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Abstract

A digraph D is called a kernel-perfect digraph or K P-digraph when
every induced subdigraph of D has a kernel.

We call the digraph D an m-coloured digraph if the arcs of D are
coloured with m distinct colours. A path P is monochromatic in D if
all of its arcs are coloured alike in D. The closure of D, denoted by
¢(D), is the m-coloured digraph defined as follows:

V(¢(D)) = V(D), and

A(((D)) = U{(u,v) with colour i: there exists a monochromatic

path of colour ¢ from the vertex u to the vertex v contained in D}.

We will denoted by T35 and C', the transitive tournament of order 3
and the 3-directed-cycle respectively; both of whose arcs are coloured
with three different colours.

Let G be a simple graph. By an m-orientation-coloration of G we
mean an m-coloured digraph which is an asymmetric orientation of G.

By the class E we mean the set of all the simple graphs G that for
any m-orientation-coloration D without C5 or T3, we have that ((D)
is a K P-digraph.

In this paper we prove that if G is a hamiltonian graph of class F,
then its complement has at most one nontrivial component, and this
component is K3 or a star.

Keywords: kernel, kernel-perfect digraph, m-coloured digraph.
2000 Mathematics Subject Classification: 05C20.



78 H. GALEANA-SANCHEZ AND J.J. GARCIA-RUVALCABA

1. Introduction

Let D be a digraph; V(D) and A(D) will denote the sets of vertices and arcs
of D, respectively. An arc (u,v) € A(D) is called asymmetrical if (v,u) &
A(D). An arc (u,v) € A(D) is called symmetrical if (v,u) € A(D). The
asymmetrical part of D, denoted by asym(D), is the spanning subdigraph
of D whose arcs are the asymmetrical arcs of D. The symmetrical part of
D, denoted by sym(D), is the spanning subdigraph of D whose arcs are the
symmetrical arcs of D. A digraph D is called asymmetrical if D = asym(D).

If S is a nonempty subset of V(D), then the subdigraph D[S] induced
by S is the digraph having vertex set S and whose arcs are all those arcs of
D joining vertices of S.

A set I C V(D) is independent in D if A(D[I]) =0. A set I C V(D)
is said to be absorbent in D if for each vertex x € V(D) \ I, there exists a
vertex y € I such that(z,y) € A(D). A set I C V(D) will be called a kernel
of D if I is an independent and absorbent set in D.

The set of all the independent (absorbent) sets in D is denoted by ind(D)
(abs(D)).

The set of all the kernels of D is denoted by ker(D), i.e., ker(D) =
ind(D) Nabs(D).

A digraph D is called a critical-kernel-imperfect digraph or C' K I-digraph
when D has no kernel but every proper induced subdigraph of D has a kernel;
i.e., ker(D) = () and for every nonempty set of vertices I C V (D), I # V(D)
implies ker(D[I]) # 0.

A digraph D is called complete if for every two different vertices u,v €
V(D), (u,v) € A(D) or (v,u) € A(D). A tournament is a complete asym-
metrical digraph.

If v is a directed cycle and x,y € V(v), then we denote by (z,7,y) the
directed path from x to y contained in ~.

We call the digraph D an m-coloured digraph if the arcs of D are coloured
with m distinct colours.

By an orientation of a graph G we mean a digraph D such that V(D) =
V(@) and in which for every edge [u,v] € E(G) we have that at least one
of the arcs (u,,v) or (v,u) is in A(D). An asymmetrical orientation of G is
an orientation of G which is also an asymmetrical digraph.

If v is a cycle of G, then a chord of v is an edge [u,v] between two
nonconsecutive vertices of 7. The length of the chord [u,v] in the cycle v
is the length of the shortest undirected path from u to v contained in ~.
A graph G is triangulated if every cycle of G has at least one chord.
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A star with m peaks is a simple graph with m + 1 vertices in which there is
a vertex, called the center of the star, adjacent to all the other vertices of
the star (called peaks) and with no adjacencies among the peaks.

For a simple graph G, we define its complement G, as the following
simple graph.
V(G®) = V(G) and [u,v] € E(G°) if and only if [u,v] & E(G).

2. Notation

Let GG be a simple graph. We recall that by an m-orientation-coloration of G
we mean an m-coloured digraph which is an asymmetrical orientation of G.
By the class F we mean the simple graphs that under any orientation
coloration D without C3 or T3, we have that {(D) is a K P-digraph.
Our main task is to give a characterization of the class E. It has been
proved before that complete graphs and graphs which miss an edge are of
class F.

Theorem 2.1 [2]. Complete graphs are of the class E.
Theorem 2.2 [1]. Complete graphs that miss an edge are of class E.

We can consider only connected graphs. A directed graph is kernel-perfect
if and only if every one of its connected components are kernel-perfect, so a
graph G is of class F if and only if every one of its connected components
are of class F.

3. A Special Class of Triangulated Hamiltonian
Graphs

Theorem 3.1. Let G be a graph with more than 3 vertices and v a hamil-
tonian cycle of G. If G is triangulated, then there is a vertex, say x, such
that v has a chord between two neighbours of x in .

Proof. As G is triangulated and «y is a cycle of order higher than three,
must have a chord. Let [u,v] be the shortest chord of . The length of the
chord [u,v] of the cycle v must be two: otherwise there would be a cycle of
order higher than three without chords, contradicting that G is triangulated.
As [u,v] is of length two, it is a chord between the two neighbours in v of
some vertex x. ]
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Theorem 3.2. Let G be a triangulated hamiltonian graph. If G¢ does not
have induced subgraphs isomorphic to Gi,Gsa,Gs, Gy, G5, Gg, G7, then G¢
has at most one nontrivial component, and it is K3 or a star.

Proof. We proceed by induction on the number of vertices of G.

For graphs up to three vertices the result is clear.

Let G be a triangulated hamiltonian graph with more than three ver-
tices.

Assume the result is valid for all triangulated hamiltonian graphs with
the number of vertices less than |V(G)|.

Let v be a hamiltonian cycle of G. By Theorem 3.1, there is a vertex
x € V(G) such that its two neighbours in « are adjacent in G.

Let v = (z,v1,v2,...,vp,x) and § = (v1,va,...,vy,,v1). Note that ¢ is a
hamiltonian cycle of G—{x}, so G—{x} is a triangulated hamiltonian graph
whose complement (G — {z})¢ does not have induced subgraphs isomorphic
to G1, G, Gs, G4, G5, Gg, G7 and with less vertices than G. By the induction
hypothesis, (G — {z})¢ has at most one nontrivial component, and this
component is K3 or a star.

We proceed by cases, considering (G — {z})¢. In each case we reach the
conclusion of the theorem or a contradiction.

Case 1. (G — {z})° has only trivial components.
In this case, it is clear that G¢ has at most one nontrivial component, and
it is a star centered at =x.

Case 2. (G — {x})¢ has one nontrivial component, and it is Ko with
[u,v] as an edge.
We proceed by considering two subcases.

Case 2.1. For every vertex y € V(G) \ {z,u,v}, [z, y] € E(G°).
Clearly E(G¢) C {[u,v], [v,x], [x,u]}. Tt follows that G¢ has one nontrivial
component, and it is K3 or a star with one or two peaks.

Case2.2. There is a vertex y € V(G)\{xz, u, v}, such that [z, y] € E(G°).
As [z,y] and [u,v] are two nonadjacent edges of G¢, and G° does not have
an induced G, we have that they should have a common adjacent edge in
G€. The vertex x must be adjacent in G to at least one of the two vertices
u,v; as G°[{y}] is a connected component of (G — {z})c.

If x is adjacent in G¢ to exactly one of two vertices u, v we can assume,
without loss of generality, that [z,u] € E(G°), [r,v] ¢ E(G). Since G is
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hamiltonian,  must have at least two neighbours in G. As [z,u] € E(G°)
and [z, y] € E(G¢), there must be at least another vertex z € V(G) (besides
v) such that [z, z] € E(G). Notice that G[{z}] is a connected component of
(G—{z})°. But now G°[{u,v,x,y, z,w}| = G2, contradicting the hypothesis.

If x is adjacent to both u,v in G¢, then, as G is hamiltonian, x must
have at least two neighbours in G. As {[z,u], [z,v],[z,y]} C E(G°), there
must be at least another two vertices z,w € V(G) such that [z,z] € E(G)
and [z,w] € E(G). Recall that G°[{z}] and G¢[{w}] are different connected
components of (G — {z})¢. But now G°[{u,v,z,y,z}] = G4, contradicting
the hypothesis.

Case 3. (G —{x})° has one nontrivial component, and it is an star with
m peaks, m > 1.
Let v be the center of the star, and uq,usg, ..., u,, be its peaks.
We have again two cases, and proceed to consider each one.

Case 3.1. z is adjacent to v in G, i.e., [z,v] € E(G°).
Here we have to consider three cases.

Case 3.1.1. x is adjacent in G¢ to every peak of the star.

As G is hamiltonian, there are at least two vertices, say y and z, adjacent
to z in G.

Clearly, y is not adjacent to v in G¢ or to any peak to the star, as
G°l{y}] is a connected component of (G —{x})¢. Similarly, z is not adjacent
to v in G° or to any peak of the star. Recaling that the star has at least two
peaks. We have G°[{z,y, z,v,u1,us}] = G5. This contradicts the original
hypothesis.

Case 3.1.2. There is exactly one peak of the star, say w;, which is not
adjacent to x in G°.

Since the star has at least two peaks, there is at least one peak, say u;,
which is adjacent to x in G°. Moreover, there is a vertex, say y (y # u;),
which is adjacent to x in G (because G is hamiltonian) and, there is another
vertex, namely z (z # y), adjacent to v in G.

If [z, 2] € E(G®), then G°[{z,y, z,v,u;}] = G2, a contradiction.

If [x,2] & E(G°), then G°[{z,y, z,v,uj,u;}] = G4, another contradic-
tion.

Case 3.1.3. There are at least two peaks of the star, namely u; and u;,
which are not adjacent to x in G°.
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There are at least two vertices, say z; and 29, adjacent to v in G, because
G is hamiltonian.
Now we consider three possible cases.

Case 3.1.3.1. x is not adjacent in G° to any vertex of
V(G) \{z,v,u1,...,um}.

If = is not adjacent in G¢ to any peak of the star, then G¢ has only one
nontrivial component, and it is a star with m + 1 peaks.

If = is adjacent to some peak of the star, say ux, then
G°l{z,v,uj,uk, 21, 22}] = Gu, a contradiction with the hypothesis of the
theorem.

Case 3.1.3.2. There is a vertex of V(G) \ {z,v,u1,...,uy} which is
adjacent to x in G¢, and there is another vertex of V(G) \ {x,v,u1,...,umnm}
which is not adjacent to z in G°.

Assume, without loss of generality, that [z, 21] € E(G€) and that [z, z2] &
E(G®). We have that G°[{z,v,uj, 21, 22}] = G2, a contradiction.

Case 3.1.3.3. x is adjacent in G to every vertex of
V(G)\ {z,v,u1,...,un}.
Now, G°[{z, v, ui, uj, 21, 22}] = G, another contradiction.

Case 3.2. z is not adjacent to v in G¢, i.e., [z,v] € E(G°).
We consider two possible cases.

Case 3.2.1. There is a vertex y € V(G) \ {z, v, u1, un } such that [z,y] €
E(G°).

We have that x must be adjacent in G¢ to every peak of the star. Indeed:
G¢ does not have induced subgraph isomorphic to Gy, by the condition in
(3.2) that [z,v] € E(G°), and G°[{y}] is connected component of (G —{z})°.
Further, there is another vertex, say z (z # v), which is adjacent to = in
G, because G is hamiltonian. As G°[{z}] also is a connected component
of (G — {z})¢, we have that G°[{z,y,v,u1, z}] = G2, another contradiction
with the hypothesis.

Case 3.2.2. For every vertex y € V(G) \ {z,v,u1,...,u,} we have
[2,9] & B(GO).

We state that there is a vertex z, besides x, which is adjacent to v in G.

If = is not adjacent in G¢ to any peak of the star, then G° has exactly
one nontrivial component, and it is a star with m peaks.

If there are two peaks of the star, u; and u;, such that [z,u;] € E(G®)
and [z, u;] € E(G°), then G°[{x,v, 2, u;, u;}| = G2, a contradiction.
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Finally, if  is adjacent in G to every peak of the star, then there must be one
more vertex w (w # v, w # z) adjacent to at least z or v one of the vertices
in G, because the hamiltonian cycle v can not contain three arcs [v, x], [z, 2]
and [z, v]. Now if w is adjacent to both we have G°[{z, v, u1,u2, 2z, w}] = G,
one contradiction. If w is adjacent to exactly one of the vertices x, v in G, say
wz € E(G) and wv € E(G°), then G°[{w, v, u1, z, 2}] = G2, a contradiction.

Case 4. (G — {x})¢ has one nontrivial component and it is K3.
Let G°[{u,v,w}| be the unique nontrivial component of (G — {x})°.

Case 4.1. There is a vertex y € V(G) \ {z,u,v,w} such that [z,y] €
E(G°).

We have that  must be adjacent in G to at least two of the three ver-
tices u, v, w, because G¢ does not have induced subgraph isomorphic to G7.

If x is adjacent to exactly two of the three vertices in G¢, say u and v,
then it must be another vertex z, besides w, adjacent to x in G. But now
we have G°[{v,w, z,y, 2]} = G4, a contradiction.

If x is adjacent to the three vertices u, v, w in G¢, then there are two ver-
tices, say z1 and z9, adjacent to x in G. We have that G°[{v,w, x,y, 21, 22 }] =
G4, another contradiction. We discard this case (4.1).

Case 4.2. For every vertex y € V(G)\{z, u,v,w} we have [z, y] € EG(°).

If x is not adjacent to any of the three vertices u,v,w in G¢, then G¢
has only one nontrivial component, and it is K3.

If x is adjacent to exactly one of the three vertices in G¢, say to u, then
there must be two vertices z1, 22 adjacent to u in G, As [z, z1] € E(G¢) and
[z, 22] & E(G®), we have that G°[{u, v, w, x, z1, 22}] = G4, a contradiction.

If x is adjacent to exactly two of the three vertices in G¢, say to u and
v, then there must be two vertices z1,ze adjacent to u in G, As [z, 2] &
E(G°) and [z, 2] ¢ E(G¢), we have that G°[{u,v,w,z,z21,22}] = G5, a
contradiction.

Finally, if x is adjacent to the three vertices in G¢, then there must be
other four vertices 21, 29, 23, 24 in G. Indeed: G is hamiltonian and the ver-
tices in the hamiltonian cycle can not be repeated vertices. Recall that each
one of these four vertices 21, 22, 23, 24 is a connected component of (G—{z})°.
As x is not adjacent in G° to any of them, G[{z, u, v, w, 21, 29, 23, 24 }] = G7,
another contradiction.

The proof of Theorem 3.2 is complete. [
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Remark 3.3. In Theorem 3.2, the hypothesis that G does not have induced
subgraph isomorphic to G; can be dispensed, because it is implied by the
assumption that G is triangulated.

4. Necessary Conditions for a Graph to be of
Class F

Theorem 4.1. If the graph G has an induced subdigraph G’ such that G' ¢
E, then G ¢ E.

Proof. Let G’ be an induced sugraph of G, and suppose that G’ ¢ E. We
proceed by showing an m-orientation-coloration D of the graph G without
C35 or T3, whose closure (D) is not a K P-digraph.

Since G’ ¢ E, there is an m-orientation-coloration D’ of G’ that it has
not C3 or T3 and such that {(D’) is not a K P-digraph.

We choose a colour that appears in D’, say black. We define D to be
an m-orientation-coloration of G such that:

(i) DV(G)] =D".
(ii) f z € V(D) \ V(D'), y € V(G') and they are adjacent in G, let (x,y)
€ A(D) be black.

(iii) All other arcs be black and in any direction.

First we note that D is an m-orientation-coloration of G without Cs or T3,
because D’ does not have C3 or T3, and we have added only black arcs.
Now notice that ((D)[V(G")] = {(D’), as no arc of D has its initial vertex
in V(D’) and its final vertex in V(D) \ V(D') and no monochromatic paths
are created among the vertices of D’. It follows that (D) is not a KP-
digraph because it has an induced subdigraph which is not a K P-digraph.
We conclude that G € F. ]

Theorem 4.2. If G is a cycle of order higher than 3, then G € E.

Proof. We proceed by showing a 3-orientation-coloration D without C3 or
T3 of G such that {(D) is not a K P-digraph.

Let the arcs of D induce a directed cycle . Take three consecutive
vertices in order x,y, z of 7. Let (z,y) € A(D) be blue (y, z) € A(D) be red
and (z,7,x) be a monochromatic green path.

It is readily seen that D does not have C3 or T3, ker(¢(D)[{z,y, z}]) = 0,
and ¢(D) is not a K P-digraph. |
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Theorem 4.3. If G € E, then G is triangulated.

Proof. By Theorem 4.1 and 4.2, G does not have induced cycles of order
higher than 3. [

Theorem 4.4. Let G be a graph of class E. If its complement G¢ has two
nonadjacent edges h,k € E(G¢), then there is an edge ¢ € E(G€) such that
¢ is adjacent in G€ to both h and k.

Proof. We proceed by contradiction. Assume h and k have no common
adjacent edge in G°.

As h and k are not adjacent, they have four different vertices. The
subgraph of G induced by these four vertices is isomorphic to Cy. G is not
triangulated, contradicting Theorem 4.3. [

Theorem 4.5. If G is a graph of class E, then its complement G¢ has at
most one nontrivial component.

Proof. We proceed by contradiction. Assume G¢ has two nontrivial com-
ponents.

Taking one edge of each one of the two nontrivial components, G¢ has
two nonadjacent edges which do not have any common adjacent edge in
G¢ (otherwise they would be in the same component in G¢), contradicting
Theorem 4.4. [

Theorem 4.6. If G is a graph of class E, then its complement G¢ does not
have induced subgraphs isomorphic to G1,Gs, Gs, G4, G5, Gg, G7.

Proof. We proceed by contradiction. If G has induced subgraph G;,

i € {1,2,...,6,7}, then G has induced subgraph G¢. But D; is a 3-
orientation-coloration of G¢ without C3 or T3, and ((D;)[{z,y, z}] does not
have a kernel. ((D;) is not kernel-perfect, and G¢ is not of class E, and by
Theorem 4.1, G is not of class F, contradicting the hypothesis (see Figure
i,ie{l1,2,...,6,7}). n

Theorem 4.7. If G is a hamiltonian graph of class E, then its complement
has at most one nontrivial component, and this component is K3 or a star.

Proof. By Theorem 4.6, G¢ does not have induced subgraphs isomorphic
to G1,G9,G3,Gy, G5, G, G7. By Theorem 4.3, G is triangulated, so by
Theorem 3.2 the complement of G has at most one nontrivial component,
and it is K3 or a star. ]



86 H. GALEANA-SANCHEZ AND J.J. GARCIA-RUVALCABA

Remark 4.8. If, in Theorem 4.7, we ask only that G be of class F, and allow
G to be not hamiltonian, the result does not hold, as shows the following

example (see Figure 8).
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