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Abstract
Our purpose is to introduce the concept of determining the smallest

number of edges of a graph which can be oriented so that the result-
ing mixed graph has the trivial automorphism group. We find that
this number for complete graphs is related to the number of identity
oriented trees. For complete bipartite graphs Ks,t, s ≤ t, this number
does not always exist. We determine for s ≤ 4 the values of t for which
this number does exist.
Keywords: oriented graph, automorphism group.
2000 Mathematics Subject Classification: 05C25.

1. Introduction

Following the notation and terminology of the books [1, 2], a graph G =
(V,E) has node set V and edge set E with |V | = n, the order of G, and
|E| = m, its size. An automorphism of G is a permutation of V which
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preserves adjacency. The set Γ(G) of all automorphisms is obviously a per-
mution group acting on the node set V . This group is called the automor-
phism group of G or more briefly, the group of G. When Γ(G) is the trivial
group consisting only of the identity permutation, G is called an identity
graph.

An orientation of an edge uv of G changes this edge to one of the two
arcs (u, v) or (v, u). A mixed graph is obtained from G when some of the
edges of G (ranging from none to all) are oriented. In an orientation of G,
every edge of G is oriented, resulting in an oriented graph.

For a mixed graph M , an automorphism α is a permutation of V which
preserves both edges and arcs. We write Γ(M) for its automorphism group.
Then M is called an identity mixed graph when Γ(M) is trivial. Analogous to
an identity graph and an identity mixed graph, one can consider an identity
oriented tree or forest.

Now we can define the identity orientation number of a graph G, denoted
io (G), as the smallest number (if any) of edges of G having orientations
that result in an identity mixed graph M . We call a set of edges of G whose
orientations give M the trivial automorphism group an io-set. Note that
not all graphs have an io-set: the star K1,3 has one while K1,4 does not.

We illustrate this concept with a few examples. Obviously for Pn, a
path of order n ≥ 2, we have io (Pn) = 1, as any one edge of Pn can be
oriented arbitrarily to obtain an identity mixed graph. Similarly the cycle
Cn has i (Cn) = 1 for the same reason. Our object is to study the subtle
problems of considering graphs which contain an io-set and of determining
the values of the invariant io (G) for complete bipartite graphs and complete
graphs.

This concept is closely related to two elegant extremal results of Louis
Quintas. In [10] he determined exactly the minimum size of an identity
graph of order n. Then in [9], with D.J. Mc Carthy, the result of [10] was
generalized to an arbitrary finite group. Such a generalization is also possible
for our problem with the identity group.

2. Bipartite Graphs

Given a mixed graph G, for each node x, we have three types of degree: the
in-degree d−(x), out-degree d+(x) and unoriented degree, d(x). Note that
in an oriented graph G, if φ is an automorphism which maps node x to node
y, then necessarily
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d+ (x) = d+ (y) , d− (x) = d− (y) , and d (x) = d (y) .

We denote the complete bipartite graph with s white nodes and t black ones
by Ks,t so that s + t = n, and without loss of generality let s ≤ t.
Consider first the stars K1,t with t ≥ 2. We see at once from Figure 2.1 that
io (K1,2) = 1, io (K1,3) = 2, and io (K1,t) with t > 3 does not exist.
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Figure 2.1. Three stars, just the first two having an io-set

Our first result gives an inequality on s and t which precludes the existence
of an io-set of edges in Ks,t.

Lemma 1. If t ≥ 3s, then Ks,t does not have an identity orientation.

Proof. Let t ≥ 3s and consider an orientation of a subset of E(Ks,t),
resulting in a mixed graph M . Denote the two parts of V (Ks,t) by X,Y
with X = {x1, · · · , xs}, Y = {y1, · · · , yt}.

With each node of Y we associate the s-tuple (b1, b2, . . . , bs) where each
bi ∈ {+1, 0,−1} as follows, illustrated for node y1:

bi =





1 if edge xiy1 is oriented (y1,xi) in M,

0 if edge xiy1 is not oriented, and
−1 if arc (xi, y1) is in M.

Since there are just 3s different s-tuples of 1, 0,−1 it follows that when t > 3s

there must be two nodes y, y′ of Y with the same s-tuple. Hence there exists
a non-identity automorphism α of M such that α(y) = y′.

In this case, if a pair of nodes of Y have the same s-tuple, there would
be a nontrivial automorphism. Thus, every possible s-tuple must be present,
and hence it follows that the respective degrees of each vertex of Y are the
same, namely

d+ (yi) = d− (yi) = d0 (yi) = 3s − 1
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for each i = 1, 2, . . . , m. But then any permutation of the elements of Y ,
and the appropriate corresponding permutation of the elements of X, gives
a nontrivial automorphism of M and the result follows.

Corollary 2. The complete bipartite graph K2,9 does not have an io-set
while K2,8 does.

Proof. The first part follows at once from Lemma 1. The K2,9 assertion
is easily constructed.

Theorem 3. When G is the complete bipartite graph Ks,t, the following
results for io (G) are known:

(a) io (K1,3) = 2 but io (K1,4) does not exist.
(b) io (K2,8) = 10 but io (K2,9) does not exist.
(c) io (K3,26) exists but io (K3,27) does not exist.
(d) io (K4,79) exists but io (K4,80) does not exist.

Proof. (a) This part follows from Lemma 1 with s = 1, t = 3.
(b) That io (K2,9) does not exist follows from Lemma 1. We now show

that io (K2,8)=10.
We proceed by listing an assignment of the orientation of the edges

from the nodes x1, x2 of the smaller partite set to the larger partite set
y1, y2, . . . , y8.

x1 1 1 1 0 0 0 −1 −1
x2 1 0 −1 1 0 −1 0 −1

Note that the only ordering omitted from the nine possibilities is x1 = −1,
x2 = 1 but this forces the nodes x1 and x2 to have different in-and-out
degrees d−(x1) = 3 and d−(x1) = 2 while d+(x) = 2 and d−(x) = 3. Hence
the automorphisms of this mixed graph must fix x1 and x2. Although the yi

have the same degrees, they can not be permuted since that would require
x1 and x2 to be permuted. Thus io (K2,8) ≤ 10.

To prove io (K2,8) ≥ 10, we show that there cannot be more than
six unoriented edges. If there were more than six, then without loss of
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generality we can assume that d0(x1) ≥ 4. But then two of the four nodes
must have the same orientation (+,−, 0) from x2 and thus can be permuted
under an automorphism. Consequently, there can be at most six unoriented
edges and thus at least ten oriented edges.

(c) Again the non-existence of an io-set for K3,27 is a consequence of
Lemma 1. The proof that io (K3,26) does exist is similar to that of K2,8

in (b). Associate to the 26 nodes of the larger partite set all the possible
triples except (1, 0,−1). As in the previous result, this forces the nodes of the
smaller partite set to be fixed under any automorphism, which consequently
fixes all the nodes of the larger part.

(d) To see that K4,79 has an io-set, associate with the 79 nodes of the
larger partite set all of the 34 possible arrangements with the exception
of (+ + 0 0) and (+ 0 0−). Now using the argument above, it is easy to
see that the smaller partite set must be fixed under any permutation and
consequently the larger set must be fixed.

To verify that K4,80 does not have an io-set, let the nodes in the smaller
part be x1, x2, x3 and x4 and y1, y2 . . . y80 be the larger part. So we can as-
sociate with each of the nodes in the larger part a 4-tuple of 1s, −1s and 0s
as above. For convenience, label the 4-tuple associated with yi, z

i
1z

i
2z

i
3z

i
4.

Clearly if two of the 80 4-tuples are the same, then a nontrivial auto-
morphism results. Since there are 81 different 4-tuples exactly one is not
used. This implies that some pair, say x1 and x2 have d+(x1) = d+(x2),
d−(x1) = d−(x2) and d0(x1) = d0(x2).

Consider the mapping φ defined as follows:

φ (x1) = x2, φ (x2) = x1, φ (x3) = x3, φ (x4) = x4 and

φ (yi) =

{
yi if zi

1 = zi
2,

yj where yj is associated with the 4-tuple zi
1, z

i
2, z

i
3, z

i
4.

Note this is well defined; the yi always exist since the only 4-tuple not used
has the first and second terms the same. Furthermore, one can show that φ
is an automorphism.

Theorem 4. If t = dr/3e then io (Km,3m−t) ≤ 2m3m−1 − 2m2/9.

Proof. Of the 3m m-tuples use all but the following t m-tuples for orien-
tations from the 3m − t nodes of the larger partite set.
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m
3

m
3

m
3

︷︸︸︷ ︷︸︸︷ ︷︸︸︷
+ + + . . . + + 00 . . . 000 −−− . . .−−−
+ + + . . . + 0 00 . . . 00− −−− . . .−−+
+ + + . . . + 00 00 . . . 0−− −−− . . .−++

... 00 . . .−−− ...
...

+000 . . . 0 0−− . . .−− −+ + . . .+

This forces the resulting mixed graph to have distinct “degrees” at each
of the nodes of the small partite set, and thus any automorphism would
necessarily fix those nodes. Having those nodes fixed, it is easy to observe
that the nodes in the larger partite set must also be fixed, since the degrees
are all distinct. The upper bound follows since all the 3m possible 2/3
m-tuples have 2/3 of the m 3m edges oriented.

3. Complete Graphs

Although it is well known [2, 3, 4] that almost all graphs have trivial au-
tomorphism groups, the problem at hand becomes quite complicated when
the graph has a “rich” automorphism group. The complete graphs Km have
the “richest possible” group, namely, the symmetric group Sn consisting of
all the permutations on V .

We begin by illustrating the problem for the smallest nontrivial Kn with
2 ≤ n ≤ 5 in Figure 3.1 and Table 3.1. These minimum numbers can always
be attained by an io-forest.
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Figure 3.1. The identity orientations of K2 to K5
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Table 3.1.
n 2 3 4 5 6 7 8 9 10 11

io (Kn) 1 1 2 3 3 4 5 6 6 7

Theorem 5. Every nontrivial complete graph Kn has an io-set and the
value of io (Kn) is the smallest number of arcs in an identity oriented forest
of order n.

Proof. It is well known that Γ(D), the group of D, is identical with Γ(D̄),
the group of the complement of D. Thus to verify that io (Kn) exists, we
need only consider the directed path D = ~Pn. Its complement D̄ is an
identity orientation of Kn. Hence io (Kn) ≤ n− 1, so it exists.

To evaluate io (Kn) we need only point out that the smallest number
of edges of Kn in an io-set giving an identity M is just the number of arcs
in the complement M̄ . This is necessarily an identity oriented forest having
the smallest possible number of arcs.

Appendix 1 shows all the identity oriented trees with n = 1 to 5 nodes.
Appendix 2 uses these trees to depict all the identity oriented forests with
n = 1 to 7 nodes. Finally, Appendix 3 lists all the partitions of n = 2 to
18 where each partition of n has its parts giving the number of nodes in
an identity oriented tree with n nodes which is a component of an identity
oriented forest with the minimum number of arcs. It is simple to check all
the partitions.

There are four identity oriented trees with 4 nodes. Hence in Appendix
3 each part, 4, can be realized by any one of these four identity oriented
trees. Further, each occurrence of two 4s in a partition can be realized in
(42) = 6 ways, and the one appearance, for n = 18, of three 4s occurs in
four ways. This gives the following Table 3.2 giving the number of smallest
identity oriented forests for n = 2 to 18.

Table 3.2.
n 2 3 4 5 6 7 8 9 10 11 12 13 14

#io-F 1 1 1 5 1 4 14 54 4 16 83 378 6
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In [5] several species of trees were counted. These include identity trees and
oriented trees. The counting of identity oriented trees provide an algorithmic
solution to the determination of the numbers io (Kn). These have been
counted by Harary and Robinson [8].
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Appendix 1. Nontrivial identity oriented trees
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Appendix 2. Minimum size nontrivial identity oriented forests
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