1} v_{i} \in E(G)$ for all i with $3 \leq i \leq k$.

Case 2.1. $w\left(v_{1} v_{i-1}\right)=w\left(v_{1} v_{i}\right)=w\left(v_{i-1} v_{i}\right)=w^{*}$ for all i with $3 \leq i \leq k$. For every i with $2 \leq i \leq k-1, v_{i}$ can not be adjacent to any vertex outside P. Otherwise, there will be a path of length p, contradicting the choice of P in (a). Since G is 2-connected, there must be an edge $v_{j} v_{s} \in E(G)$ with $j<k<s$. Choose $v_{j} v_{s} \in E(G)$ such that $j<k<s$ and s is as large as possible. From Claim 3 we have $s<p$.

Case 2.1.1. $s \geq k+2$.
By the choice of v_{k} we know that $v_{1} v_{s-1} \notin E(G)$. If $v_{s-1} v_{p} \in E(G)$, then we can form a cycle $v_{1} v_{j+1} \cdots v_{s-1} v_{p} \cdots v_{s} v_{j} \cdots v_{1}$ of length p, contradicting Claim 1. So, the three vertices v_{1}, v_{s-1} and v_{p} are independent. By the choice of v_{k}, we have $d\left(v_{1}, v_{s}\right)=2$. If $v_{j} v_{s-1} \in E(G)$, then $d\left(v_{1}, v_{s-1}\right)=2$. Then it follows from Condition 2 of the theorem that $w\left(v_{j} v_{s-1}\right)=w\left(v_{j} v_{s}\right)=$ $w\left(v_{1} v_{j}\right)=w^{*}$, and from Condition 3 of the theorem we get $w\left(v_{s-1} v_{s}\right)=w^{*}$. If $v_{j} v_{s-1} \notin E(G)$, then $d\left(v_{j} v_{s-1}\right)=2$. This implies that $w\left(v_{s-1} v_{s}\right)=$ $w\left(v_{j} v_{s}\right)=w^{*}$. Thus, in both cases the path $v_{s-1} v_{s-2} \cdots v_{j+1} v_{1} \cdots v_{j} v_{s} \cdots v_{p}$ is another longest path with the same weight as P. By the choice of P in (c), we know that $d^{w}\left(v_{s-1}\right) \leq d^{w}\left(v_{1}\right) \leq w(C) / 2$. With $d^{w}\left(v_{1}\right)+d^{w}\left(v_{p}\right) \leq w(C)$, we have $d^{w}\left(v_{1}\right)+d^{w}\left(v_{s-1}\right)+d^{w}\left(v_{p}\right) \leq 3 w(C) / 2$. It follows from Condition 1 of the theorem that the weight of the cycle C is at least $2 \mathrm{~m} / 3$.

Case 2.1.2. $s=k+1$.
By Claim 3 we may assume that $k+1<p$. From the 2 -connectedness of G and the choice of v_{s}, there must be an edge $v_{k} v_{t} \in E(G)$ such that $t \geq k+2$. By the choice of v_{k}, we know that $v_{1} v_{t-1} \notin E(G)$. On the other hand, if $v_{t-1} v_{p} \in E(G)$, then we can form a cycle $v_{1} v_{j+1} \cdots v_{k} v_{t} \cdots v_{p} v_{t-1} \cdots v_{k+1}$
$v_{j} \cdots v_{1}$ of length p, contradicting Claim 1. So, the three vertices v_{1}, v_{t-1} and v_{p} are independent.

If $v_{k} v_{t-1} \in E(G)$, then from Condition 2 of the theorem we have $w\left(v_{k} v_{t-1}\right)=w\left(v_{k} v_{t}\right)=w\left(v_{1} v_{k}\right)=w^{*}$, and from Condition 3 of the theorem, the edge $v_{t-1} v_{t}$ has weight w^{*}. If $v_{k} v_{t-1} \notin E(G)$, then from Condition 2 of the theorem we also get $w\left(v_{t-1} v_{t}\right)=w^{*}$. Thus, in both cases the path $v_{t-1} v_{t-2} \cdots v_{k+1} v_{j} \cdots v_{1} v_{j+1} \cdots v_{k} v_{t} \cdots v_{p}$ is another longest path with the same weight as P. By the choice of P in $(\mathrm{c}), d\left(v_{t-1}\right) \leq d^{w}\left(v_{1}\right) \leq w(C) / 2$. With $d^{w}\left(v_{1}\right)+d^{w}\left(v_{p}\right) \leq w(C)$, we have $d^{w}\left(v_{1}\right)+d^{w}\left(v_{t-1}\right)+d^{w}\left(v_{p}\right) \leq$ $3 w(C) / 2$. It follows from Condition 1 of the theorem that the weight of the cycle C is at least $2 m / 3$.

This completes the proof of Case 2.1.

Case 2.2. There is some vertex v_{i} with $3 \leq i \leq k$ such that $w\left(v_{1} v_{i-1}\right)$, $w\left(v_{1} v_{i}\right)$ and $w\left(v_{i-1} v_{i}\right)$ are all different.
In this case, choose vertex v_{j} such that $w\left(v_{1} v_{j-1}\right), w\left(v_{1} v_{j}\right)$ and $w\left(v_{j-1} v_{j}\right)$ are all different, and j is as large as possible. Denote the weight of $v_{1} v_{j}$, $v_{j-1} v_{j}$ and $v_{1} v_{j-1}$ by w_{1}, w_{2} and w_{3}, respectively. It follows from Condition 3 (or Condition 2 if $j=k$) that $w\left(v_{j-1} v_{j}\right)=w_{2} \neq w_{1}=w\left(v_{j} v_{j+1}\right)$, and from Condition 2 of the theorem that $v_{j-1} v_{j+1} \in E(G)$. If $j<k$, then the weight of the edge $v_{j-1} v_{j+1}$ is different from the weight w_{1} of the edge $v_{j+1} v_{j+2}$ since there is a triangle $v_{1} v_{j-1} v_{j+1} v_{1}$ and $w\left(v_{1} v_{j-1}\right)=w_{3} \neq w_{1}=w\left(v_{1} v_{j+1}\right)$. With the same argument, we can prove that $v_{j-1} v_{i} \in E(G)$ for all i with $j \leq i \leq k+1$. By the choice of v_{k}, we have that $w\left(v_{j-1} v_{k+1}\right)=w_{3}$.

Suppose first that $v_{k} v_{k+2} \in E(G)$. Then $d\left(v_{1}, v_{k+2}\right)=2$. This shows that $w\left(v_{k} v_{k+2}\right)=w\left(v_{1} v_{k}\right)=w_{1}$. From $w\left(v_{k} v_{k+1}\right)=w\left(v_{k} v_{k+2}\right)=w_{1}$ and Condition 3 of the theorem we know that $w\left(v_{k+1} v_{k+2}\right)=w_{1}$. Therefore, there must be an edge $v_{j-1} v_{k+2} \in E(G)$ since the two edges $v_{j-1} v_{k+1}$ and $v_{k+1} v_{k+2}$ have different weights. Again, by the fact $d\left(v_{1}, v_{k+2}\right)=2$, we obtain that $w\left(v_{j-1} v_{k+2}\right)=w\left(v_{1} v_{j-1}\right)=w_{3}$. This leads to a triangle $v_{j-1} v_{k+1} v_{k+2} v_{j-1}$ in which $w\left(v_{j-1} v_{k+1}\right)=w\left(v_{j-1} v_{k+2}\right)=w_{3}$ and $w\left(v_{k+1} v_{k+2}\right)=w_{1}$, contradicting Condition 3 of the theorem. Hence $v_{k} v_{k+2} \notin E(G)$. Thus $d\left(v_{k}, v_{k+2}\right)=2$. This implies that $w\left(v_{k+1} v_{k+2}\right)=$ $w\left(v_{k} v_{k+1}\right)=w_{1}$. Therefore, there must be an edge $v_{j-1} v_{k+2} \in E(G)$ and $w\left(v_{j-1} v_{k+2}\right)=w_{3}$. This also leads to a triangle $v_{j-1} v_{k+1} v_{k+2} v_{j-1}$ which is impossible by Condition 3 of the theorem.

The proof of the theorem is complete.

4. Remarks

The proof of Theorem C in [6] is very complicated. It is clear that our proof of Theorem 3 provides a simpler proof for Theorem C in the case $k=2$. We do not know whether the extra conditions in Theorem 3 are necessary. The results in [8] indicate that for some generalizations of long cycle results to weighted graphs one cannot avoid such additional conditions. We do not believe that there is an analogous generalization of Theorem C for the case $k \neq 2$.

References

[1] J.A. Bondy, Large cycles in graphs, Discrete Math. 1 (1971) 121-132.
[2] J.A. Bondy, H.J. Broersma, J. van den Heuvel and H.J. Veldman, Heavy cycles in weighted graphs, to appear in Discuss. Math. Graph Theory.
[3] J.A. Bondy and G. Fan, Optimal paths and cycles in weighted graphs, Ann. Discrete Math. 41 (1989) 53-69.
[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan London and Elsevier, New York, 1976).
[5] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (3) (1952) 69-81.
[6] I. Fournier and P. Fraisse, On a conjecture of Bondy, J. Combin. Theory (B) 39 (1985) 17-26.
[7] L. Pósa, On the circuits of finite graphs, Magyar Tud. Math. Kutató Int. Közl. 8 (1963) 355-361.
[8] S. Zhang, X. Li and H.J. Broersma, A Fan type condition for heavy cycles in weighted graphs, to appear in Graphs and Combinatorics.

[^0]: *Part of the work was done while the author was visiting the University of Twente.

