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Abstract

A weighted graph is a graph in which each edge e is assigned a
non-negative number w(e), called the weight of e. The weight of a
cycle is the sum of the weights of its edges. The weighted degree
dw(v) of a vertex v is the sum of the weights of the edges incident
with v. In this paper, we prove the following result: Suppose G is
a 2-connected weighted graph which satisfies the following conditions:
1. The weighted degree sum of any three independent vertices is at
least m; 2. w(xz) = w(yz) for every vertex z ∈ N(x) ∩ N(y) with
d(x, y) = 2; 3. In every triangle T of G, either all edges of T have
different weights or all edges of T have the same weight. Then G
contains either a Hamilton cycle or a cycle of weight at least 2m/3.
This generalizes a theorem of Fournier and Fraisse on the existence of
long cycles in k-connected unweighted graphs in the case k = 2. Our
proof of the above result also suggests a new proof to the theorem of
Fournier and Fraisse in the case k = 2.
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degree, (weighted) degree sum.
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1. Terminology and Notation

We use Bondy and Murty [4] for terminology and notation not defined here
and consider finite simple graphs only.

Let G = (V,E) be a simple graph. G is called a weighted graph if each
edge e is assigned a non-negative number w(e), called the weight of e. For
any subgraph H of G, V (H) and E(H) denote the sets of vertices and edges
of H, respectively. The weight of H is defined by

w(H) =
∑

e∈E(H)

w(e).

An optimal cycle is one with maximum weight. For each vertex v ∈ V ,
NH(v) denotes the set, and dH(v) the number, of vertices in H that are
adjacent to v. We define the weighted degree of v in H by

dw
H(v) =

∑

h∈NH(v)

w(vh).

When no confusion occurs, we will denote NG(v), dG(v) and dw
G(v) by N(v),

d(v) and dw(v), respectively. An (x, y)-path is a path connecting the two
vertices x and y. The distance between two vertices x and y, denoted by
d(x, y), is the length of a shortest (x, y)-path. If u and v are two vertices
on a path P , P [u, v] denotes the segment of P from u to v. The number
of vertices in a maximum independent set of G is denoted by α(G). For a
positive integer k ≤ α(G) we denote by σk(G) the minimum value of the
degree sum of any k independent vertices, and by σw

k (G) the minimum value
of the weighted degree sum of any k independent vertices. Instead of σ1(G)
and σw

1 (G), we use the notations δ(G) and δw(G), respectively.

2. Results

There have been many results on the existence of long cycles in graphs. The
following three theorems are well-known.

Theorem A (Dirac [5]). Let G be a 2-connected graph such that δ(G) ≥ r.
Then G contains either a Hamilton cycle or a cycle of length at least 2r.

Theorem B (Pósa [7]). Let G be a 2-connected graph such that σ2(G) ≥ s.
Then G contains either a Hamilton cycle or a cycle of length at least s.
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Theorem C (Fournier and Fraisse [6]). Let G be a k-connected graph where
2 ≤ k < α(G), such that σk+1(G) ≥ m. Then G contains either a Hamilton
cycle or a cycle of length at least 2m/(k + 1).

It is easy to see that Theorem B generalizes Theorem A, and Theorem C in
turn generalizes Theorem B.

An unweighted graph can be regarded as a weighted graph in which
each edge e is assigned weight w(e) = 1. Thus, in an unweighted graph,
dw(v) = d(v) for every vertex v, and the weight of a cycle is simply the
length of the cycle.

Theorem A and Theorem B were generalized to weighted graphs by the
following two theorems, respectively.

Theorem 1 (Bondy and Fan [3]). Let G be 2-connected weighted graph
such that δw(G) ≥ r. Then either G contains a cycle of weight at least 2r
or every optimal cycle is a Hamilton cycle.

Theorem 2 (Bondy et al. [2]). Let G be 2-connected weighted graph such
that σw

2 (G) ≥ s. Then G contains either a Hamilton cycle or a cycle of
weight at least s.

A natural question is whether Theorem C also admits an analogous gener-
alization for weighted graphs. This leads to the following problem.

Problem 1. Let G be a k-connected weighted graph where 2 ≤ k < α(G),
such that σw

k+1(G) ≥ m. Is it true that G contains either a Hamilton cycle
or a cycle of weight at least 2m/(k + 1)?

If the answer to the question of this problem is positive, then the result
would be best possible and it would generalize Theorem C and Theorem 2.

It seems very difficult to settle this problem, even for the case k = 2.
In the next section, we prove that the answer to the case k = 2 of Problem
1 is positive if we add some extra conditions. These extra conditions were
motivated by a recent generalization of a theorem of Fan to weighted graphs
(cf. [8]). Our result is an analogue and also a generalization of Theorem C
to weighted graphs in the case k = 2.

Theorem 3. Let G be a 2-connected weighted graph which satisfies the
following conditions:

1. The weighted degree sum of any three independent vertices is at least m;
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2. w(xz) = w(yz) for every vertex z ∈ N(x) ∩N(y) with d(x, y) = 2;
3. In every triangle T of G, either all edges of T have different weights or

all edges of T have the same weight.

Then G contains either a Hamilton cycle or a cycle of weight at least 2m/3.

3. Proof of Theorem 3

Let G be a 2-connected weighted graph satisfying the conditions of
Theorem 3. Suppose that G does not contain a Hamilton cycle. Then
it suffices to prove that G contains a cycle of weight at least 2m/3.

Choose a path P = v1v2 · · · vp in G such that
(a) P is as long as possible;
(b) w(P ) is as large as possible, subject to (a);
(c) dw(v1) + dw(vp) is as large as possible, subject to (a) and (b).

From the choice of P , we can immediately see that N(v1) ∪N(vp) ⊆ V (P ).

Claim 1. There exists no cycle of length p.

Proof. Suppose there exists a cycle C of length p. Since G contains no
Hamilton cycle and G is connected, we can find a vertex u ∈ V (G)\V (C)
and a path Q from u to a vertex v ∈ V (C), such that Q is internally
disjoint from C. The subgraph C ∪Q of G contains a path longer than P ,
contradicting the choice of P in (a).

Claim 2. v1vp /∈ E(G).

Proof. If v1vp ∈ E(G), then we can find a cycle C = v1v2 · · · vpv1 of length
p, contradicting Claim 1.

Claim 3. If vi ∈ N(v1), then vi−1 /∈ N(vp).

Proof. Suppose vi ∈ N(v1) and vi−1 ∈ N(vp). Then we can form a
cycle C = v1vivi+1 · · · vpvi−1vi−2 · · · v1 with length p, again contradicting
Claim 1.

Claim 4. If vi ∈ N(v1), then w(vi−1vi) ≥ w(v1vi). If vj ∈ N(vp), then
w(vjvj+1) ≥ w(vjvp).
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Proof. If vi ∈ N(v1), the path P ′ = vi−1vi−2 · · · v1vi · · · vp has the same
length as P . So, because of (b), we must have w(P ) ≥ w(P ′), hence
w(vi−1vi) ≥ w(v1vi). The second assertion can be proved similarly.

Since G is 2-connected, by Lemma 1 of [1], there is a sequence of internally
disjoint paths P1, P2, . . . , Pm such that
(1) Pk has end vertices xk and yk, and V (Pk) ∩ V (P ) = {xk, yk} for k =

1, 2, . . . , m;
(2) v1 = x1 < x2 < y1 ≤ x3 < y2 ≤ x4 < · · · < ym−2 ≤ xm < ym−1 < ym =

vp, where the inequalities denote the order of the vertices on P .
By Claim 2, we have m ≥ 2. It is not difficult to see that we can choose
these paths such that

(3) if vi ∈ N(v1), then vi ∈ P [v2, x2]∪P [y1, x3] for m ≥ 3, or vi ∈ P [v2, x2]∪
P [y1, vp−1] for m = 2;

(4) if vj ∈ N(vp), then vj ∈ P [ym−2, xm] ∪ P [ym−1, vp−1] for m ≥ 3, or
vj ∈ P [v2, x2] ∪ P [y1, vp−1] for m = 2.

Now denote by Ck the cycle Pk ∪ P [xk, yk] for k = 1, 2, . . . ,m, and let C
be the cycle whose edge set is the symmetric difference of the edge sets of
these cycles Ck. By (3), (4) and Claim 3 we have for all vi ∈ N(v1)\{y1}
and vj ∈ N(vp)\{xm} that vi−1vi, vjvj+1 ∈ E(C) and vi−1vi 6= vjvj+1.
Also note that since N(v1) ∪ N(vp) ⊆ V (P ), we must have P1 = v1y1 and
Pm = xmvp. Using Claim 4, this shows that

w(C) ≥
∑

vi∈N(v1)\{y1}
w(vi−1vi) +

∑

vj∈N(vp)\{xm}
w(vjvj+1)

+ w(v1y1) + w(xmyp)

≥
∑

vi∈N(v1)

w(v1vi) +
∑

vj∈N(vp)

w(vjvp)

= dw(v1) + dw(vp).

Without loss of generality, we can assume that dw(v1) ≤ w(C)/2.
Since G is 2-connected, v1 is adjacent to at least one vertex on P other

than v2. Choose vk ∈ N(v1) ∩ V (P ) such that k is as large as possible. By
Claim 2 it is clear that 3 ≤ k ≤ p− 1.

Now we consider two cases.
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Case 1. There exists a vertex vi ∈ V (P ) such that v1vi ∈ E(G) but
v1vi−1 /∈ E(G) for some i with 3 ≤ i ≤ k.
By Claim 3 we know that vi−1vp /∈ E(G), so the three vertices v1, vi−1 and vp

are independent. From Condition 2 of the theorem and the fact d(v1, vi−1) =
2 we know that vi−1vi−2 · · · v1vi · · · vp is another longest path with the same
weight as P . By the choice of P in (c), we have dw(vi−1) ≤ dw(v1) ≤
w(C)/2. With dw(v1)+dw(vp) ≤ w(C), we have dw(v1)+dw(vi−1)+dw(vp) ≤
3w(C)/2. It follows from Condition 1 of the theorem that the weight of the
cycle C is at least 2m/3.

Case 2. v1vi ∈ E(G) for all i with 3 ≤ i ≤ k.

Case 2.1. w(v1vi−1) = w(v1vi) = w(vi−1vi) = w∗ for all i with 3 ≤ i ≤ k.
For every i with 2 ≤ i ≤ k− 1, vi can not be adjacent to any vertex outside
P . Otherwise, there will be a path of length p, contradicting the choice of
P in (a). Since G is 2-connected, there must be an edge vjvs ∈ E(G) with
j < k < s. Choose vjvs ∈ E(G) such that j < k < s and s is as large as
possible. From Claim 3 we have s < p.

Case 2.1.1. s ≥ k + 2.
By the choice of vk we know that v1vs−1 /∈ E(G). If vs−1vp ∈ E(G), then
we can form a cycle v1vj+1 · · · vs−1vp · · · vsvj · · · v1 of length p, contradicting
Claim 1. So, the three vertices v1, vs−1 and vp are independent. By the
choice of vk, we have d(v1, vs) = 2. If vjvs−1 ∈ E(G), then d(v1, vs−1) = 2.
Then it follows from Condition 2 of the theorem that w(vjvs−1) = w(vjvs) =
w(v1vj) = w∗, and from Condition 3 of the theorem we get w(vs−1vs) = w∗.
If vjvs−1 /∈ E(G), then d(vjvs−1) = 2. This implies that w(vs−1vs) =
w(vjvs) = w∗. Thus, in both cases the path vs−1vs−2 · · · vj+1v1 · · · vjvs · · · vp

is another longest path with the same weight as P . By the choice of P in (c),
we know that dw(vs−1) ≤ dw(v1) ≤ w(C)/2. With dw(v1) + dw(vp) ≤ w(C),
we have dw(v1) + dw(vs−1) + dw(vp) ≤ 3w(C)/2. It follows from Condition
1 of the theorem that the weight of the cycle C is at least 2m/3.

Case 2.1.2. s = k + 1.
By Claim 3 we may assume that k + 1 < p. From the 2-connectedness of G
and the choice of vs, there must be an edge vkvt ∈ E(G) such that t ≥ k+2.
By the choice of vk, we know that v1vt−1 /∈ E(G). On the other hand, if
vt−1vp ∈ E(G), then we can form a cycle v1vj+1 · · · vkvt · · · vpvt−1 · · · vk+1
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vj · · · v1 of length p, contradicting Claim 1. So, the three vertices v1, vt−1

and vp are independent.
If vkvt−1 ∈ E(G), then from Condition 2 of the theorem we have

w(vkvt−1) = w(vkvt) = w(v1vk) = w∗, and from Condition 3 of the theorem,
the edge vt−1vt has weight w∗. If vkvt−1 /∈ E(G), then from Condition 2
of the theorem we also get w(vt−1vt) = w∗. Thus, in both cases the path
vt−1vt−2 · · · vk+1vj · · · v1 vj+1 · · · vkvt · · · vp is another longest path with the
same weight as P . By the choice of P in (c), d(vt−1) ≤ dw(v1) ≤ w(C)/2.
With dw(v1) + dw(vp) ≤ w(C), we have dw(v1) + dw(vt−1) + dw(vp) ≤
3w(C)/2. It follows from Condition 1 of the theorem that the weight of
the cycle C is at least 2m/3.

This completes the proof of Case 2.1.

Case 2.2. There is some vertex vi with 3 ≤ i ≤ k such that w(v1vi−1),
w(v1vi) and w(vi−1vi) are all different.
In this case, choose vertex vj such that w(v1vj−1), w(v1vj) and w(vj−1vj)
are all different, and j is as large as possible. Denote the weight of v1vj ,
vj−1vj and v1vj−1 by w1, w2 and w3, respectively. It follows from Condition
3 (or Condition 2 if j = k) that w(vj−1vj) = w2 6= w1 = w(vjvj+1), and from
Condition 2 of the theorem that vj−1vj+1 ∈ E(G). If j < k, then the weight
of the edge vj−1vj+1 is different from the weight w1 of the edge vj+1vj+2

since there is a triangle v1vj−1vj+1v1 and w(v1vj−1) = w3 6= w1 = w(v1vj+1).
With the same argument, we can prove that vj−1vi ∈ E(G) for all i with
j ≤ i ≤ k + 1. By the choice of vk, we have that w(vj−1vk+1) = w3.

Suppose first that vkvk+2 ∈ E(G). Then d(v1, vk+2) = 2. This shows
that w(vkvk+2) = w(v1vk) = w1. From w(vkvk+1) = w(vkvk+2) = w1 and
Condition 3 of the theorem we know that w(vk+1vk+2) = w1. Therefore,
there must be an edge vj−1vk+2 ∈ E(G) since the two edges vj−1vk+1

and vk+1vk+2 have different weights. Again, by the fact d(v1, vk+2) = 2,
we obtain that w(vj−1vk+2) = w(v1vj−1) = w3. This leads to a triangle
vj−1vk+1vk+2vj−1 in which w(vj−1vk+1) = w(vj−1vk+2) = w3 and
w(vk+1vk+2) = w1, contradicting Condition 3 of the theorem. Hence
vkvk+2 /∈ E(G). Thus d(vk, vk+2) = 2. This implies that w(vk+1vk+2) =
w(vkvk+1) = w1. Therefore, there must be an edge vj−1vk+2 ∈ E(G) and
w(vj−1vk+2) = w3. This also leads to a triangle vj−1vk+1vk+2vj−1 which is
impossible by Condition 3 of the theorem.

The proof of the theorem is complete.
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4. Remarks

The proof of Theorem C in [6] is very complicated. It is clear that our proof
of Theorem 3 provides a simpler proof for Theorem C in the case k = 2.
We do not know whether the extra conditions in Theorem 3 are necessary.
The results in [8] indicate that for some generalizations of long cycle results
to weighted graphs one cannot avoid such additional conditions. We do not
believe that there is an analogous generalization of Theorem C for the case
k 6= 2.
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