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Abstract

Let G = (V, E) be a simple, undirected graph. A set of vertices
D is called an odd dominating set if |N [v] ∩D| ≡ 1(mod 2) for every
vertex v ∈ V (G). The minimum cardinality of an odd dominating set
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1 Introduction

Let G = (V,E) be a simple, undirected graph. A set of vertices D is called
an odd dominating set if for every vertex v ∈ V (G), |N [v]∩D| ≡ 1(mod 2).
The minimum cardinality of an odd dominating set is called the odd domina-
tion number of G, denoted by γ1(G). An even dominating set is analogously
defined.

Sutner showed that every graph contains an odd dominating set [17]
(and a different proof was given by the first author in [4]) and that the
related minimization problem is NP -complete. The maximization problem
(the decision problem associated with finding the largest odd dominating
set) is also NP -complete [12]. However, this particular parameter has been
studied very little, other than in [5]. Work on the general problem of par-
ity domination, much of it focusing on algorithmic problems and on even
dominating sets, can be found in [1, 2, 3, 8, 9, 10, 11]. For example, it is
known that γ1(G) can be computed in polynomial time for series-parallel
graphs [2]. It is also a simple exercise to adapt the perfect code algorithm
from [16] to compute γ1(G) in linear time in circular-arc graphs. (A perfect
code is a subset D of V (G) such that every vertex in V (G) contains exactly
of member of D in its closed neighborhood).

In this paper we consider odd domination and a generalization called
residue domination in complements of powers of cycles, grid graphs, and a
new class called k-exclusive graphs. Structural results are presented as well
as algorithmic results. Several open problems are presented at the conclusion
of the paper.

1.1 Notation and Definitions

We use N(u) to denote the open neighborhood of a vertex u and N [u] to
denote the closed neighborhood of u. Denote the complement of a graph G
by G. A graph G is called an odd-graph or an even-graph if all the degrees of
it vertices are odd or even, respectively. The cycle on n vertices is denoted
Cn. The domination number of a graph G is denoted by γ(G) and deg(v) is
the degree of a vertex v.

Let A(G) denote the adjacency matrix of G and N(G) = A(G) + In,
where G has order n and In is the n× n identity matrix.

2 Complements of Powers of Cycles

In [5], it was shown that γ1(Ck
n) = n if n and k(k + 1) are relatively prime.
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We now show that this condition is necessary and sufficient.

Theorem 1. For the kth power of a cycle, γ1(Ck
n) = n if and only if n and

k(k + 1) are relatively prime.

Proof. Let G = Ck
n where n and k(k + 1) are relatively prime, and note

that n is odd. We assume that n > 2k+1; otherwise, G has no edges and the
theorem is obviously true. Since G is an even-graph, one odd dominating
set of G consists of all vertices of G [5]. We show that G contains no other
odd dominating set. To do this, we show that N(G) is non-singular over
GF (2), the result then follows by standard linear algebra (cf. [9]).

Index the rows of N(G) by 0, 1, . . . , n − 1. The first row of N(G) is
10k1n−2k−10k, where ab denotes symbol a repeated b times. The second
row is the first row shifted one position to the right; by “shift” we mean
a circular shift. In this proof, we consider a vector (or row) as circular, so
that the nth element is adjacent to the first. Note that if we can produce a
row r by a linear combination of rows of N(G), then we can also produce
any shift of r by a linear combination of rows of N(G). By a shift of r, we
mean that the elements of r are shifted c positions in a circular fashion. For
example, vector 0110n−3 is a shift of 110n−2. We use this fact often (and,
at times, implicitly) in order to facilitate the discussion.

As an overview of the proof, we shall show that there is a linear com-
bination of rows of N(G) that is equal to 110n−2. Using this row (and its
shifts), it is possible to generate the row 10n−1 (and all its shifts). This is
because any row, r, from N(G) has an odd number of ones, and when we
add 110n−2 (or one of its shifts) to r, the number of ones changes by an even
number each time. Therefore, we can generate a set of vectors, specifically
10n−1 and all its shifts, that span the set of all n-vectors. Hence the rows
of N(G) are linearly independent and N(G) is non-singular over GF (2).

We produce row 110n−2 as follows. Consider the sum of row 0 and
row n − k; we call the sum z. It is equal to: 1n−2k03k+1−n1n−2k0k−1 if
n−2k−1 ≤ k (case 1) or 1k+10n−3k−11k+10k−1 if n−2k−1 > k (case 2). In
case 1, note that sum of number of places in the first two “blocks” is k + 1
(i.e., n− 2k + 3k + 1− n = k + 1). So adding the given row, z, to its shift
by k + 1 positions to the right, has the effect of moving the second block
of 1’s in z k + 1 positions to the right. We can keep shifting this block by
k + 1 positions until it appears in positions 2 through n− 2k + 1, yielding a
vector z′. This happens eventually because gcd(n, k + 1) = 1. Adding these
two vectors, z and z′, then cancels all but two 1’s: those in in positions 1
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and n− 2k + 1. Now we can repeatedly add this weight two vector to itself
shifted by n− 2k places to the right until we get 11000 . . .. This is because
gcd(n, k) = 1 implies gcd(n, n−2k) = 1. Case 2 is similar except the weight
two vector has 1’s in positions 1 and k+2 (we can derive this vector because
gcd(n, n− 2k) = 1). Then we can add this vector to shifts of itself in order
to get 11000 . . ., because gcd(n, k + 1) = 1.

We now prove the “only if” direction, for sake of completeness. If
gcd(k, n) = d where d > 1, then divide the n columns of the closed ad-
jacency matrix into d classes of size n/d each by congruence modulo d. It is
easy to show that in each row, the number of ones in columns of each class
is the same. So the sum of all rows in same equivalence class modulo d is
either all ones or all zeroes. So either these rows, or their complement, form
an even dominating set, which implies the existence of an odd dominating
set of size less than n. In fact, the sum of rows congruent to 0 (mod d) is all
zeroes if (n − 2k)/d is even, and is all ones otherwise. If gcd(k + 1, n) = d
where d > 1, then one of the d classes has precisely two more ones (in each
row) than all the other classes. So the sum of rows congruent to 0(mod d)
is all zeroes if (n− 2k − 2)/d is even, and is all ones otherwise.

For reference in what follows, we re-state a result from [5].

Theorem 2. Let G = Ck
n. Then γ1(G) ≥

⌊
n

k+1

⌋
.

3 Residue Domination and More on
Complements of Powers of Cycles

We introduce a more general form of parity domination called residue dom-
ination.

Definition. Call D a k(mod m)-dominating set of G if for every v ∈ V (G),
|N [v] ∩D| ≡ k(mod m).

Theorem 3. Let p be a prime and let G be a graph such that for any two
vertices u, v the following hold:

(1) deg(v) 6= −1(mod p),
(2) |N [u] ∩N [v]| ≡ 0(mod p).

Then N(G) is regular over GF (p).
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Proof. The (i, j) entry of N(G)N(G)t = N(G)2 is exactly the scalar prod-
uct of the ith and the jth rows of N(G), which is exactly |N [vi] ∩N [vj ]| ≡
0(mod p) if i 6= j (by Condition (2) of the theorem). The (i, i) entry is
precisely |N [vi]∩N [vi]| = deg(vi)+1 6≡ 0(mod p) (by Condition (1)). Hence
det(N(G)) 6= 0(mod p) and N(G) is regular over GF (p).

Theorem 4. Let p be a prime and let G be a graph on n vertices such that
for any two vertices u, v the following hold:

(1) deg(v) ≡ −1(mod p),
(2) |N [u] ∩N [v]| ≡ 0(mod p).

Then N(G) is singular over GF (p) with rank(N(G)) ≤ n/2.

Proof. The (i, j) entry of N(G)N(G)t = N(G)2 is exactly the scalar
product of the ith and the jth rows of N(G), which is exactly exactly
|N [vi] ∩ N [vj ]| ≡ 0(mod p) (by Conditions (1) and (2) of the theorem).
Hence N(G)2 = 0n (the zero matrix of order n). But using the inequality
for multiplication of matrices [14] we get from the fact that N(G)N(G)t = 0n

that rank(G) + rank(N(G)t)− n ≤ rank(0n). Hence 2 · rank(N(G))− n ≤ 0
which gives rank(N(G)) ≤ n/2.

The following is related to Theorem 1.

Theorem 5. Let p be a prime and let G be a graph on n vertices such that
for any two vertices u, v the following hold:

(1) deg(v) ≡ b(mod p), where b 6= −1,
(2) |N [u] ∩N [v]| ≡ 0(mod p).

Then V (G) is the unique set of vertices D of G having the property that for
every vertex v of G |N [v] ∩D| ≡ b + 1(mod p).

Proof. As deg(v) 6= −1(mod p) we have the conditions of Theorem 3 and
N(G) is regular over GF (p). Hence N(G)X = J has a unique solution,
where J is the all 1’s vector. But as X = V (G) (xv = 1 for every v in G) is
a solution it is, in fact, the only one.

Theorem 6. Let G be any graph with all degrees congruent to b(mod m).
Then for any k(mod m) dominating set D of G, the following congruence
holds: |D|(b + 1) ≡ k|V |(mod m).



124 Y. Caro, W.F. Klostermeyer and J.L. Goldwasser

Proof. Consider any k(mod m) dominating set D of G, and set A =
V \ D. Now consider the subgraph H induced by the edges incident with
the vertices of D. Clearly for a vertex v ∈ D, deg(H, v) = deg(G, v) since
v loses no edges. For a vertex v /∈ D, deg(H, v) ≡ k(mod m) as D is
k(mod m) dominating. Now the number of edges between A and D is equal
to |A|k(mod m) because we add |A| numbers each congruent to k(mod m).
On the other hand, every vertex in D is adjacent to k − 1(mod m) vertices
in D (and then with itself has the k(mod m) intersection property). But
since the degree in H is the same as in the original graph, it follows that
every vertex of D is adjacent to b− k + 1(mod m) vertices of A. Hence the
number of edges between A and D is |D|(b − k + 1)(mod m) if we count
from D’s side. Therefore |D|(b − k + 1) ≡ k|V \ D|(mod m) which gives
|D|(b + 1) ≡ k|V |(mod m).

The next two corollaries follow directly from Theorem 6.

Corollary 7. Let G be a graph with an even number of vertices and all
vertex degrees even. Then any odd dominating set, as well as any even
dominating set, of G has even cardinality.

Corollary 8. Let G be any graph on n ≡ 1(mod 2) vertices, with all degrees
even. Then any odd (even) dominating set D of G must contain an odd
(even) number of vertices.

Note that if n is even, then it follows from [5] that γ1(Ck
n) ≤ n

2 , since all
vertex degrees are odd.

One may generalize Theorem 1 to certain other graphs of odd order
whose closed adjacency matrices are circulants. If this matrix is singular,
then there is a unique odd dominating set (cf. [9]). Furthermore, if G is
an even-graph, then the odd domination number will be equal to n [5]. For
example, the projective plane incidence matrix given by 1101000 for the first
row (and then subsequent rows generated in a circulant fashion) is singular
because 0010111 is in its nullspace.

Using perfect difference sets, one can produce prime-order odd row-sum
singular circulants: i.e., a family of even-graphs each on an odd number
of vertices. Let D be a perfect difference set modulo n, that is, the size
of D is k where C(k, 2) = (n − 1)/2, and the n − 1 differences i − j are
distinct (modulo n), where i, j are in D. For example, {0, 1, 3} is a perfect
difference set with k = 3, n = 7. This particular example produces the
circulant with first row 1101000 mentioned above. As long as k is odd and
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n is prime, a circulant with the desired property is produced. For example,
k = 9, n = 73 produces perfect difference set {0, 1, 3, 7, 15, 31, 36, 54, 63} and
if you generate the order 73 circulant with ones in these positions, each two
rows will have exactly one column where both have ones. So the sum of the
64 rows whose numbers are not in the difference set, will be all zeroes, i.e.,
the matrix is singular.

It was shown above that γ1(Ck
n) is odd when n is odd. We can go

further showing that γ1(Ck
n) has an odd dominating set of the form “every

ith vertex” when n is odd.

Proposition 9. Let G = Ck
n and let d be the largest integer less than or

equal to k + 1 such that d| gcd(n, k(k + 1)) and n/d ≡ 1(mod 2). Then
n/d ≥ γ1(Ck

n) ≥
⌊

n
k+1

⌋
. In particular, if (k + 1)|n and n is odd, then

γ1(Ck
n) = n

k+1 .

Proof. In general, we know that γ1(G) ≥
⌊

n
k+1

⌋
[5]. Label the n vertices

in clockwise order as v0, . . . , vn−1. For the upper bound, we show that G
contains an odd dominating set D, consisting of the vertices whose labels
belong to the set {jd|j = 0, 1, . . . , n/d− 1}. If d = 1, then clearly n is odd
and we are finished as D = V (G) and |D| = n ≡ 1(mod 2) and for each
vertex v we have that |N [v] ∩ D| = n − 2k ≡ 1(mod 2). So assume that
1 < d ≤ k + 1.

If d|k, then for every vertex v ∈ V (G) we have |N [v]∩D| = n/d−2k/d ≡
1(mod 2) and we are finished. If d|(k + 1), then for every vertex v ∈ D we
have |N [v]∩D| = n/d− 2(k + 1)/d ≡ 1(mod 2) and for every vertex v /∈ D
we have |N [v]∩D| = n/d− 2(k + 1)/d− 2 ≡ 1(mod 2), thereby completing
the proof.

Conjecture 1. Let G = Ck
n where n is odd. Then

γ1(G) ≥ max{
⌊

n
k+1

⌋
, n

gcd(n,k(k+1))}.

A partial solution to the conjecture is given next.

Proposition 10. Let G = Ck
n and gcd(n, k(k + 1)) = k. If n is odd, then

γ1(G) = n
k .

Proof. By Proposition 9, G contains an odd dominating set of size n
k . So

we have to show no smaller odd dominating set exists. Number the vertices
in a clockwise fashion from v1 to vn.
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Let D be an odd dominating set. Set q(v) = 1 if v ∈ D, otherwise q(v) = 0.
For vertex v1 we have q(v1) +

∑n−k
j=k+2 q(vj) ≡ 1(mod 2). Hence (working in

GF(2)) and equating the formulae for v1 and v2 we get:
q(v1) + q(vk+2) = q(v2) + q(vn−k+1). Doing the same for v2 and v3 we get:
q(v2) + q(vk+3) = q(v3) + q(vn−k+2). Continuing we get:
q(v3) + q(vk+4) = q(v4) + q(vn−k+3),
q(v4) + q(vk+5) = q(v5) + q(vn−k+4),
. . .
q(vk+1) + q(v2k+2) = q(vk+2) + q(v1).

Summing up and dropping equal terms we get:
q(vk+3) + q(vk+4) + . . . + q(v2k+2) = q(vn−k+1) + q(vn−k+2) + . . . + q(vn).
Writing Q(j) =

∑j+k−1
r=j q(vr), we have that Q(j) = Q(j + 2(k + 1)) holds

for every vertex vj . But as gcd(n, k(k + 1)) = k and n is odd, we infer
that gcd(n, 2(k + 1)) = 1. Hence by shifting cyclically the equation Q(j) =
Q(j+2(k+1)), we get Q(j) = Q(j+1) for every j. But this gives immediately
q(vj) = q(vj+k) for every j. Since we may assume without loss of generality
that v0 ∈ D, we immediately get that vj ∈ D for every j ≡ 0( mod k), hence
proving the other side of the inequality.

For k = 3 we can give precise values of γ1(Ck
n). The k = 1, k = 2 cases were

resolved in [5].

Fact 11. Let G=γ1(C3
n).

(i) If n ≤ 7, then γ1(G) = n.
(ii) If n ≡ {1, 3, 5, 7, 11, 13, 17, 19, 23}(mod 24), then γ1(G) = n.
(iii) If n ≡ {3, 9, 15, 21}(mod 24), then γ1(G) = n

3 .
(iv) If n ≡ {4, 12, 20}(mod 24), then γ1(G) = n

4 .
(v) If n ≡ {2, 6, 8, 10, 14, 16, 18, 22}(mod 24), then γ1(G) = n

2 .

Proof. The odd n cases follow from Theorem 1, Propositions 9 and 10
and a simple “shifting” argument as used in Proposition 10. The case
when n = 8m + 4, for any positive integer m, is a direct application of
Proposition 9. The remaining cases were verified using a computer and the
fact that a “periodic” minimum odd dominating set exists for n sufficiently
large [5].

Theorem 12. Let n = 2m for an integer m ≥ 1 and let n ≥ 2k + 2. Then
γ1(Ck

n) = n
2 .
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Proof. The case for k = 2 was proved in [5]. One may note that

γ1(C
n/2−1
n ) = n

2 , as C
n/2−1
n is a perfect “matching” (i.e., a one-factor). Since

n is even, we know that γ1(Ck
n) ≤ n

2 . One may also observe that G = Ck
n

cannot contain an odd dominating set of odd order, since the all-ones vector
is in the nullspace of the closed adjacency matrix of G (and the nullspace
and rangespace of this matrix are orthogonal complements). Denote the
all-ones vector of length n as Jn (the subscript n will be omitted when clear
from the context).

Let w be the first row of the closed neighborhood matrix of G, which
we denote as matrix A. So w is a length n (n = 2m) 0-1 vector. Vector
w can be described as follows: first a single 1, then k 0’s, then n − 1 − 2k
1’s, then k 0’s. Each subsequent row of A is this row shifted one place
to the right, i.e., A is a circulant. We want to find vectors Y such that
AY = J , and show that entries of any such Y contains precisely n

2 1’s. We
use polynomials to do this. If entries of w are a, b, c, d, . . ., we represent w
by the polynomial a + bx + cx2 + dx3 + . . ., a polynomial of degree at most
n − 1 (and we shall work with these polynomials modulo (xn + 1)). The
successive shifts of the vector w are products of the polynomial representing
w times xj for various integers j. A sum of rows of A which equal the all 1’s
vector corresponds to finding a polynomial q such that q times w equals the
polynomial corresponding to the all 1’s vector, J . (Abusing notation, we
are using w for the polynomial representing vector w). Using the fact that
n = 2m, the polynomial representing J is (1 + x)(n−1). Hence, the sum of
the exponents of (1 + x) in the prime factorizations of q and w (in the ring
of polynomials modulo (xn + 1)) must be equal to n − 1. It turns out that
the possible prime factorizations of w have a special form. The exponent of
(x + 1) is always a power of two. Furthermore, if j = (n− 1)− 2i for some
positive integer i, then (x + 1)j has precisely n

2 non-zero terms. This yields
which rows of A to add to get the all 1’s vector, i.e., an odd dominating
set of G.

An example is in order. Consider the case when n = 32 and k = 4. Then
w has a 1, then four 0’s, then twenty-three 1’s, then four 0’s. Written in
polynomial form, w = (1+x)16 +x5(1+x+x2 +x3 + . . .+x10)(1+x+x2 +
. . .+x11)(1+x). The polynomial (1+x) does not divide (1+x+ . . .+x10).
The exponent of (1+x) in the prime factorization of (1+x+ . . .+x11)(1+x)
is gcd(12, 32) = 4. Thus (1 + x)27 yields the desired odd dominating set:
11110000111100001111000011110000.
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Since A is a symmetric matrix, w is a self-reciprocal polynomial. We sus-
pect this fact may turn out to be significant, because, for example, this
fact is important for binary cyclic codes, which have some of the same
algebraic structure as above. But, in general, an arbitrary self-reciprocal
w may not have useful property that the exponent of (x + 1) in the prime
factorization of w is a power of two, which was needed to show that the size
of any odd dominating set is n

2 .

4 Other Structural Results
4.1 Grids

In [5], the odd domination number for n×m grids were given for 1 ≤ n ≤ 4,
and it was shown that γ1(G) ≤ 20

7 γ(G) where G is a sufficiently large grid
graph. Those grids with unique odd dominating sets were characterized in
[9]. In [11], it was shown that if G is an n × n grid graph, with n = 2m or
n = 2m− 2 and m ≥ 4, then G contains more than one odd dominating set.
Table 1 shows the odd domination numbers of some small square grids, which
were determined using a computer program that performed an exhaustive
search. An “x” in the table indicates that the n× n grid has a unique odd
dominating set. The domination number of the n×n grid is at most n2+4n−c

5
for 16 ≤ c ≤ 20 [6]. The 6× 6 grid has γ1(G)27

2γ(G), and the 13× 13 and
21 × 21 grids have γ1(G) > 21

9 γ(G). An infinite family of grids was shown
in [5] to have γ1(G)

γ(G) ≈ 20
9 .

4.2 Cubes

Theorem 13. The odd domination number of the even cube Q2n is precisely
|Q2n| = 22n.

Proof. The cube Q2n satisfies Theorem 5 with p = 2.

If n = 2m − 1, there exists a perfect error-correcting code of distance one
(a Hamming code) where every word (node of Qn) is at distance one from
exactly one word of the code. (Such a set of vertices in a graph is, in
general, called a perfect code, cf. [13, 16]). This gives that in these cases
γ1(Qn) = 2n

deg(v)+1 = 2n

2m−1+1 = 2n−m. For other values of n, we have the
inequality γ1(Qn+2) ≤ 4γ1(Qn) (which has meaning only for odd n). This
comes by observing that if D is an odd dominating set for Qn, then the
corresponding four “copies” of D in Qn+2 form an odd dominating set for
Qn+2. So, γ1(Qn) is approximately |V (Qn)|

log |V (Qn)| for n odd.
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Table 1. Odd Domination Numbers for Square Grids

n γ1(n× n grid) Unique Odd Dom Set?
1 1 x
2 4 x
3 5 x
4 4
5 15
6 28 x
7 33 x
8 40 x
9 25
10 44 x
11 55
12 72 x
13 105 x
14 56
15 117 x
16 104
17 147
18 188 x
19 141
20 224 x
21 245 x
22 276 x
23 231
24 270
30 ≤ 414
32 ≤ 458

5 Algorithmic Results

5.1 Residue Domination

We describe a family of graphs in which one can find optimal residue domi-
nation sets in polynomial time, i.e., a minimum sized set satisfying a residue
domination constraint.
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Definition. A graph is called k-exclusive if its vertices can be ordered
v1, . . . , vn such that for every j > k , vj is the unique neighbor in {vj , . . . , vn}
of at least one vertex in {v1, . . . , vj−1}.
Note that this class contains several well-known classes of graphs including
the kth power of paths and cycles and grids of dimension k ×m.

Proposition 14. Let G be a k-exclusive graph with vertex ordering
v1, . . . , vn realizing the k-exclusiveness. Then for every j ≥ 1, the following
hold:

(1) There are at most k vertices in {v1, . . . , vj} having neighbors in
{vj+1, . . . vn},

(2) Vertex vj is adjacent to at most k vertices in {v1, . . . , vj−1}.

Proof. The proof is by induction on j. The proposition holds trivially for
1 ≤ j ≤ k. Assume the proposition holds for vj and we show it holds for
vj+1. By definition, vj+1 is the unique neighbor in {vj+1, . . . , vn} of at least
one vertex in {v1, . . . , vj}. By the inductive hypothesis, at most k vertices in
the set {v1, . . . , vj} have neighbors in {vj+1, . . . vn}. Thus vj+1 can have at
most k neighbors in {v1, . . . , vj}. Furthermore, there are at most k vertices
in {v1, . . . , vj+1} having neighbors in {vj+2, . . . , vn} as we gain at most one
vertex having a neighbor in {vj+2, . . . , vn} (i.e., vj+1), but we lose at least
one vertex: the vertex having vj+1 as its unique neighbor in {vj+1, . . . , vn},
thereby completing the induction step.

Proposition 15. Let G be a k-exclusive graph. Then G is k-degenerate and
is k + 1-colorable.

Proof. Let β = v1, . . . , vn be an ordering of the vertices realizing the k-
exclusiveness of G. We must show that every subgraph H of G has a vertex
with degree in H of at most k. However, this is clear as the vertex in H
with highest index in β is adjacent to at most k vertices of lower indices
and we are done. Since it is well-known that k-degenerate graphs are k + 1
colorable (the greedy coloring algorithm with vertex ordering β will produce
such a coloring) the second claim is proved.

Theorem 16. Let G be a k-exclusive graph and let H be any graph. Then
G×H is k|H|-exclusive.
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Proof. Recall that G×H is defined by:
V (G×H) = {(u, v)|u ∈ V (G), v ∈ V (H)};
E(G × H = {((x, y), (u, v))| either (x = u) and (y, v) ∈ E(H) or (y = v)
and (x, u) ∈ E(G)}.
As G is k-exclusive, let β = u1, . . . , un be the vertex ordering of G realizing
its k-exclusiveness. Let V (H) = {v1, . . . , vm}. The following ordering, β, of
the vertices of G ×H realizing its k|H|-exclusiveness: (u1, v1), (u1, v2), . . . ,
(u1, vm), (u2, v1), (u2, v2), . . . , (u2, vm), . . . , (un, v1), . . . , (un, vm). This is
true because every vertex in G ×H of the form (uj , vt) (uj , vt) with j > k
is the unique neighbor, in β, of vertex (uj−1, vt), and by definition (uj−1, vt)
has lower index in β than (uj , vt).

We are now ready to describe the residue domination algorithm.

Proposition 17. Let G be a k-exclusive graph with its k-exclusive vertex
ordering given. Then a minimum b(mod m) dominating set can be found
or the non-existence of such a residue dominating set can be decided in time
O(2kk3n).

Proof. Let v1, . . . , vn be a vertex order realizing the k-exclusiveness
of G. Using an “exhaustive-search” strategy, we shall construct a can-
didate residue dominating set, D, by considering all possible 2k combi-
nations of vertices {v1, . . . , vk}. Let f denote the characteristic function
of D. For each combination of these k vertices, we verify that for each
vertex v in {v1, . . . , vk} that has no neighbor in {vk+1, . . . , vn} satisfies
|N [v] ∩ D| ≡ b(mod m). If this congruence is satisfied for all such ver-
tices in {v1, . . . , vk}, we can continue. Otherwise, the initial combination is
illegal and the next combination is tested. If the initial combination is legal,
we consider (in increasing order of index) vertex vj , which is the unique
neighbor in {vj , . . . , vn} of at least one vertex in {v1, . . . , vj−1} and, by
Proposition 14, of at most k vertices, in {v1, . . . , vj−1}. The possible value,
0 or 1, of f(vj) is completely determined by those vertices in {v1, . . . , vj−1}
for which vj is the unique neighbor in the set {vj , . . . , vn}. Add vj to D
(or not) if its addition (omission) properly satisfies the residue constraints
for these vertices. If so, proceed to vj+1, otherwise consider the next ini-
tial combination. If this algorithm does not terminate with a successful
construction of D, then we infer no b(mod m) dominating set exists. Oth-
erwise, output the smallest such dominating set discovered in this process,
which must be a minimum sized b(mod m) dominating set.
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Testing each initial combination takes O(k2) time. As we can maintain
during the algorithm the value p(v) ≡ |N [v] ∩D|(mod m) for every vertex
v already visited, we can decide “legality” of the value of f(vj) in O(k) time:
updating the p(v) values that may be changed can be done in O(k) time as
vj has at most k neighbors. Thus the running time of the algorithm is as
claimed.

5.2 NP -Completeness Results

Theorem 18. Deciding if a planar graph G with maximum degree six con-
tains an odd dominating set of size at most k is NP -complete.

Proof. The problem is clearly in NP . We perform a reduction from Planar
3-SAT using the special case in which each variable appears in at most five
clauses [7].

Let F be an instance of Planar 3-SAT with clause set C and variable
set U . Assume without loss of generality that no clause contains a variable
and its negation. Construct graph G0 as follows. Create a clause vertex c
in G for each clause c in C and a variable vertex v in G for each variable
v in U (using the same names for vertices and elements from C,U when
the context is clear). Add an edge from c to v if v appears in clause c (in
negated or non-negated form). This graph is planar [7]. Observe that the
following operations preserve planarity: inserting an edge (u, v) parallel to
existing edge (u, v); subdividing edge (u, v) into path uwv (i.e., inserting a
new vertex w); deleting an edge. Graph G constructed from G0 in what
follows will be shown to be planar.

Graph G is constructed from G0 by making a parallel copy of each
edge in G0 and partitioning one of each parallel pair into a path of length
two. The newly added vertices (denoted as v) will represent the negation
of variables. If variable v appears in c in negated form, delete edge (v, c)
(leaving edge (v, c)) and vice versa if v appears in c in non-negated form.
Attach a pendant path with two (new) vertices cp1 , cp2 (the latter will have
degree one) to each clause vertex.

The resulting graph G is planar and has maximum degree six, and has
3|C|+ 2|U |+ 2|C| vertices. We claim F is satisfiable if and only if G has an
odd dominating set of size at most |C|+ |U |.

Suppose F is satisfiable. Include in set D each vertex v if v = true and
each vertex of the form v if v = false. Add to D each cp2 vertex if c has an
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odd number of “witnesses” (“true” literals) and cp1 otherwise. It is easy to
see that D is an odd dominating set of size |C|+ |U |.

Suppose there is an odd dominating set D, |D| ≤ |C| + |U |. It is easy
to see that no clause vertex c can be in D, else N [cpi ] ∩D ≡ 0(mod 2) for
some 1 ≤ i ≤ 2. Thus exactly one of these cpi vertices must be in any odd
dominating set and further, at least one of each v, v pair must be in any odd
dominating set. Thus D contains exactly one vertex from each v, v pair and
each clause vertex must be adjacent to at least one “witness” vertex. Hence
the proof.

Theorem 19. Deciding if a bipartite planar graph G contains an odd dom-
inating set of size at most k is NP -complete.

Proof. The problem is clearly in NP . We perform a reduction from Planar
3-SAT [7].

Let F be an instance of Planar 3-SAT with clause set C and variable
set U . Assume without loss of generality that no clause contains a variable
and its negation and that |C| > 3 (else F is trivially satisfiable). Construct
graph G0 as follows. Create a clause vertex c in G for each clause c in C
and a variable vertex v in G for each variable v in U (using the same names
for vertices and elements from C,U when the context is clear). Add an
edge from c to v if v appears in clause c (in negated or non-negated form).
This graph is planar [7]. Observe that the following operations preserve
planarity: inserting an edge (u, v) parallel to existing edge (u, v); subdividing
edge (u, v) into path uwv (i.e., inserting a new vertex w); deleting an edge.
Graph G constructed from G0 in what follows will be seen to be planar.

Graph G is constructed G0 by making a parallel copy of each edge in
G0 and partitioning one of each parallel pair into a path of length two. The
newly added vertices (denoted as v) will represent the negation of variables.
If variable v appears in c in negated form, delete edge (v, c) (leaving edge
(v, c)) and vice versa if v appears in c in non-negated form. Subdivide each
edge (v, v) by adding a new vertex v0. Attach to each v0 and to each clause
vertex c a new copy of the subgraph H shown in Figure 1, by making v0

(c) adjacent to vertices a1, a2, . . . a|C|∗|U |, i.e., v0 (c) becomes the bottom
(unlabeled) vertex in Figure 1.

The resulting graph G is planar, bipartite, and has |C|+3|U |+|U |(2|C|∗
|U |+ 1) + |C|(2|C| ∗ |U |+ 1) vertices. We claim F is satisfiable if and only
if G has an odd dominating set of size at most |C|+ 2|U |.
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Suppose F is satisfiable. Include in set D each vertex v if v = true and
each vertex of the form v if v = false. Add to D each h2 vertex (of which
there are |C|+ |U |). It is easy to see that D is an odd dominating set of size
|C|+ 2|U |.

Suppose there is an odd dominating set D, |D| ≤ |C|+ 2|U |. It is easy
to see that no clause vertex c nor any vertex of the form v0 can be in D,
else we would have to include more than |C| + 2|U | vertices from a single
H subgraph in order that D be an odd dominating set. Thus D contains
exactly one vertex from each v, v pair, D contains each h2 vertex, and each
clause vertex must be adjacent to at least one “witness” vertex. Hence the
proof.
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Figure 1. Subgraph H

6 Future Directions

We list several open problems.

Problem 1. Characterize the odd domination number for complements
of powers of cycles. In particular, we leave open the case when
gcd(n, k(k + 1)) < k.

Problem 2. Find a tighter upper bound than 20
7 on γ1(G)

γ(G) for all sufficiently
large grid graphs G.

Problem 3. Can the odd domination number be computed in polynomial
time in graphs of bounded tree-width? In chordal bipartite graphs? In grids?
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Problem 4. Does knowing that a graph has a perfect code help one to com-
pute its odd domination number (in certain classes of graphs)?

Problem 5. Prove (or disprove) that the minimum odd dominating set
cannot be approximated to within any constant multiplicative factor unless
P = NP .

Problem 6. Can k-exclusive graphs be recognized in polynomial time, for
fixed values of k? If G has maximum degree three, can it be determined in
polynomial time if G is k-exclusive?

The next problem is re-stated from [5].

Problem 7. Find an infinite family of even-order graphs such that each
graph in the class has γ1(G) + γ1(G) = 2n − 4 (or 2n − 3). Likewise for
graphs with n ≡ 3(mod 6) vertices.
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