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Abstract

We first show that if a 2-connected graph G of order n is such that
for each two vertices u and v such that δ = d(u) and d(v) < n/2 the
edge uv belongs to E(G), then G is hamiltonian. Next, by using this
result, we prove that a graph G satysfying the above condition is either
pancyclic or isomorphic to Kn/2,n/2.
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1 Notation, Terminology and Introduction

We shall consider only finite, undirected graphs, without loops or multiple
edges. For a graph G we denote by V (G) the vertex set of G and by E(G)
the edge set of G. If A is a subgraph or a subset of vertices, |A| is the
number of vertices in A.

∗The work was done while two last authors were visiting LRI. This stay was partially
supported by french-polish programme POLONIUM.
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A graph of order n is said to be hamiltonian if it contains a cycle of
length n and is said to be pancyclic if it contains cycles of all lengths
from 3 to n. Let P = [a, b] be a path in a graph G = (V, E) with ends
a and b. If x precedes y on P according to the orientation, we denote by
x
→
P y the sequence of consecutive vertices on P from x to y and by y

←
P x the

sequence of the same vertices but in reverse order. We use also the notation
x+ and x− for (if it exists) the successor and the predecessor of x on P with
respect to the orientation. Analogous notations are used for cycles.
Other notation and terminology can be found in [3].

Various sufficient conditions for a graph to be hamiltonian have been given
in term of the vertex degrees. Recall some of them.

Theorem 1 (Ore [8]). If a graph G = (V, E) on n vertices is such that for
any pair of nonadjacent vertices x and y we have

d(x) + d(y) ≥ n,

then G is hamiltonian.

The following theorem is an immediate consequence of this result.

Theorem 2 (Dirac [5]). Let G = (V, E) be a graph on n vertices. If δ(G) ≥
n/2, then G is hamiltonian.

Theorem 3 (Zhu [11]). Let G = (V, E) be a 2-connected graph on n vertices
with minimum degree δ. If for all nonadjacent vertices x and y we have

d(x) + d(y) ≥ n/2 + δ,

then G is hamiltonian.

Remark. The last result was proved independently in [12].

The purpose of this note is to study a new (as far as we know) and rather
natural condition on vertex degrees. Namely, for a graph G = (V,E) on n
vertices with minimum degree δ consider the following condition:

(∗) G is 2-connected and

∀x, y ∈ V such that δ = d(x), d(y) < n/2, we have xy ∈ E.
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It is easy to see that condition (∗) is weaker than both, Ore’s and Zhu’s
condition mentioned above and is independent of the well known Chvátal’s
[4] and Fan’s [6] conditions (see Figure 1). Considering Condition (∗), we
obtain the following result that clearly improves Theorems 1 and 3. The
proof is given in next section.
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Figure 1

Theorem 4. Let G = (V, E) be a 2-connected graph on n vertices with
minimum degree δ and such that for every pair x, y ∈ V such that δ =
d(x), d(y) < n/2 we have xy ∈ E. Then G is hamiltonian.

Bondy suggested the interesting ”metaconjecture” in [1] that almost any
nontrivial condition on graphs which implies that the graph is hamiltonian
also implies that the graph is pancyclic (there may be a family of exceptional
graphs). Various sufficient conditions for a graph to be hamiltonian have
been given and many of them (especially in term of the vertex degrees) have
been shown to imply pancyclism. For example, Bondy proved the following
result concerning Ore’s condition.

Theorem 5 [1]. If a graph G is such that the degree sum of any pair of non-
adjacent vertices is at least the order of G, then G is pancyclic or isomorphic
to the complete bipartite graph.

The problem of pancyclism of the graphs satisfying Zhu’s condition has been
considered in [12] where the authors prove that for such graphs, Bondy’s
”metaconjecture” is satisfied. This result is in fact a corollary of the follow-
ing theorem dealing with Condition (∗).
Theorem 6. If a graph G of order n satisfies (∗), then G is either pancyclic
or isomorphic to Kn/2,n/2.

Corollary 7 [12]. Let G = (V, E) be a 2-connected graph of order n with
minimum degree δ. If for all pairs x, y of nonadjacent vertices we have

d(x) + d(y) ≥ n/2 + δ,

then G is pancyclic or isomorphic to Kn/2,n/2.
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We shall need the following well-known result related to the notion of n-
closure of a graph G.

Theorem 8 (Bondy-Chvátal [2]). Let G be a graph on n vertices such that
the edge e = xy does not belong to E(G) and d(x) + d(y) ≥ n. Then, the
graph G is hamiltonian if and only if the graph G + e is hamiltonian.

We note that most of the results on pancyclism are proved by starting with a
hamiltonian cycle and by considering two consecutive vertices on the hamil-
tonian cycle. Our proof follows the same approach and we shall use the two
following results which became now classic.

Lemma 9 (Bondy [1]). Let G be a hamiltonian graph of order n with hamil-
tonian cycle x1x2...xnx1 such that d(x1) + d(xn) ≥ n + 1. Then G is pan-
cyclic.

Theorem 10 (Schmeichel-Hakimi [9]). If G is a hamiltonian graph of order
n ≥ 3 with hamiltonian cycle x1, x2, ..., xn, x1 such that d(x1) + d(xn) ≥ n,
then G is either
• pancyclic,
• bipartite, or
• missing only an (n− 1)-cycle.

Moreover, in the last case we have d(xn−2), d(xn−1), d(x2), d(x3) < n/2.

Remark. Actually, the Schmeichel-Hakimi result gives some more informa-
tion about possible adjacency structure near the vertices x1 and xn but the
above version is sufficient for our proof.

Mention by the way that some closely related results can be found in [7].

2 Proofs

2.1 Hamiltonicity

Let G = (V, E) be a graph on n vertices, 2-connected with minimum degree
δ. We suppose that if x, y are two vertices such that δ = d(x) < n/2 and
d(y) < n/2, then the vertices x, y are adjacent. We shall prove that G
contains a hamiltonian cycle.

Observe that if δ ≥ n/2 then G is hamiltonian by Dirac’s Theorem. So,
we may suppose that δ < n/2 and denote by S the set of all vertices of
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degree δ. Put |S| = s. It is easy to see that by (∗) the vertices of the set S
form a clique.
Denote by B the set of vertices of degree greater than or equal to n/2.
Observe that applying Theorem 8 we may assume that the vertices of the
set B form a clique.

Denote by M the set of remaining vertices and put |M | = m. So we
have V = S∪B∪M . If m = 0 then our graph consists of two cliques joined,
by 2-connectivity, by two independent edges, and is evidently hamiltonian.
Assume then m > 0. By definition of M , the vertices of M are of degree less
that n/2. So, by (∗) they are joined to all vertices of the set S. That implies,
in particular, that the minimum degree δ is at least equal to s− 1 + m. Let
now x be a vertex of M . Since x is not in S we have

(i) s + m ≤ d(x) < n/2.

Let P = (P1, P2, . . . , Pp) be a cover of the set M by paths with the minimum
number of paths. Denote by xi, yi the ends of the path Pi, i = 1, 2, . . . , p.
Consider first the case when p ≥ 2. By the minimality of the path cover P
the end xi of the path Pi is not adjacent to other ends of the paths of P,
except, maybe, for the end yi. In other words, the ends of the paths are not
adjacent to at least 2(p− 1) vertices in M . Therefore, by (i),

(ii) the ends of the paths of P send at least 2(p−1)+1 edges to the set B.

Denote now by z1, z2 two vertices of the set S. We choose z1 6= z2, if |S| ≥ 2
and z1 = z2, otherwise. We define 2(p−1) vertices of the set B as follows: the
vertices u3, u4, . . . , up are the neighbours of the vertices x3, x4, . . . , xp and
the vertices v1, v2, . . . , vp are the neighbours of the vertices y1, y2, . . . , yp,
respectively. Note, that by (ii) the choice of the neighbours can be made in
such a way that all these 2(p− 1) vertices are distinct (see Figure 2).
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Now it is easy to define a hamiltonian cycle of G in the following way:

z1x1

→
P1 y1v1u3x3

→
P3 y3v3u4x4 . . . xp

→
Pp ypvpBv2y2

←
P2 x2z2Sz1

where vpBv2 (z2Sz1) denotes a path joining vp with v2 (z2 with z1) and
passing throw all remaining vertices of the set B (S), respectively.

Suppose now that M is covered by one path P having the ends x and y.
By (ii) each of these vertices has at least one neighbour in B. Suppose first
that these neighbours are distinct and denote them by u and v, respectively.
If, as above, z1, z2 are two vertices of the set S we can form the following
hamiltonian cycle:

z1xuBvy
←
P x+z2Sz1.

Finally, consider the case where the vertices x and y have only one neighbour
in B, say u. Then all other vertices of P are adjacent to the vertex u which
is their unique neighbour in B, for otherwise xy ∈ E and the path P could
be replaced by a path with ends having two distinct neighbours in B. By (i),
this implies, in particular, that the vertices of M form a clique. Therefore,
our graphs consists of two cliques, B and S ∪M and some edges between
them. Since G is 2-connected this set of edges have to contain at least two
independent edges. So, in consequence, G have to contain a hamiltonian
cycle. This finishes the proof of Theorem 4.

Remark. Skupień [10] noticed that actually one can prove that the n-
closure of a graph satisfying (∗) is a complete graph.

2.2 Pancyclism

Let G = (V, E) be a graph on n vertices, 2-connected with minimum degree
δ such that the following condition holds: if x, y are two vertices such that
δ = d(x) < n/2 and d(y) < n/2, then the edge xy ∈ E. Suppose, that G is
not pancyclic.

By Theorem 4, G contains a hamiltonian cycle. Denote it by C and
choose one of its orientations, say

→
C. Let u be a vertex of G such that

d(u) = δ < n/2.
We claim that in this case G cannot be bipartite. Suppose that G is

bipartite. Since G is hamiltonian, it has to be a balanced bipartite graph
i.e., G = (L,R, E) with |L| = |R| = n/2. Without loss of generality we may
suppose that u ∈ L. Since δ < n/2, there exists a vertex b ∈ R nonadjacent
to u. But then d(b) < n/2 and by (∗) the edge ub has to belong to E, a
contradiction.
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Suppose now that there are two consecutive (with respect to the orientation
→
C) vertices x, y such that neither ux nor uy belongs to E. By (∗) we have
d(x) ≥ n/2 and d(y) ≥ n/2.

If d(x) + d(y) ≥ n + 1 then G in pancyclic by Lemma 9. Thus we have

d(x) = d(y) = n/2.

Since, as claimed above, G is not bipartite, by applying Theorem 10 we
conclude that, in particular, the degrees of the vertices x−−, x−, y+, y++

are less than n/2. Therefore, the condition (∗) ensures that the edges
ux−−, ux−, uy+, uy++ belong to E. A simple counting argument shows that
the degree of u has to be at least n/2. This contradiction finishes the proof
of Theorem 6.
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