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Abstract

A property of graphs is any class of graphs closed under isomor-
phism. Let P1,P2, . . . ,Pn be properties of graphs. A graph G is
(P1,P2, . . . ,Pn)-partitionable if the vertex set V (G) can be partitioned
into n sets, {V1, V2, . . . , Vn}, such that for each i = 1, 2, . . . , n, the
graph G[Vi] ∈ Pi. We write P1◦P2◦ · · · ◦Pn for the property of all
graphs which have a (P1,P2, . . . ,Pn)-partition. An additive induced-
hereditary propertyR is called reducible if there exist additive induced-
hereditary properties P1 and P2 such that R = P1◦P2. Otherwise
R is called irreducible. An additive induced-hereditary property P
can be defined by its minimal forbidden induced subgraphs: those
graphs which are not in P but which satisfy that every proper induced
subgraph is in P. We show that every reducible additive induced-
hereditary property has infinitely many minimal forbidden induced
subgraphs. This result is also seen to be true for reducible additive
hereditary properties.

Keywords: reducible graph properties, forbidden subgraphs, induced
subgraphs.
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1 Introduction

An additive induced-hereditary property of graphs is any class of simple
graphs which is closed under isomorphisms, disjoint unions and induced
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subgraphs. Similarly an additive hereditary property is closed under iso-
morphisms, disjoint unions and subgraphs. The set of all additive induced-
hereditary properties of graphs, partially ordered by set inclusion, is a lattice.
We will use the notation Ma to denote this lattice of properties. The set
of all additive hereditary properties also forms a lattice, and we will denote
this lattice by La.

For any property P in Ma, the set C(P) of minimal forbidden induced
subgraphs of P is defined by C(P) = {G : G 6∈ P but every proper induced
subgraph of G is in P}. It is easy to see that, for an additive property
of graphs, the set C(P) contains only connected graphs. The set C(P)
characterises P in the sense that a graph is in P if and only if it contains
no graph from C(P) as an induced subgraph.

Let n be a positive integer with n ≥ 2 and consider properties
P1,P2, . . . ,Pn in Ma. A (P1,P2, . . . ,Pn)-partition of a graph G is a parti-
tion {V1, V2, . . . , Vn} of V (G) such that for each i = 1, 2, . . . , n the subgraph
G[Vi] induced by Vi has property Pi. We allow Vi to be empty. G[∅] is in
every property. The product P1◦P2◦ · · · ◦Pn is now defined as the set of all
graphs having a (P1,P2, . . . ,Pn)-partition. Such a product is easily seen to
be induced hereditary if each Pi is induced hereditary and additive if each Pi

is additive. A reducible property R is a property in Ma which can be written
as a product of non-trivial properties from Ma; if this is not possible we call
R an irreducible property. If R = P1◦P2◦ · · · ◦Pn, we call P1◦P2◦ · · · ◦Pn a
factorization of R.

Analogous definitions and results hold for additive hereditary properties.
More basic results concerning hereditary graph properties can be found in
the survey paper [1].

In Section 2 we show that every reducible property in Ma has an infinite
set of minimal forbidden induced subgraphs. The analogous result for a
reducible property in La follows easily and is given in Section 3

2 Additive Induced-Hereditary Properties

Let P ∈ Ma be a reducible property. We will show that C(P) is infinite
by showing that the set of all cyclic blocks making up the graphs in C(P)
is infinite. In order to do this we will use the following three lemmas, and
Theorem 25 which is an extension of a result of Nešetril and Rödl ([3]). The
main result is then presented in Theorem 26.
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Lemma 21. Let G be a graph with at least one cyclic block. If B is a max-
imal cyclic block of G (under containment as a subgraph), then there exists
an independent set I ⊆ V (G) such that G − I has no subgraph isomorphic
to B.

Proof. We work by induction on the number of cyclic blocks of G. If G
has one cyclic block, this must be B and we can let I be the set containing
any single vertex from this block.

Suppose the result is true if G has k cyclic blocks, k > 0. Now suppose
that G has k + 1 cyclic blocks, and that B is a maximal cyclic block of G.
Delete vertices of degree one from G until the result is a graph all of whose
endblocks are cyclic. Call this graph G′. Let D be an endblock of G′, with
cut-vertex v. If G′ − (D − v) contains no blocks isomorphic to B we can
take I to be the set containing any single vertex from D. Otherwise by the
induction assumption, V (G′ − (D− v)) has an independent set I ′ such that
(G′ − (D − v)) − I ′ has no subgraphs isomorphic to B. If D 6= B, we can
take I = I ′. If D = B, and v ∈ I ′, again let I = I ′. If D = B and v 6∈ I ′ let
I = I ′ ∪ {w} where w is any vertex of D − v.

Lemma 22. Let F1, F2, . . . , Fn be graphs each with at least one cyclic block.
Then there exists a graph G of the form Fi−I, with I ⊆ V (Fi) independent,
such that for each j ∈ {1, 2, . . . , n}, there is a cyclic block of Fj not contained
in G.

Proof. We work by induction on n. If n = 1, the result follows by the
previous lemma. Suppose then that the result is true if we start with k
graphs, k > 0.

Now suppose we are given F1, F2, . . . , Fk+1 each with at least one cyclic
block. By the induction assumption, there exists a graph G′ = Fi − I with
i ∈ {1, 2, . . . , k} such that for each j ∈ {1, 2, . . . , k}, there is a cyclic block
of Fj which is not a subgraph of G′. If there is a cyclic block of Fk+1 that
is not a subgraph of G′, then we can take G equal to G′ and we are done.

Suppose that given any cyclic block of Fk+1 there exists a block of
G′ that contains it. Let B be a maximal cyclic block of Fk+1. By the
previous lemma, there exists an independent set J of vertices of Fk+1 such
that Fk+1 − J does not contain B. Let G = Fk+1 − J . Note that every
cyclic block of G is contained in a block of G′. If every cyclic block of F1 is
contained in G, then every cyclic block of F1 is contained in G′, which we
know is not true. Hence there must be a cyclic block of F1 not contained in
G. Similarly for F2, F3, . . . , Fk.
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Lemma 23. Let F1, F2, . . . be graphs each with at least one cyclic block,
such that the set of all the cyclic blocks making up F1, F2, . . . is finite. Then
there exists a graph G of the form Fi− I, with I ⊆ V (Fi) independent, such
that for each j ≥ 1, there is a cyclic block of Fj not contained in G.

Proof. Let S denote the set of all the cyclic blocks making up the graphs
F1, F2, . . .. Then S is finite by assumption and for any Fi, the set of cyclic
blocks of Fi is a subset of S. Call a subset of S determined if it is the set
of cyclic blocks of some Fi. Without loss of generality, suppose that every
determined subset of S arises from exactly one of F1, F2, . . . , Fm.

By the previous lemma, there exists a graph G of the form Fi − I,
with 1 ≤ i ≤ m and with I ⊆ V (Fi) independent, such that for each
j = 1, 2, . . . , m, there is a cyclic block of Fj not contained in G. Given any
Fk with k ≥ 1, Fk has the same determined subset of S as some Fj with
1 ≤ j ≤ m, so there is a cyclic block of Fk not contained in G.

Theorem 25 that follows is a generalisation of the result in Theorem 1 of the
paper [3] by Nešetřil and Rödl, and the proof of Theorem 25 mimics theirs.
We first copy some of their results here for completeness, with some changes
in notation.

Nešetřil and Rödl used the 1966 Erdös and Hajnal ([2]) result which
proved: For all positive integers k ≥ 2, l ≥ 2, n ≥ 1 there exists a hypergraph
Υ = Υ(k, l, n) = (X,M) with the following properties:

(a) Υ is a k-uniform hypergraph.
(b) Υ does not contain cycles of length smaller than l.
(c) χ(Υ) > n.

If G and H are graphs and r ≥ 2 is an integer, we write H
r→ G if any

partition of V (H) into r parts has an induced copy of G in the subgraph of
H induced by one of the parts. With our notation, Theorem 1 of [3] now
reads as follows:

Theorem 24 [3]. Let P ∈ Ma so that C(P) is a finite set of two connected
graphs, and let r ≥ 2 be an integer. Then for any G ∈ P there exists a graph
H ∈ P such that H

r→ G.

We can now generalise this theorem as follows:

Theorem 25. Let r ≥ 2 be an integer. Let P ∈ Ma, and suppose C(P) is
a set of graphs each with at least one cyclic block, such that the set of all
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the cyclic blocks forming the graphs in C(P) is finite. Then for each graph
G ∈ P satisfying that for every F ∈ C(P) there exists a cyclic block of F
which is not an induced subgraph of G, there exists a graph H ∈ P such that
H

r→ G.

Proof. Suppose that G = (V, E) satisfies the condition. The result follows
easily if |V | = 1, so assume that |V | > 1. Let l = max{|V (B)| + 1 : B is
a block of a graph in C(P)}, and let |V | = k. Note that l > 2. Choose
Υ(k, l, r) = (X,M) as in the Erdös-Hajnal result. For each M ∈M, let fM :
V → M be a fixed bijection. Define the graph H = (X, K) such that {x, y} ∈
K iff there exists M ∈M and {a, b} ∈ E such that {fM (a), fM (b)} = {x, y}.
As l > 2, we have |M ∩N | ≤ 1 whenever M 6= N, M, N ∈ M, so that each
M ∈M is isomorphic to G.

We must show that this graph H is in P. Let F ∈ C(P), and suppose
that H contains an induced copy of F . Let B be a cyclic block of F which
is not an induced subgraph of G. Since (X,M) does not contain a cycle of
length less than |V (B)|+ 1, B must be contained in (an induced subgraph
of) some M ∈ M. But each M is isomorphic to G, and so we have a
contradiction to the condition satisfied by G. Hence H cannot contain any
graph from C(P) as an induced subgraph and so H must be in P.

Finally H
r→ G follows immediately from χ(Υ) > r.

With this last theorem, we can now prove the main result:

Theorem 26. If P is a reducible property in Ma, then the set of cyclic
blocks making up the graphs in C(P) is infinite and hence C(P) is infinite.

Proof. Let P = R◦S be a factorisation of P, and suppose to the contrary
that the set of cyclic blocks making up the graphs in C(P) is finite. Let
C(P) = {F1, F2, . . .} (finite or infinite). Since every bipartite graph is in
P = R◦S, none of the graphs in C(P) is bipartite. Each Fi thus contains
an odd cycle and therefore has at least one cyclic block.

By Lemma 23 there exists a graph G of the form Fi− I, with I ⊆ V (Fi)
independent, such that for each j, 1 ≤ j ≤ n, there is a cyclic block of Fj

not contained in G. Since G is an induced subgraph of Fi, G is in P.
Now by Theorem 25, there exists H ∈ P such that H

2→ G. H has
an (R,S) partition (VR, VS) in which neither part is empty. Since H

2→ G
we have G ∈ R or G ∈ S. Suppose that G ∈ R. K̄|I| ∈ S, so G + K̄|I| ∈
R◦S = P. But this is impossible, since Fi ⊆ G + K̄|I| and so Fi has an



116 A.J. Berger

(R,S)-partition, a contradiction since Fi is not in P = R◦S. Hence the
graphs in C(P) are formed from infinitely many cyclic blocks.

We remark that the converse of this result is not true , for example, if C(P)
is the set of all cycles, then P is the class of all forests, which is irreducible
(since it does not contain all the bipartite graphs). It seems to be a very
difficult problem to decide from an infinite C(P) whether P is reducible or
irreducible.

3 Additive Hereditary Properties

A result analogous to Theorem 26 holds for any property P in La which is
reducible in La. We will use the notation F (P) to denote the set of minimal
forbidden subgraphs of P. We state the analogues of Theorems 25 and 26
here. Their proofs follow exactly as in the case of induced hereditary prop-
erties, replacing C(P) with F (P) and ’induced subgraph’ with ’subgraph’.

Theorem 31. Let r ≥ 2 be an integer. Let P ∈ La, and suppose F (P) is
a set of graphs each with at least one cyclic block, such that the set of all
the cyclic blocks forming the graphs in F (P) is finite. Then for each graph
G ∈ P satisfying that for every F ∈ F (P) there exists a cyclic block of F
which is not a subgraph of G, there exists a graph H ∈ P such that H

r→ G.

Theorem 32. If P is a reducible property in La, then the set of cyclic blocks
making up the graphs in F (P) is infinite and hence F (P) is infinite.

Note that if P is a reducible property in La, then P is also a reducible
property in Ma and so C(P) is infinite, by Theorem 26. From this fact we
can immediately conclude that F (P) is infinite, since every graph in C(P)
must contain an element of F (P) with the same order as a subgraph.

However if P is a property in La such that the set of cyclic blocks making
up the graphs in C(P) is infinite, then it is not always true that the graphs
in F (P) are made up of infinitely many cyclic blocks. For example, let P
be the property defined by F (P) = {F1, F2, F3, . . .}, where Fi is the graph
formed by attaching a copy of K3 to a degree two vertex of a copy of K2,1,1

by a path with i edges. Then only two cyclic blocks are found in the graphs
of F (P). However for each i ≥ 1, C(P) contains the graph formed from Fi

by attaching each remaining degree two vertex of K3 to a different one of
the original degree three vertices of K2,1,1 by an edge, and hence infinitely
many cyclic blocks are found in the graphs of C(P).
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