ON (k, l)-KERNELS OF SPECIAL SUPERDIGRAPHS
 OF P_{m} AND C_{m}

Magdalena Kucharska and Maria Kwaśnik
Institute of Mathematics
Technical University of Szczecin
ul. Piastów 48/49, 70-310 Szczecin
e-mail: magdakucharska@poczta.wp.pl
e-mail: kwasnik@arcadia.tuniv.szczecin.pl

Abstract

The concept of (k, l)-kernels of digraphs was introduced in [2]. Next, H. Galeana-Sanchez [?] proved a sufficient condition for a digraph to have a (k, l)-kernel. The result generalizes the well-known theorem of P. Duchet and it is formulated in terms of symmetric pairs of arcs. Our aim is to give necessary and sufficient conditions for digraphs without symmetric pairs of arcs to have a (k, l)-kernel. We restrict our attention to special superdigraphs of digraphs P_{m} and C_{m}.

Keywords: kernel, semikernel, (k, l)-kernel.
2000 Mathematics Subject Classification: 05C20.

1. Introduction

For general concepts we refer the reader to [?]. Let D denote a finite, directed graph without loops and multiple arcs (for short: a digraph), where $V(D)$ is the set of vertices of D and $A(D)$ is the set of arcs of D. We restrict our considerations to digraphs not having symmetric pairs of arcs. A path is a digraph P_{m} with $V\left(P_{m}\right)=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $A\left(P_{m}\right)=$ $\left\{x_{i} x_{i+1}: i=1, \ldots, m-1\right\}$ for $m \geq 2$. A circuit C_{m} is a digraph with $V\left(C_{m}\right)=V\left(P_{m}\right)$ and $A\left(C_{m}\right)=A\left(P_{m}\right) \cup\left\{x_{m} x_{1}\right\}$, for $m \geq 3$. For simplicity, $x_{m+i}=x_{i}$, with $1 \leq i \leq m$. The cardinality of $A\left(P_{m}\right)$ and $A\left(C_{m}\right)$ we call the length of P_{m} and C_{m}, respectively. We denote by $d_{D}(x, y)$
the length of the shortest path from x to y in D. This path is meant as a subdigraph of D isomorphic to P_{m}, where $x_{1}=x$ and $x_{m}=y$. For any $X \subseteq V(D)$ and $x \in V(D) \backslash X$ we put $d_{D}(x, X)=\min _{y \in X} d_{D}(x, y)$, $d_{D}(X, x)=\min _{y \in X} d_{D}(y, x)$ and $N_{D}^{l}(X)=\left\{x \in V(D) \backslash X: d_{D}(x, X)>l\right\}$. For the sake of clarity, we introduce the following notations. A spanning superdigraph of D is a digraph H such that $V(H)=V(D)$ and $A(H) \supset A(D)$. If H is a spanning superdigraph of $P_{m}\left(C_{m}\right)$, then an $\operatorname{arc} a \in A(H) \backslash A\left(C_{m}\right)$ $\left(a \in A(H) \backslash A\left(C_{m}\right)\right)$ will be called a chord of D and a chord $x_{i} x_{i+2}$ we will call a short chord of D. Two vertices $x_{i}, x_{j} \in X \subset V\left(P_{m}\right)=V\left(C_{m}\right)$ with $i<j$ are called consecutive in X if for every integer t with $i<t<j$, we have that $x_{t} \in V\left(P_{m}\right) \backslash X$. If $i>j$, then instead of j we take $j+m$ and we define that x_{i}, x_{j} are consecutive in X as the above. Let k, l be fixed positive integers, $k \geq 2$ and $l \geq 1$. A subset $J \subseteq V(D)$ is called a (k, l)-kernel of D if
(1) for each $x, y \in J$ and $x \neq y, d_{D}(x, y) \geq k$ and
(2) for each $x \in V(D) \backslash J$ there exists $y \in J$ that $d_{D}(x, y) \leq l$.

The concept of a (k, l)-kernel of a digraph was introduced in [?] and considered in [?] and [?]. It may be to noted that for $k=2$ and $l=1$ we obtain the definition of a kernel of D in the sense of Berge [?]. If J satisfies the condition (1), then we say that J is k-stable in D. Moreover, we assume that the subset including exactly one vertex is also k-stable in D. We say that the vertex x is l-dominated by J in D or $J l$-dominates x in D or J is l-dominating in D, when the condition (2) is fulfilled. A subset $J \subseteq V(D)$ is a strong (k, l)-kernel of D if J is a (k, l)-kernel of D and
(3) there exist $x, y \in J, x \neq y$ that $d_{D}(x, y)=k$ and
(4) there exists $x \in V(D) \backslash J$ that $d_{D}(x, J)=l$.

Notice that a (k, l)-kernel consisting of exactly one vertex cannot be a strong (k, l)-kernel. A subset $J \subset V(D)$ is a (k, l)-semikernel of D if J is k-stable in D and
(5) for each $x \in V(D) \backslash J$ for which $d_{D}(J, x) \leq l$, there must be $d_{D}(x, J) \leq l$.

It is clear that if J is a (k, l)-kernel of D, then J is a (k, l)-semikernel of D. For $k=2$ and $l=1$ we obtain the definition of semikernel [?].

All definitions are similar for undirected graphs, which are also considered.

2. The Existence of (k, l)-Kernels in P_{m} and its Spanning Superdigraph

For a fixed $k \geq 2$ we can write an arbitrary positive integer number $m \geq 2$ in the form $m=n k+r$, where $n \geq 0$ and $0 \leq r<k$. By the way, if J is a (k, l)-kernel of P_{m}, then $|J| \leq n+1$.

First, we give a necessary and sufficient condition for a digraph P_{m} to have a (k, l)-kernel. If $n=0$, then P_{m} has a (k, l)-kernel if and only if $r \leq l+1$. For $n \geq 1$ we have the following result.

Theorem 2.1. Let P_{m} be a digraph of order $m=n k+r$ and $n \geq 1$. Then P_{m} has a (k, l)-kernel if and only if $k \leq l+1$.

Proof. Let $k \leq l+1$. It is not difficult to observe that $J=\left\{x_{r}, x_{r+k}\right.$, $\left.x_{r+2 k}, \ldots, x_{r+(n-1) k}, x_{r+n k=m}\right\}$ is a (k, l)-kernel of P_{m}. Indeed, J is k-stable and for every $x \in V\left(P_{m}\right) \backslash J$ we have $d_{P_{m}}(x, J) \leq k-1 \leq l$.

Now suppose on the contrary that P_{m} has a (k, l)-kernel J, but $k>l+1$. Then for every two consecutive vertices $x_{i}, x_{j} \in J, d_{P_{m}}\left(x_{i}, x_{j}\right) \geq k>l+1$. Moreover, $d_{P_{m}}\left(x_{i+1}, J\right)=d_{P_{m}}\left(x_{i+1}, x_{j}\right) \geq k-1>l$ and this means that x_{i+1} is not l-dominated by J. This contradicts the assumption that J is a (k, l)-kernel of P_{m} and completes the proof.
It is natural to ask whether adding a new arc (the opposite arcs are not a taken into consideration) to P_{m} guarantees the existence of a (k, l)-kernel in an obtained spanning superdigraph, for $k>l+1$. We shall calculate the smallest number of chords of a spanning superdigraph of P_{m} having a (k, l)-kernel for the case, when $k>l+1$. In order to do it, we start with a simple assertion noting that throughout all sections we assume $m=n k+r$, $n \geq 1$ and $0 \leq r<k$.

Lemma 2.2. Let D be a spanning superdigraph of P_{m} such that $\left|A(D) \backslash A\left(P_{m}\right)\right|=1$. Then, for any $X \subset V(D),\left|N_{P_{m}}^{l}(X) \backslash N_{D}^{l}(X)\right| \leq l$.

Proof. Let D be a spanning superdigraph of P_{m} having exactly one additional arc from $A(D) \backslash A\left(P_{m}\right)$. We extend the numbering of the vertices in the natural fashion assuming that the sequence $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ constitutes the path P_{m}. Suppose for an indirect proof that there exists a subset $X \subset V(D)$ such that $\left|N_{P_{m}}^{l}(X) \backslash N_{D}^{l}(X)\right| \geq l+1$. Certainly, $N_{D}^{l}(X) \subset N_{P_{m}}^{l}(X)$. For convenience, we put $\eta=\left|N_{P_{m}}^{l}(X) \backslash N_{D}^{l}(X)\right|$.

Further, let $x_{s} x_{t}$ denote a unique arc belonging to the set $A(D) \backslash A\left(P_{m}\right)$ with $|s-t| \geq 2$. Notice that $x_{s} \in V(D) \backslash X$. Otherwise, it would be $N_{P_{m}}^{l}(X)=N_{D}^{l}(X)$. Hence $\eta=0$ but this is a contradiction to the assumption that $\eta \geq l+1$. Choose a vertex $x_{u_{0}} \in N_{P_{m}}^{l}(X) \backslash N_{D}^{l}(X)$ such that $d_{P_{m}}\left(x_{u_{0}}, X\right)=\max _{x_{u} \in N_{P_{m}}^{l}(X) \backslash N_{D}^{l}(X)} d_{P_{m}}\left(x_{u}, X\right)$. It follows from the choice of $x_{u_{0}}$ that if $x_{u} \in N_{P_{m}}^{l}(X) \backslash N_{D}^{l}(X)$, then $u_{0} \leq u \leq u_{0}+\eta-1$ and $d_{P_{m}}\left(x_{u_{0}}, x_{s}\right) \geq \eta-1$. As it was noted $x_{u_{0}} \in N_{P_{m}}^{l}(X) \backslash N_{D}^{l}(X)$, so $d_{P_{m}}\left(x_{u_{0}}, X\right)>l$ and $d_{D}\left(x_{u_{0}}, X\right) \leq l$. This means that the shortest path from $x_{u_{0}}$ to the set X includes the arc $x_{s} x_{t}$. Therefore, we can conclude that $d_{D}\left(x_{u_{0}}, X\right)=d_{D}\left(x_{u_{0}}, x_{s}\right)+d_{D}\left(x_{s}, x_{t}\right)+d_{D}\left(x_{t}, X\right)=d_{P_{m}}\left(x_{u_{0}}, x_{s}\right)+$ $1+d_{P_{m}}\left(x_{t}, X\right) \geq(\eta-1)+1+d_{P_{m}}\left(x_{t}, X\right) \geq \eta \geq l+1$. Finally we obtain that $d_{D}\left(x_{u_{0}}, X\right) \leq l+1$, a contradiction.
Note that the Lemma ?? shows that adding exactly one arc to P_{m} creates superdigraph D such that the number s of l-dominated vertices by a fixed subset $X \subset V\left(P_{m}\right)$ in D is more than the number p of l-dominated vertices by X in P_{m}. Moreover, $s-p \leq l$. This leads to the following corollary.

Corollary 2.3. Let $X \subseteq V\left(P_{m}\right)$, such that $\left|N_{P_{m}}^{l}(X)\right|=\eta>0$. Then every spanning superdigraph D of P_{m}, in which X is l-dominating, has to possess at least $\left\lceil\frac{\eta}{l}\right\rceil$ additional arcs (i.e., $\left|A(D) \backslash A\left(P_{m}\right)\right| \geq\left\lceil\frac{\eta}{l}\right\rceil$), where $\lceil p\rceil$ denotes the smallest integer greater than or equal to p.

It may be noted that if $X \subset V\left(P_{m}\right)$ and $|X|=1$, then X can l-dominate at most l vertices of P_{m}. Moreover, if $|X|=s$, then X can l-dominate at most $s \cdot l$ vertices of P_{m}. Now we discuss the case when $k>l+1$ with respect to the existence of a (k, l)-kernel in spanning superdigraph D of P_{m}. More precisely, we estimate a number of additional arcs which are needed for a superdigraph D having a (k, l)-kernel with $k>l+1$.

Theorem 2.4. Let D be a spanning superdigraph of P_{m}. If $k>l+1$ and D has a (k, l)-kernel, then $\left|A(D) \backslash A\left(P_{m}\right)\right| \geq\left\lceil\frac{m-n-r}{l}\right\rceil-n$ for $r \leq l+1$ and $\left|A(D) \backslash A\left(P_{m}\right)\right| \geq\left\lceil\frac{m-n-1}{l}\right\rceil-n-1$ for $r>l+1$.

Proof. Let J be a (k, l)-kernel of D. Since J is k-stable in D, then it is k stable in P_{m}, too. Moreover, from the assumption that $k>l+1$ we have that J is not a (k, l)-kernel of P_{m} (see Theorem ??). Thus J is not l-dominating in P_{m}. Then $N_{P_{m}}^{l}(J) \neq \emptyset$. We can present the set of vertices as a sum of disjoint subsets, namely $V\left(P_{m}\right)=J \cup\left\{y \in V\left(P_{m}\right) \backslash J: d_{P_{m}}(y, J) \leq l\right\} \cup$
$N_{P_{m}}^{l}(J)$. Hence if we take the cardinalities of these sets into consideration, we have the following equality: $m=|J|+\mid\left\{y \in V\left(P_{m}\right) \backslash J: d_{P_{m}}(y, J) \leq\right.$ $l\}\left|+\left|N_{P_{m}}^{l}(J)\right|\right.$. Moreover, $|\left\{y \in V\left(P_{m}\right) \backslash J: d_{P_{m}}(y, J) \leq l\right\}|\leq l| J \mid$. Then $m \leq|J|+l|J|+\left|N_{P_{m}}^{l}(J)\right|$. As it was mentioned earlier, $|J| \leq n+1$. This means that $m \leq(n+1)(l+1)+\left|N_{P_{m}}^{l}(J)\right|$ i.e., $\left|N_{P_{m}}^{l}(J)\right| \geq m-(n+1)(l+1)$. As a consequence $\left|A(D) \backslash A\left(P_{m}\right)\right| \geq\left\lceil\frac{m-(n+1)(l+1)}{l}\right\rceil=\left\lceil\frac{m-n-1}{l}\right\rceil-n-1$ in view of Corollary ??. If $r \leq l+1$ we can give a better estimate. We shall show that in this case $\left|\bar{N}_{P_{m}}^{l}(J)\right| \geq m-n(l+1)-r$. Assume that $\left|N_{P_{m}}^{l}(J)\right|<m-n(l+1)-r$. Combining the upper bound of m (given above) and the last inequality we deduce that $m<(n+1)(l+1)+m-n(l+1)-r=$ $l+1-n(l+1)=(1-n)(l+1)$. If $n=0$, then $m=r<l+1$ i.e., J is a (k, l)-kernel of P_{m}, which contradicts the assumption. If $n \geq 1$, then $m<0$, the next contradiction. Thus we conclude that $\left|N_{P_{m}}^{l}(J)\right| \geq m-n(l+1)-r$. This means that $\left|A(D) \backslash A\left(P_{m}\right)\right| \geq\left\lceil\frac{m-n(l+1)-r}{l}\right\rceil=\left\lceil\frac{m-n-r}{l}\right\rceil-n$ in view of Corollary ?? and completes the proof.

3. Special Kinds of (k, l)-Kernels in C_{m} and its Superdigraphs

At the beginning, we prove the relationship between the existence of (k, l) kernel and (k, l)-semikernel in C_{m}. We extend the numbering of the vertices in the natural fashion around the circuit C_{m} i.e., the sequence $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ constitutes the digraph C_{m}.

Theorem 3.1. Let $m \geq 3$. Then C_{m} has a (k, l)-semikernel if and only if it has a (k, l)-kernel.

Proof. Let J be a (k, l)-semikernel of C_{m}. To prove that J is a (k, l)-kernel of C_{m} it is enough to show that J is l-dominating in C_{m}. Let $x_{i}, x_{j} \in J$ be any consecutive vertices in J. If $i>j$, then instead of j we take $j+m$. Since $d_{C_{m}}\left(x_{i}, x_{i+1}\right)=1 \leq l$, then we have that $d_{C_{m}}\left(x_{i+1}, x_{j}\right) \leq l$. Hence J is l-dominating in C_{m}. As it was remarked in Introduction, each (k, l)-kernel of a digraph is a (k, l)-semikernel of the digraph which completes the proof.

Recall that $m=n k+r, n \geq 0$ and $0 \leq r<k$. It is not difficult to see that if J is a (k, l)-kernel of C_{m}, then $|J| \leq n$, for $n \geq 1$ or $|J|=1$, for $n=0$.

Moreover, if $n=0$, then C_{m} has a (k, l) - kernel J iff $r \leq l+2$. If $n \geq 1$, then we have the following theorem.
Theorem 3.2. Let C_{m} be given with $m=n k+r, n \geq 1$. Then C_{m} has a (k, l)-kernel if and only if $k \leq l+1$ and $r \leq n(l-k+1)$.
Proof. I. Let $k \leq l+1$ and $r \leq n(l-k+1)$. It is easy to observe that if $r=0$ (i.e., $m=n k$), then the subset $J=\left\{x_{1}, x_{1+k}, x_{1+2 k}, \ldots, x_{1+(n-1) k}\right\}$ is a (k, l)-kernel of C_{m}.

Assuming that $r>0$ we shall prove that there exists an integer s such that $0 \leq s \leq l-k+1$ and $m=n(k+s)+r_{s}$, where $0 \leq r_{s}<n$. Assume that this is not true, or in other words for every s with $0 \leq s \leq l-k+1$ we have $r_{s}>n$. Taking $s=l-k$ we have $m=n(k+s)+r_{s}=n l+r_{l-k}$. Since $r_{l-k}>n$, so $m>n(l+1)$. But at the same time we have $m=n k+r \leq$ $n k+n(l-k+1)=n(l+1)$, a contradiction.

Now, we shall show that the existence of a (k, l)-kernel in C_{m} is assured. For $r_{s}=0$ the set $J=\left\{x_{1}, x_{1+(k+s)}, x_{1+2(k+s)}, \ldots, x_{1+(n-1)(k+s)}\right\}$ is a (k, l)-kernel of C_{m}. For $r_{s}>0$, we put $J=\left\{x_{1}, x_{1+(k+s)}, x_{1+2(k+s)}\right.$, $\ldots, x_{1+\left(n-r_{s}\right)(k+s)}, x_{1+\left(n-r_{s}+1\right)(k+s)+1}, x_{1+\left(n-r_{s}+2\right)(k+s)+2}, \ldots$, $\left.x_{1+\left(n-r_{s}+\left(r_{s}-2\right)\right)(k+s)+r_{s}-2}, x_{1+(n-1)(k+s)+r_{s}-1}\right\}$. In order to show that J is k-stable in C_{m} it suffices to observe that $d_{C_{m}}\left(x_{1+(n-1)(k+s)}, x_{1}\right)=$ $m+1-\left[1+(n-1)(k+s)+r_{s}-1\right]=k+s+1>k$. We have also for every $x \in V\left(C_{m}\right) \backslash J$ that $d_{C_{m}}(x, J) \leq k+s<l+1$, what proves that J is l-dominating in C_{m}. Consequently, J is a (k, l)-kernel of C_{m} and the first part of the theorem is proved.
II. Assume that J is a (k, l)-kernel of C_{m}, but $k>l+1$ or $r>n(l-k+1)$. If $|J|=1$, then it can be verified that $n=1$ and $J=\left\{x_{i}\right\}$, where $1 \leq i \leq m$. As a consequence $d_{C_{m}}\left(x_{i+1}, J\right)=d_{C_{m}}\left(x_{i+1}, x_{i}\right)=m-1=k+r-1$. Further, from the assumption that $k>l+1$ or $r>n(l-k+1)$ it follows that $k+r-1>l$. This means that the vertex x_{i+1} is not l-dominated by J and contradicts our assumption that J is a (k, l)-kernel of C_{m}. Now we consider the case when $|J| \geq 2$. Let $x_{i}, x_{j} \in J$ be two consecutive vertices in J. If $k>l+1$, then $d_{C_{m}}\left(x_{i+1}, x_{j}\right)=d_{C_{m}}\left(x_{i}, x_{j}\right)-1 \geq k-1>l$. This means that x_{i+1} is not l-dominated by J, a contradiction to the assumption that J is a (k, l)-kernel of C_{m}. If $r>n(l-k+1)$, then $m=n k+r>n(l+1)$. From this and in fact that $|J| \leq n$, the existence of two consecutive vertices in J, say x_{i}, x_{j} such that $d_{C_{m}}\left(x_{i}, x_{j}\right)>l+1$ is assured. Hence $d_{C_{m}}\left(x_{i+1}, x_{j}\right)=$ $d_{C_{m}}\left(x_{i}, x_{j}\right)-1>l$. This means that x_{i+1} is not l-dominated by J i.e., J is not a (k, l)-kernel of C_{m}. This contradiction completes the proof of the theorem.

Certainly, if $n \leq 1$, then each k-stable set of C_{m} contains exactly one vertex. Therefore, we conclude that C_{m} does not have a strong (k, l)-kernel, since the condition (3) is not satisfied. Now, we give a necessary and sufficient condition for C_{m} to have a strong (k, l)-kernel.

Theorem 3.3. The digraph C_{m} possesses a strong (k, l)-kernel if and only if:
(6) $m-k-l-1=0$ or
(7) $m-k-l-1 \geq k$ and $C_{m-k-l-1}$ has a (k, l)-kernel.

Proof. I. Let J be a strong (k, l)-kernel of C_{m}. This implies that it must be $k \leq l+1$, by Theorem ??. By the way, it is easy to observe that $m-k-l-1 \geq 0$. Suppose on the contrary that $m-k-l-1<0$. This is equivalent to $m<k+l+1 \leq 2 k$, since $k \leq l+1$. In conclusion there must be $|J|=1$, which is impossible by the assumption that J is a strong (k, l)-kernel of C_{m}. Finally, we state $m-k-l-1 \geq 0$. Next, assume on the contrary that both conditions (6) and (7) do not hold simultaneously. In other words (by the condition $m-k-l-1 \geq 0$) there must hold: (a) $0<m-k-l-1<k$ or (b) $m-k-l-1>0$ and $C_{m-k-l-1}$ has no (k, l)-kernel. Suppose that the condition (a) holds. Since J is a strong (k, l)-kernel of C_{m}, then there exist $x_{q}, x_{p} \in J$ and $x_{s} \in V\left(C_{m}\right) \backslash J$ such that $d_{C_{m}}\left(x_{q}, x_{p}\right)=k$ and $d_{C_{m}}\left(x_{s}, J\right)=l$. Without loss of generality, let $q<p$ (if $q>p$, then take $p+m$ instead of p). If $q<s<p$, then $s=q+1$ and $d_{C_{m}}\left(x_{q}, x_{p}\right)=l+1$, hence $k=l+1$. In conclusion, the condition (a) is equivalent to the expression $0<m-2 k<k$. This means that $m=2 k+r$, where $r>0$. On the other hand, since C_{m} has a (k, l)-kernel, then $r \leq n(l-k+1)$ in view of Theorem ??. Therefore, putting $k=l+1$ we have $r \leq 0$, contrary to the conclusion that $r>0$. If $s<q$ or $s>p$, there exists a vertex $x_{t} \in J$, such that $t \neq q$ and $t \neq p$. Figure 1 illustrates the positions of the vertex x_{t} with respect to the vertex x_{s}.

Figure 1

Otherwise (i.e., $J=\left\{x_{q}, x_{p}\right\}$), we would have $m=k+l+1$ or equivalently $m-k-l-1=0$, which is impossible by (a). Thus, $t \neq q$ and $t \neq p$. This means that $d_{C_{m}}\left(x_{p}, x_{q}\right)=d_{C_{m}}\left(x_{p}, x_{t}\right)+d_{C_{m}}\left(x_{t}, x_{s}\right)+d_{C_{m}}\left(x_{s}, x_{q}\right)$ or $d_{C_{m}}\left(x_{p}, x_{q}\right)=d_{C_{m}}\left(x_{p}, x_{s}\right)+d_{C_{m}}\left(x_{s}, x_{t}\right)+d_{C_{m}}\left(x_{t}, x_{q}\right)$ (see Figure 1). As it was noted $x_{q}, x_{p}, x_{t} \in J$, where J is k-stable and $d_{C_{m}}\left(x_{s}, J\right)=l$, then $d_{C_{m}}\left(x_{p}, x_{q}\right) \geq k+l+1$. Using the last inequality we can write that $m=$ $d_{C_{m}}\left(x_{p}, x_{q}\right)+d_{C_{m}}\left(x_{q}, x_{p}\right) \geq k+(k+l+1)=2 k+l+1$. Thus $m-k-l-1 \geq k$, which is a contradiction to (a). Assume that the condition (b) holds. Since $m>k+l+1$, then $|J| \geq 3$. Otherwise, (i.e., $|J| \leq 2$) the subset J could not be a strong (k, l)-kernel of C_{m}. Finally $|J| \geq 3$. Therefore, we may assume without loss of generality that $x_{m-k-l-1}, x_{m-k}, x_{m} \in J$ (see Figure 2).

Figure 2
Create a spanning superdigraph D of C_{m} adding a new arc $x_{m-k-l-1} x_{1}$ to C_{m}. Thus a subdigraph H of D induced by the set $\left\{x_{1}, x_{2}, \ldots, x_{m-k-l-1}\right\}$ is isomorphic to $C_{m-k-l-1}$. Then H has no (k, l)-kernel either. We define $J_{0}=J \backslash\left\{x_{m-k}, x_{m}\right\}$. Since J is a (k, l)-kernel of C_{m}, then for $1 \leq s \leq$ $m-k-l-1$ we have $d_{C_{m}}\left(x_{s}, J\right) \leq l$. Moreover, $d_{C_{m}}\left(x_{s},\left\{x_{m-k}, x_{m}\right\}\right)>l$. This means that $d_{H}\left(x_{s}, J_{0}\right)=d_{C_{m}}\left(x_{s}, J\right) \leq l$. Hence J_{0} is l-dominating in H. Now we show that J_{0} is k-stable in H. Choose a vertex $x_{q} \in J$ that x_{m}, x_{q} are consecutive in J (of course $q<m$). In order to show that J_{0} is k - stable in H, it is enough to observe that $d_{H}\left(x_{m-k-l-1}, x_{q}\right) \geq k$. Indeed, $d_{H}\left(x_{m-k-l-1}, x_{q}\right)=q=d_{C_{m}}\left(x_{m}, x_{q}\right) \geq k$, since $x_{m}, x_{q} \in J$. Thus J_{0} is a (k, l)-kernel of H, what is a required contradiction and proves the first part of the theorem.
II. Let $m-k-l-1=0$. Thus $J=\left\{x_{1}, x_{1+k}\right\}$ is a strong (k, l)-kernel of C_{m}. Indeed, $d_{C_{m}}\left(x_{1}, x_{1+k}\right)=k$ and $d_{C_{m}}\left(x_{1+k}, x_{1}\right)=m+1-(1+k)=$ $m-k=l+1$, hence $d_{C_{m}}\left(x_{2+k}, x_{1}\right)=l$. Now let $m-k-l-1 \geq k$ and
$C_{m-k-l-1}$ has a (k, l)-kernel. Let a subdigraph H be defined in the same way as in Part I of the proof. Then H has a (k, l)-kernel, too. We denote it by J_{0} and assume without loss of generality that $x_{1} \in J_{0}$. We show that $J=J_{0} \cup\left\{x_{m-k-l}, x_{m-l}\right\}$ is a strong (k, l)-kernel of C_{m}. Observe that because of the structure of C_{m} we have $d_{C_{m}}\left(x_{m-k-l}, x_{m-l}\right)=k$ and $d_{C_{m}}\left(x_{m-l}, x_{1}\right)=$ $l+1$. Thus $d_{C_{m}}\left(x_{m-l+1}, x_{1}\right)=l$. This means that if J is a (k, l)-kernel of C_{m}, then it also is a strong (k, l)-kernel of C_{m}. If $\left|J_{0}\right|=1$ (i.e., $J_{0}=\left\{x_{1}\right\}$), then $d_{C_{m}}\left(x_{1}, x_{m-k-l}\right)=m-k-l-1 \geq k$ and $J=\left\{x_{1}, x_{m-k-l}, x_{m-l}\right\}$ is a (k, l)-kernel of C_{m}. If $\left|J_{0}\right|>1$, then there exists $x_{q} \in J_{0}$, such that x_{q}, x_{1} are consecutive in J_{0}. Since $d_{H}\left(x_{q}, x_{1}\right)=m-k-l-q \geq k$, then $d_{C_{m}}\left(x_{q}, x_{m-k-l}\right)=m-k-l-q \geq k$. Thus J is k-stable and l-dominating in C_{m} i.e., J is a (k, l)-kernel of C_{m} and this completes the proof of the theorem.
Proceeding by the same argument as for P_{m} in the proof of Lemma ?? and Corollary ?? we state two assertions with respect to C_{m}.

Theorem 3.4. Let D be a spanning superdigraph of C_{m} including only one chord and $X \subset V(D)$. Then $\left|N_{C_{m}}^{l}(X) \backslash N_{D}^{l}(X)\right| \leq l$.
Corollary 3.5. Let $X \subset V\left(C_{m}\right)$, where $\left|N_{C_{m}}^{l}(X)\right|=\eta>0$. Then every spanning superdigraph D of C_{m}, in which X is l-dominating, has at least $\left\lceil\frac{\eta}{l}\right\rceil$ additional arcs (i.e., $\left.\left|A(D) \backslash A\left(C_{m}\right)\right| \geq\left\lceil\frac{\eta}{l}\right\rceil\right)$.

Let a set $J \subset V\left(C_{m}\right)$ be such that $|J|=s$. It is easy to observe that if J is k-stable in C_{m}, but not l-dominating in C_{m}, then $\left|N_{C_{m}}^{l}(J)\right| \geq m-s(l+1)$. In that case in view of Theorem ??, we can formulate the following corollary.

Corollary 3.6. Let C_{m} be such that it does not have a (k, l)-kernel and D be a spanning superdigraph of C_{m}. If $J \subset V(D)$ is a (k, l)-kernel of D, with $|J|=s$, then D has at least $\left\lceil\frac{m-s}{l}\right\rceil-s$ chords.

If s is an integer such that $1 \leq s \leq n$, it is clear that the expression $\left\lceil\frac{m-s}{l}\right\rceil-s$ has the smallest value for $s=n$. This implies the next corollary.

Corollary 3.7. Let D be a spanning superdigraph of C_{m}. If D has a (k, l) kernel, then C_{m} also has a (k, l)-kernel or D possesses at least $\left\lceil\frac{m-n}{l}\right\rceil-n$ chords.

Lemma 3.8. If J is a (k, l)-kernel of spanning superdigraph D of C_{m}, then for every two consecutive vertices x, y in J we have $d_{C_{m}}(x, y) \leq 2 l+1$.

Proof. Suppose to the contrary that there exist two consecutive vertices in J, say x_{i}, x_{j} such that $d_{C_{m}}\left(x_{i}, x_{j}\right)>2 l+1$. As a consequence $d_{C_{m}}\left(x_{i+1}, x_{j}\right)>2 l$. Let us remark that the existence of short chords in D leads to inequality $d_{D}\left(x_{i+1}, x_{j}\right) \geq \frac{1}{2} d_{C_{m}}\left(x_{i+1}, x_{j}\right)$. Combining the above facts we deduce that $d_{D}\left(x_{i+1}, x_{j}\right)>l$. But this contradicts the assumption that J is l-dominating in D, hence the lemma is proved.
In what follows D will be a spanning superdigraph of C_{m} containing only short chords, where $m=n k+r$ with $0 \leq r<k$.

Recall that if $n=0$ and $r>l+1$, then $C_{m=r}$ has no (k, l)-kernel. It is easy to observe that if additionally $r \leq 2 l+1$, then every spanning superdigraph D of C_{m} having a (k, l)-kernel has at least $r-l-1$ short chords. For $n \geq 1$ we state the next assertion.

Lemma 3.9. If C_{m} contains no (k, l)-kernel, then every spanning superdigraph D of C_{m} having a (k, l)-kernel for $k \geq 2, l \geq 1$ and $n \geq 1$ has at least $m-n(l+1)$ chords.

Proof. Let J be a (k, l)-kernel of D. Since C_{m} has no (k, l)-kernel, hence $r>n(l-k+1)$ or $k>l+1$ in view of Theorem ??. This means that $m=n k+r>n(l+1)$. Let $|J|=s$. As it was remarked, we deduce that at least $m-s(l+1)$ vertices are not l-dominated by J in C_{m}. Assume that $s \geq 2$, hence there exist two consecutive vertices in J, say x_{i}, x_{j}, with $i<j$ and $d_{C_{m}}\left(x_{i}, x_{j}\right)>l+1$. Then it follows easily from the above that $N=\left\{x_{i+1}, x_{i+2}, \ldots, x_{j-l-1}\right\} \subseteq N_{C_{m}}^{l}(J)$. Let η denote the number of short chords of D, whose endpoints are vertices x_{t}, where $i<t \leq j$. We shall prove that $\eta \geq|N|=j-i-l-1$. Assume this cannot occur i.e., $\eta<j-i-l-1$. Since $d_{C_{m}}\left(x_{i+1}, x_{j}\right)=j-i-1$, hence $d_{D}\left(x_{i+1}, x_{j}\right) \geq \eta+(j-i-1-2 \eta)=$ $j-i-1-\eta>l$. This means that x_{i+1} is not l-dominated by x_{j} in D. Hence x_{i+1} cannot be dominated by J in D, contradicting the assumption that J is a (k, l)-kernel of D. This contradiction proves that $\eta \geq j-i-l-1$. Taking all vertices not l-dominating by J in C_{m} into consideration, we get that D has at least $\left|N_{C_{m}}^{l}(J)\right|$ chords. In case when $s=1$ we take $m+i$ instead of j and proceed as above.

If s is an integer such that $1 \leq s \leq n$, it is clear that the expression $m-s(l+1)$ achieves the smallest value for $s=n$. This completes the proof.

If $k>l+1$, then any superdigraph D of C_{m} cannot have a (k, l)-kernel of cardinality more than one. Indeed, because of $k>l+1$ every k-stable subset
of C_{m} is not l-dominating in view of Theorem ??. Short chords of D can cause that arbitrary k-stable set of C_{m} will be l-dominating in D but not k stable in D. Moreover, taking the condition $k>l+1$ into consideration there exists a spanning superdigraph D of C_{m} having a (k, l)-kernel if $m \leq 2 l+1$.

Theorem 3.10. If C_{m} does not have $a(k, l)$-kernel with $k \leq l+1$ and $r \leq n(2 l-k+1)$, then there exists a spanning superdigraph D of C_{m} having $a(k, l)$-kernel.

Proof. Since C_{m} does not have a (k, l)-kernel and $k \leq l+1$, then $r>$ $n(l-k+1)$ see Theorem ??. Moreover, $m=n k+r>n(l+1)$. Now, we shall show that there exists an integer $p>0$ such that $m=n(k+p)+r_{p}$, where $0 \leq r_{p}<n$ and $p \geq l-k+1$. On the contrary, let $p \leq l-k$. Hence $m=n(k+p)+r_{p} \leq n(k+l-k)+r_{p}=n l+r_{p}<n(l+1)$. On the other hand we have $m=n k+r>n k+n(l-k+1)=n(l+1)$, a contradiction. Notice that if $r_{p}=0$, then $p>l-k+1$ (if $r_{p}=0$ and $p=l-k+1$, then $m=n(k+p)+r_{p}=n(l+1)$, contrary to $\left.m>n(l+1)\right)$.

For $r_{p}=0$ (i.e., $m=n(k+p)$), the subset $J=\left\{x_{1}, x_{1+(k+p)}, x_{1+2(k+p)}\right.$, $\left.\ldots, x_{1+(n-1)(k+p)}\right\}$ is k-stable in C_{m}. In order to show it, it suffices to observe that $d_{C_{m}}\left(x_{1+(n-1)(k+p)}, x_{1}\right)=m+1-[1+(n-1)(k+p)]=$ $k+p \geq k$. Let $N_{j}=\left\{x_{2+j(k+p)}, x_{3+j(k+p)}, x_{4+j(k+p)}, \ldots, x_{k+p-l+j(k+p)}\right\}$, where $0 \leq j \leq n-1$. It is clear that $2+j(k+p) \leq k+p-l+j(k+p)$ owing to $p>l-k+1$. We can observe that for every $x \in N_{j}$ we have $d_{C_{m}}(x, J)=d_{C_{m}}\left(x, x_{1+(j+1)(k+p)}\right) \geq d_{C_{m}}\left(x_{k+p-l+j(k+p)}, x_{1+(j+1)(k+p)}\right)=$ $l+1$. This means that no vertex from N_{j} is l-dominated by stable set J. Moreover, it is not difficult to see that $\bigcup_{j=0}^{n-1} N_{j}=N_{C_{m}}^{l}(J)$. Let D be a spanning superdigraph of C_{m} with $A(D)=A\left(C_{m}\right) \cup A_{0}$, where $A_{0}=\left\{a_{i, j}\right.$: $1 \leq i \leq k+p-l-1 \wedge 0 \leq j \leq n-1\}$ and $a_{i, j}=\left(x_{2 i+j(k+p)}, x_{2 i+2+j(k+p)}\right)$. We can show that the indices of all endpoints x_{t} of chords $a_{i, j}$ meet the condition $1+j(k+p)<t \leq 1+(j+1)(k+p)$ for each j. In order to show it, it suffices to observe that $a_{1, j}=\left(x_{2+j(k+p)}, x_{4+j(k+p)}\right)$ and $a_{k+p-l-1, j}=$ $\left(x_{2(k+p-l-1)+j(k+p)}, x_{2+2(k+p-l-1)+j(k+p)}\right)$ have endpoints whose indices satisfy the condition mentioned. Hence for every $x \in N_{j}$ we have $d_{D}(x, J)$ $\leq d_{D}\left(x_{2+j(k+p)}, J\right)=d_{D}\left(x_{2+j(k+p)}, x_{1+(j+1)(k+p)}\right)=d_{D}\left(x_{2+j(k+p)}\right.$, $\left.x_{2+2(k+p-l-1)+j(k+p)}\right)+d_{D}\left(x_{2+2(k+p-l-1)+j(k+p)}, x_{1+(j+1)(k+p)}\right)=$ $\frac{2+2(k+p-l-1)+j(k+p)-[2+j(k+p)]}{2}+1+(j+1)(k+p)-[2+2(k+p-l-1)+j(k+p)=$ $(k+p-l-1)+(1-k-p+2 l)=l($ see Figure 3$)$.

Figure 3
This means that all $x \in N_{C_{m}}^{l}(J)$ are l-dominated by k-stable set J, so J is a (k, l)-kernel of D. Notice that $\left|A_{0}\right|=(k+p-l-1) n=n(k+p)-n(l+1)=$ $m-n(l+1)$. Hence D (in view of Lemma ??) is a spanning superdigraph of C_{m} with the minimum number of short chords. For $r_{p}>0$ the subset $J=$ $\left\{x_{1}, x_{1+(k+p)}, \ldots, x_{1+\left(n-r_{p}\right)(k+p)}, x_{1+\left(n-r_{p}+1\right)(k+p)+1}, x_{1+\left(n-r_{p}+2\right)(k+p)+2}, \ldots\right.$, $\left.x_{1+(n-1)(k+p)+r_{p}-1}\right\}$ is k-stable in C_{m}.

Put $M_{j}=N_{j} \cup\left\{x_{k+p-l+1}\right\}$, for $n-r_{p} \leq j \leq n-1$. If $p=l-k+1$, then $N_{j}=\emptyset$ for $0 \leq j \leq n-r_{p}-1$ and $M_{j} \neq \emptyset$ for $n-r_{p} \leq j \leq n-1$. It is easy to observe that $\bigcup_{j=0}^{n-r_{p}-1} N_{j} \cup \bigcup_{j=n-r_{p}}^{n-1} M_{j}=N_{C_{m}}^{l}(J)$. Similarly, as for $r_{p}=0$ we can show that for every $x \in N_{C_{m}}^{l}(J)$ we have $d_{C_{m}}(x, J) \geq l+1$. This means that no vertex from $N_{C_{m}}^{l}(J)$ is l-dominated by stable set J. Let D be a spanning superdigraph of C_{m} with $A(D)=A\left(C_{m}\right) \cup A_{1}$, where $A_{1}=\left\{a_{i, j}:\left(1 \leq i \leq k+p-l-1 \wedge 0 \leq j \leq n-r_{p}-1\right)\right.$ or $(1 \leq i \leq$ $\left.\left.k+p-l \wedge n-r_{p} \leq j \leq n-1\right)\right\}$.

It is not difficult to see that for $0 \leq j \leq n-1$ all endpoints x_{t} of chords $a_{i, j}$ meet the condition $1+j(k+p)<t \leq 1+(j+1)(k+p)$. It is easy to calculate (similarly as for $r_{p}=0$) that for every $x \in N_{C_{m}}^{l}(J)$ we have $d_{D}(x, J) \leq l$. This means that all $x \in N_{C_{m}}^{l}(J)$ are l-dominated
by stable set J, so J is a (k, l)-kernel of D. At the same time $\left|A_{1}\right|=$ $(k+p-l-1)\left(n-r_{p}\right)+(k+p-l) r_{p}=n(k+p)+r_{p}-n(l+1)=m-n(l+1)$. This means that D is a spanning superdigraph of C_{m} with a minimum number of short chords in view of Lemma ??.

4. On (k, l)-Kernels of Graphs

In this section, the notation C_{m} means an directed graph defined analogously as the circuit C_{m}. In this case $d_{C_{m}}(x, y)=d_{C_{m}}(y, x)$.

Recall that $m=n k+r, n \geq 0$ and $0 \leq r<k$. It is not difficult to observe that if $n=0$, then C_{m} has a (k, l)-kernel iff $r \leq 2 l+2$. If $n \leq 1$, then C_{m} has no strong (k, l)-kernel.

Theorem 4.1. Let $n \geq 2 . C_{m}$ has a strong (k, l)-kernel if and only if at least one of the following conditions is fulfilled:
(8) $m-k-2 l=0$,
(9) $m-k-2 l-1=0$,
(10) $m-k-2 l \geq k$ and $C_{m-k-2 l}$ has a (k, l)-kernel,
(11) $m-k-2 l-1 \geq k$ and $C_{m-k-2 l-1}$ has a (k, l)-kernel.

Proof. The sufficient condition of existence of a strong (k, l)-kernel we prove on the contrary using the method from Part I of the proof of Theorem ?? and considering two conditions:
(a) $0<m-k-2 l<k$ or $m-k-2 l>0$ and $C_{m-k-2 l}$ has no (k, l)-kernel,
(b) $0<m-k-2 l-1<k$ or $m-k-2 l-1>0$ and $C_{m-k-2 l-1}$ has no (k, l)-kernel.
Proceeding as in the second part of the proof of Theorem ??, we can prove the necessary condition of the theorem.

Theorem ?? is a generalization of the result announced in [?] and concerning a strong $(k, k-2)$-kernel of C_{m}.

Noting that a symbol $\lfloor p\rfloor$ denotes the greatest integer less than or equal to p, we prove the following.

Theorem 4.2. The cycle C_{m}, where $m=n k+r$ and $n \geq 1$, has a (k, l) kernel if and only if $k \leq 2 l+1$ and $r \leq n(2 l-k+1)$.

Proof. I. Let $k \leq 2 l+1$ and $r \leq n(2 l-k+1)$. At first, notice that if $x_{i}, x_{j} \in J$ are consecutive in J, then for each integer t such that $i<t<j$ we have $\max _{t} d_{C_{m}}\left(x_{t}, J\right)=\left\lfloor\frac{j-i}{2}\right\rfloor$. It is easy to observe that if $r=0$ (i.e., $m=$ $n k)$, then the set $J=\left\{x_{1}, x_{1+k}, x_{1+2 k}, \ldots, x_{1+(n-1) k}\right\}$ is a (k, l)-kernel of C_{m}. Indeed, for every two vertices $x_{1+(i-1) k}, x_{1+i k}$ consecutive in J we have $d_{C_{m}}\left(x_{1+(i-1) k}, x_{1+i k}\right)=k$, where $i=1, \ldots, n-1$ and $d_{C_{m}}\left(x_{1+(n-1) k}, x_{1}\right)=$ $m+1-[1+(n-1) k]=k$, which means that J is k-stable. We have also for each $x \in V(D) \backslash J$ that $d_{C_{m}}(x, J) \leq \frac{k}{2} \leq \frac{2 l+1}{2}=l+\frac{1}{2}$. Since $d_{C_{m}}(x, J)$ is an integer number, then finally $d_{C_{m}}(x, J) \leq l$.

Now let $r>0$. We state that there exists an integer s such that $0 \leq$ $s \leq 2 l-k+1$ and $m=n(k+s)+r_{s}$, where $0 \leq r_{s}<n$. Suppose on the contrary that for every $s, 0 \leq s \leq 2 l-k+1$ we have $r_{s}>n$. Let $s=2 l-k$ and $m=n(k+s)+r_{s}=2 n l+r_{l-k}$. Since $r_{l-k}>n$, then $m>n(2 l+1)$. On the other hand, we have $m=n k+r \leq n k+n(2 l-k+1)=n(2 l+1)$, a contradiction.

It is not difficult to observe that for $r_{s}=0$ the subset $J=\left\{x_{1}\right.$, $\left.x_{1+(k+s)}, x_{1+2(k+s)}, \ldots, x_{1+(n-1)(k+s)}\right\}$ is a (k, l)-kernel of C_{m}. If $r_{s}>0$, then $J=\left\{x_{1}, x_{1+(k+s)}, x_{1+2(k+s)}, \ldots, x_{1+\left(n-r_{s}\right)(k+s)}, x_{1+\left(n-r_{s}+1\right)(k+s)+1}\right.$, $\left.x_{1+\left(n-r_{s}+2\right)(k+s)+2}, \ldots, x_{1+\left(n-r_{s}+2\right)(k+s)+r_{s}-2}, x_{1+(n-1)(k+s)+r_{s}-1}\right\}$ is a $(k, l)-$ kernel of C_{m}. Indeed, $d_{C_{m}}\left(x_{1+(n-1)(k+s)}, x_{1}\right)=m+1-[1+(n-1)(k+s)+$ $\left.r_{s}-1\right]=k+s+1>k$. We have also for every $x \in V(D) \backslash J, d_{C_{m}}(x, J) \leq$ $\frac{k+s}{2}<\frac{2 l+2}{2}=l+1$, where the existence of such an integer s is assured.
II. Assume that C_{m} has a (k, l)-kernel J, but $k>2 l+1$ or $r>n(2 l-$ $k+1$). If $|J|=1$, then $n=1$ and $J=\left\{x_{i}\right\}$, where $1 \leq i \leq m$. Moreover, if $m=k+r$ is an even number, then $d_{C_{m}}\left(x_{i+\frac{m}{2}}, J\right)=d_{C_{m}}\left(x_{i+\frac{m}{2}}, x_{i}\right)=$ $\frac{m}{2}=\frac{k+r}{2}$. From the assumption that $k>2 l+1$ or $r>n(2 l-k+1)$ we have that $\frac{k+r}{2}>l+\frac{1}{2}>l$. Thus the vertex $x_{i+\frac{m}{2}}$ is not l-dominated by J, which contradicts the assumption that J is a (k, l)-kernel of C_{m}. If m is odd, then $d_{C_{m}}\left(x_{i+\frac{m-1}{2}}, J\right)=d_{C_{m}}\left(x_{i+\frac{m-1}{2}}, x_{i}\right)=\frac{m-1}{2}=\frac{k+r-1}{2}>l$ and the vertex $x_{i+\frac{m-1}{2}}$ is not l-dominated by J, a contradiction with the assumption. It remains to consider the case when $|J| \geq 2$. Let $x_{i}, x_{j} \in J$ be two consecutive vertices in J. If $k>2 l+1$ and $j-i$ is even, then it follows from the structure of C_{m} that $d_{C_{m}}\left(x_{\frac{j+i}{2}}, J\right)=d_{C_{m}}\left(x_{\frac{j+i}{2}}, x_{j}\right)=$ $d_{C_{m}}\left(x_{i}, x_{\frac{j+i}{2}}\right)=\frac{j-i}{2} \geq \frac{k}{2}>\frac{2 l+1}{2}>l$. Further for odd $j-i: d_{C_{m}}\left(x_{\frac{j+i+1}{2}}, J\right)=$ $d_{C_{m}}\left(x_{\frac{j+i+1}{2}}, x_{j}\right)=d_{C_{m}}\left(x_{\frac{j+i}{2}}, J\right)=\frac{j-i-1}{2} \geq \frac{k-1}{2}>\frac{2 l+1-1}{2}=l$. Then it follows easily from the above that J is not l-dominating, a contradiction.

If $r>n(2 l-k+1)$, then $m=n k+r>n(2 l+1)$. Since $|J| \leq n$ the existence of two consecutive vertices, say x_{i}, x_{j} such that $d_{C_{m}}\left(x_{i}, x_{j}\right)>2 l+1$ is assured. Using a technique similar to that in the case when $k>2 l+1$ we conclude the following: for even $j-i, d_{C_{m}}\left(x_{\frac{j+i}{2}}, J\right)=d_{C_{m}}\left(x_{\frac{j+i}{2}}, x_{j}\right)=d_{C_{m}}\left(x_{i}, x_{\frac{j+i}{2}}\right)=$ $\frac{j-i}{2}>\frac{2 l+1}{2}>l$ and for odd $j-i, d_{C_{m}}\left(x_{\frac{j+i+1}{2}}, J\right)=d_{C_{m}}\left(x_{\frac{j+i+1}{2}}, x_{j}\right)=$ $d_{C_{m}}\left(x_{\frac{j+i}{2}}, J\right)=\frac{j-i-1}{2}>\frac{2 l+1-1}{2}=l$. This means that there exists some vertex, which is not l-dominated by J. This leads to a conclusion that J is not a (k, l)-kernel of C_{m} and completes the proof of the theorem.

References

[1] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1976).
[2] M. Kwaśnik, The generalization of Richardson theorem, Discuss. Math. IV (1981) 11-14.
[3] V. Neumann-Lara, Seminúcleas en una digráfica, Anales del Instituto de Matemáticas de la Universidad Nacional Autónoma de México 11 (1971) 55-62.
[4] H. Galeana-Sánchez, On the existence of (k, l)-kernels in digraphs, Discrete Math. 85 (1990) 99-102.
[5] I. Włoch, Minimal Hamiltonian graphs having a strong ($k, k-2$)-kernel, Zeszyty Naukowe Politechniki Rzeszowskiej No. 127 (1994) 93-98.

Received 27 September 2000

