ON GRAPHS ALL OF WHOSE $\left\{C_{3}, T_{3}\right\}$-FREE ARC COLORATIONS ARE KERNEL-PERFECT

Hortensia Galeana-SÁnchez

AND
José De Jesús García-Ruvalcaba
Instituto de Matemáticas, UNAM
Universidad Nacional Autónoma de México
Ciudad Universitaria
04510, México, D.F., Mexico

Abstract

A digraph D is called a kernel-perfect digraph or $K P$-digraph when every induced subdigraph of D has a kernel.

We call the digraph D an m-coloured digraph if the arcs of D are coloured with m distinct colours. A path P is monochromatic in D if all of its arcs are coloured alike in D. The closure of D, denoted by $\zeta(D)$, is the m-coloured digraph defined as follows: $V(\zeta(D))=V(D)$, and $A(\zeta(D))=\underset{i}{\cup}\{(u, v)$ with colour i : there exists a monochromatic path of colour i from the vertex u to the vertex v contained in $D\}$.

We will denoted by T_{3} and C_{3}, the transitive tournament of order 3 and the 3 -directed-cycle respectively; both of whose arcs are coloured with three different colours.

Let G be a simple graph. By an m-orientation-coloration of G we mean an m-coloured digraph which is an asymmetric orientation of G.

By the class E we mean the set of all the simple graphs G that for any m-orientation-coloration D without C_{3} or T_{3}, we have that $\zeta(D)$ is a $K P$-digraph.

In this paper we prove that if G is a hamiltonian graph of class E, then its complement has at most one nontrivial component, and this component is K_{3} or a star.

Keywords: kernel, kernel-perfect digraph, m-coloured digraph.
2000 Mathematics Subject Classification: 05C20.

1. Introduction

Let D be a digraph; $V(D)$ and $A(D)$ will denote the sets of vertices and arcs of D, respectively. An arc $(u, v) \in A(D)$ is called asymmetrical if $(v, u) \notin$ $A(D)$. An arc $(u, v) \in A(D)$ is called symmetrical if $(v, u) \in A(D)$. The asymmetrical part of D, denoted by asym (D), is the spanning subdigraph of D whose arcs are the asymmetrical arcs of D. The symmetrical part of D, denoted by $\operatorname{sym}(D)$, is the spanning subdigraph of D whose arcs are the symmetrical arcs of D. A digraph D is called asymmetrical if $D=\operatorname{asym}(D)$.

If S is a nonempty subset of $V(D)$, then the subdigraph $D[S]$ induced by S is the digraph having vertex set S and whose arcs are all those arcs of D joining vertices of S.

A set $I \subseteq V(D)$ is independent in D if $A(D[I])=\emptyset$. A set $I \subseteq V(D)$ is said to be absorbent in D if for each vertex $x \in V(D) \backslash I$, there exists a vertex $y \in I$ such that $(x, y) \in A(D)$. A set $I \subseteq V(D)$ will be called a kernel of D if I is an independent and absorbent set in D.

The set of all the independent (absorbent) sets in D is denoted by ind (D) $(\operatorname{abs}(D))$.

The set of all the kernels of D is denoted by $\operatorname{ker}(D)$, i.e., $\operatorname{ker}(D)=$ $\operatorname{ind}(D) \cap \operatorname{abs}(D)$.

A digraph D is called a critical-kernel-imperfect digraph or CKI-digraph when D has no kernel but every proper induced subdigraph of D has a kernel; i.e., $\operatorname{ker}(D)=\emptyset$ and for every nonempty set of vertices $I \subseteq V(D), I \neq V(D)$ implies $\operatorname{ker}(D[I]) \neq \emptyset$.

A digraph D is called complete if for every two different vertices $u, v \in$ $V(D),(u, v) \in A(D)$ or $(v, u) \in A(D)$. A tournament is a complete asymmetrical digraph.

If γ is a directed cycle and $x, y \in V(\gamma)$, then we denote by (x, γ, y) the directed path from x to y contained in γ.

We call the digraph D an m-coloured digraph if the arcs of D are coloured with m distinct colours.

By an orientation of a graph G we mean a digraph D such that $V(D)=$ $V(G)$ and in which for every edge $[u, v] \in E(G)$ we have that at least one of the $\operatorname{arcs}(u, v)$ or (v, u) is in $A(D)$. An asymmetrical orientation of G is an orientation of G which is also an asymmetrical digraph.

If γ is a cycle of G, then a chord of γ is an edge [u, v] between two nonconsecutive vertices of γ. The length of the chord $[u, v]$ in the cycle γ is the length of the shortest undirected path from u to v contained in γ. A graph G is triangulated if every cycle of G has at least one chord.

A star with m peaks is a simple graph with $m+1$ vertices in which there is a vertex, called the center of the star, adjacent to all the other vertices of the star (called peaks) and with no adjacencies among the peaks.

For a simple graph G, we define its complement G^{c}, as the following simple graph.
$V\left(G^{c}\right)=V(G)$ and $[u, v] \in E\left(G^{c}\right)$ if and only if $[u, v] \notin E(G)$.

2. Notation

Let G be a simple graph. We recall that by an m-orientation-coloration of G we mean an m-coloured digraph which is an asymmetrical orientation of G.

By the class E we mean the simple graphs that under any orientation coloration D without C_{3} or T_{3}, we have that $\zeta(D)$ is a $K P$-digraph.

Our main task is to give a characterization of the class E. It has been proved before that complete graphs and graphs which miss an edge are of class E.

Theorem 2.1 [2]. Complete graphs are of the class E.
Theorem 2.2 [1]. Complete graphs that miss an edge are of class E.
We can consider only connected graphs. A directed graph is kernel-perfect if and only if every one of its connected components are kernel-perfect, so a graph G is of class E if and only if every one of its connected components are of class E.

3. A Special Class of Triangulated Hamiltonian Graphs

Theorem 3.1. Let G be a graph with more than 3 vertices and γ a hamiltonian cycle of G. If G is triangulated, then there is a vertex, say x, such that γ has a chord between two neighbours of x in γ.

Proof. As G is triangulated and γ is a cycle of order higher than three, γ must have a chord. Let $[u, v]$ be the shortest chord of γ. The length of the chord $[u, v]$ of the cycle γ must be two: otherwise there would be a cycle of order higher than three without chords, contradicting that G is triangulated. As $[u, v]$ is of length two, it is a chord between the two neighbours in γ of some vertex x.

Theorem 3.2. Let G be a triangulated hamiltonian graph. If G^{c} does not have induced subgraphs isomorphic to $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}, G_{6}, G_{7}$, then G^{c} has at most one nontrivial component, and it is K_{3} or a star.

Proof. We proceed by induction on the number of vertices of G.
For graphs up to three vertices the result is clear.
Let G be a triangulated hamiltonian graph with more than three vertices.

Assume the result is valid for all triangulated hamiltonian graphs with the number of vertices less than $|V(G)|$.

Let γ be a hamiltonian cycle of G. By Theorem 3.1, there is a vertex $x \in V(G)$ such that its two neighbours in γ are adjacent in G.

Let $\gamma=\left(x, v_{1}, v_{2}, \ldots, v_{n}, x\right)$ and $\delta=\left(v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right)$. Note that δ is a hamiltonian cycle of $G-\{x\}$, so $G-\{x\}$ is a triangulated hamiltonian graph whose complement $(G-\{x\})^{c}$ does not have induced subgraphs isomorphic to $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}, G_{6}, G_{7}$ and with less vertices than G. By the induction hypothesis, $(G-\{x\})^{c}$ has at most one nontrivial component, and this component is K_{3} or a star.

We proceed by cases, considering $(G-\{x\})^{c}$. In each case we reach the conclusion of the theorem or a contradiction.

Case 1. $(G-\{x\})^{c}$ has only trivial components.
In this case, it is clear that G^{c} has at most one nontrivial component, and it is a star centered at x.

Case 2. $(G-\{x\})^{c}$ has one nontrivial component, and it is K_{2} with $[u, v]$ as an edge.
We proceed by considering two subcases.
Case 2.1. For every vertex $y \in V(G) \backslash\{x, u, v\},[x, y] \notin E\left(G^{c}\right)$.
Clearly $E\left(G^{c}\right) \subseteq\{[u, v],[v, x],[x, u]\}$. It follows that G^{c} has one nontrivial component, and it is K_{3} or a star with one or two peaks.

Case 2.2. There is a vertex $y \in V(G) \backslash\{x, u, v\}$, such that $[x, y] \in E\left(G^{c}\right)$. As $[x, y]$ and $[u, v]$ are two nonadjacent edges of G^{c}, and G^{c} does not have an induced G_{1}, we have that they should have a common adjacent edge in G^{c}. The vertex x must be adjacent in G^{c} to at least one of the two vertices u, v; as $G^{c}[\{y\}]$ is a connected component of $(G-\{x\})^{c}$.

If x is adjacent in G^{c} to exactly one of two vertices u, v we can assume, without loss of generality, that $[x, u] \in E\left(G^{c}\right),[x, v] \notin E(G)$. Since G is
hamiltonian, x must have at least two neighbours in G. As $[x, u] \in E\left(G^{c}\right)$ and $[x, y] \in E\left(G^{c}\right)$, there must be at least another vertex $z \in V(G)$ (besides $v)$ such that $[x, z] \in E(G)$. Notice that $G^{c}[\{z\}]$ is a connected component of $(G-\{x\})^{c}$. But now $G^{c}[\{u, v, x, y, z, w\}] \cong G_{2}$, contradicting the hypothesis.

If x is adjacent to both u, v in G^{c}, then, as G is hamiltonian, x must have at least two neighbours in G. As $\{[x, u],[x, v],[x, y]\} \subseteq E\left(G^{c}\right)$, there must be at least another two vertices $z, w \in V(G)$ such that $[x, z] \in E(G)$ and $[x, w] \in E(G)$. Recall that $G^{c}[\{z\}]$ and $G^{c}[\{w\}]$ are different connected components of $(G-\{x\})^{c}$. But now $G^{c}[\{u, v, x, y, z\}] \cong G_{4}$, contradicting the hypothesis.

Case 3. $(G-\{x\})^{c}$ has one nontrivial component, and it is an star with m peaks, $m>1$.
Let v be the center of the star, and $u_{1}, u_{2}, \ldots, u_{m}$ be its peaks.
We have again two cases, and proceed to consider each one.
Case 3.1. x is adjacent to v in G^{c}, i.e., $[x, v] \in E\left(G^{c}\right)$.
Here we have to consider three cases.
Case 3.1.1. x is adjacent in G^{c} to every peak of the star.
As G is hamiltonian, there are at least two vertices, say y and z, adjacent to x in G.

Clearly, y is not adjacent to v in G^{c} or to any peak to the star, as $G^{c}[\{y\}]$ is a connected component of $(G-\{x\})^{c}$. Similarly, z is not adjacent to v in G^{c} or to any peak of the star. Recaling that the star has at least two peaks. We have $G^{c}\left[\left\{x, y, z, v, u_{1}, u_{2}\right\}\right] \cong G_{5}$. This contradicts the original hypothesis.

Case 3.1.2. There is exactly one peak of the star, say u_{j}, which is not adjacent to x in G^{c}.

Since the star has at least two peaks, there is at least one peak, say u_{i}, which is adjacent to x in G^{c}. Moreover, there is a vertex, say $y\left(y \neq u_{j}\right)$, which is adjacent to x in G (because G is hamiltonian) and, there is another vertex, namely $z(z \neq y)$, adjacent to v in G.

If $[x, z] \in E\left(G^{c}\right)$, then $G^{c}\left[\left\{x, y, z, v, u_{j}\right\}\right] \cong G_{2}$, a contradiction.
If $[x, z] \notin E\left(G^{c}\right)$, then $G^{c}\left[\left\{x, y, z, v, u_{j}, u_{i}\right\}\right] \cong G_{4}$, another contradiction.

Case 3.1.3. There are at least two peaks of the star, namely u_{j} and u_{i}, which are not adjacent to x in G^{c}.

There are at least two vertices, say z_{1} and z_{2}, adjacent to v in G, because G is hamiltonian.

Now we consider three possible cases.
Case 3.1.3.1. x is not adjacent in G^{c} to any vertex of $V(G) \backslash\left\{x, v, u_{1}, \ldots, u_{m}\right\}$.

If x is not adjacent in G^{c} to any peak of the star, then G^{c} has only one nontrivial component, and it is a star with $m+1$ peaks.

If x is adjacent to some peak of the star, say u_{k}, then
$G^{c}\left[\left\{x, v, u_{j}, u_{k}, z_{1}, z_{2}\right\}\right] \cong G_{4}$, a contradiction with the hypothesis of the theorem.

Case 3.1.3.2. There is a vertex of $V(G) \backslash\left\{x, v, u_{1}, \ldots, u_{m}\right\}$ which is adjacent to x in G^{c}, and there is another vertex of $V(G) \backslash\left\{x, v, u_{1}, \ldots, u_{m}\right\}$ which is not adjacent to x in G^{c}.

Assume, without loss of generality, that $\left[x, z_{1}\right] \in E\left(G^{c}\right)$ and that $\left[x, z_{2}\right] \notin$ $E\left(G^{c}\right)$. We have that $G^{c}\left[\left\{x, v, u_{j}, z_{1}, z_{2}\right\}\right] \cong G_{2}$, a contradiction.

Case 3.1.3.3. x is adjacent in G^{c} to every vertex of
$V(G) \backslash\left\{x, v, u_{1}, \ldots, u_{m}\right\}$.
Now, $G^{c}\left[\left\{x, v, u_{i}, u_{j}, z_{1}, z_{2}\right\}\right] \cong G_{6}$, another contradiction.
Case 3.2. x is not adjacent to v in G^{c}, i.e., $[x, v] \notin E\left(G^{c}\right)$.
We consider two possible cases.
Case 3.2.1. There is a vertex $y \in V(G) \backslash\left\{x, v, u_{1}, u_{m}\right\}$ such that $[x, y] \in$ $E\left(G^{c}\right)$.

We have that x must be adjacent in G^{c} to every peak of the star. Indeed: G^{c} does not have induced subgraph isomorphic to G_{1}, by the condition in (3.2) that $[x, v] \notin E\left(G^{c}\right)$, and $G^{c}[\{y\}]$ is connected component of $(G-\{x\})^{c}$. Further, there is another vertex, say $z(z \neq v)$, which is adjacent to x in G, because G is hamiltonian. As $G^{c}[\{z\}]$ also is a connected component of $(G-\{x\})^{c}$, we have that $G^{c}\left[\left\{x, y, v, u_{1}, z\right\}\right] \cong G_{2}$, another contradiction with the hypothesis.

Case 3.2.2. For every vertex $y \in V(G) \backslash\left\{x, v, u_{1}, \ldots, u_{m}\right\}$ we have $[x, y] \notin E\left(G^{c}\right)$.

We state that there is a vertex z, besides x, which is adjacent to v in G.
If x is not adjacent in G^{c} to any peak of the star, then G^{c} has exactly one nontrivial component, and it is a star with m peaks.

If there are two peaks of the star, u_{i} and u_{j}, such that $\left[x, u_{i}\right] \in E\left(G^{c}\right)$ and $\left[x, u_{j}\right] \notin E\left(G^{c}\right)$, then $G^{c}\left[\left\{x, v, z, u_{i}, u_{j}\right\}\right] \cong G_{2}$, a contradiction.

Finally, if x is adjacent in G^{c} to every peak of the star, then there must be one more vertex $w(w \neq v, w \neq z)$ adjacent to at least x or v one of the vertices in G, because the hamiltonian cycle γ can not contain three arcs $[v, x],[x, z]$ and $[z, v]$. Now if w is adjacent to both we have $G^{c}\left[\left\{x, v, u_{1}, u_{2}, z, w\right\}\right] \cong G_{3}$, one contradiction. If w is adjacent to exactly one of the vertices x, v in G, say $w x \in E(G)$ and $w v \in E\left(G^{c}\right)$, then $G^{c}\left[\left\{w, v, u_{1}, x, z\right\}\right] \cong G_{2}$, a contradiction.

Case 4. $(G-\{x\})^{c}$ has one nontrivial component and it is K_{3}. Let $G^{c}[\{u, v, w\}]$ be the unique nontrivial component of $(G-\{x\})^{c}$.

Case 4.1. There is a vertex $y \in V(G) \backslash\{x, u, v, w\}$ such that $[x, y] \in$ $E\left(G^{c}\right)$.

We have that x must be adjacent in G^{c} to at least two of the three vertices u, v, w, because G^{c} does not have induced subgraph isomorphic to G_{1}.

If x is adjacent to exactly two of the three vertices in G^{c}, say u and v, then it must be another vertex z, besides w, adjacent to x in G. But now we have $G^{c}[\{v, w, x, y, z]\} \cong G_{2}$, a contradiction.

If x is adjacent to the three vertices u, v, w in G^{c}, then there are two vertices, say z_{1} and z_{2}, adjacent to x in G. We have that $G^{c}\left[\left\{v, w, x, y, z_{1}, z_{2}\right\}\right] \cong$ G_{4}, another contradiction. We discard this case (4.1).

Case 4.2. For every vertex $y \in V(G) \backslash\{x, u, v, w\}$ we have $[x, y] \notin E G\left({ }^{c}\right)$. If x is not adjacent to any of the three vertices u, v, w in G^{c}, then G^{c} has only one nontrivial component, and it is K_{3}.

If x is adjacent to exactly one of the three vertices in G^{c}, say to u, then there must be two vertices z_{1}, z_{2} adjacent to u in G, As $\left[x, z_{1}\right] \notin E\left(G^{c}\right)$ and $\left[x, z_{2}\right] \notin E\left(G^{c}\right)$, we have that $G^{c}\left[\left\{u, v, w, x, z_{1}, z_{2}\right\}\right] \cong G_{4}$, a contradiction.

If x is adjacent to exactly two of the three vertices in G^{c}, say to u and v, then there must be two vertices z_{1}, z_{2} adjacent to u in G, As $\left[x, z_{1}\right] \notin$ $E\left(G^{c}\right)$ and $\left[x, z_{2}\right] \notin E\left(G^{c}\right)$, we have that $G^{c}\left[\left\{u, v, w, x, z_{1}, z_{2}\right\}\right] \cong G_{5}$, a contradiction.

Finally, if x is adjacent to the three vertices in G^{c}, then there must be other four vertices $z_{1}, z_{2}, z_{3}, z_{4}$ in G. Indeed: G is hamiltonian and the vertices in the hamiltonian cycle can not be repeated vertices. Recall that each one of these four vertices $z_{1}, z_{2}, z_{3}, z_{4}$ is a connected component of $(G-\{x\})^{c}$. As x is not adjacent in G^{c} to any of them, $G^{c}\left[\left\{x, u, v, w, z_{1}, z_{2}, z_{3}, z_{4}\right\}\right] \cong G_{7}$, another contradiction.

The proof of Theorem 3.2 is complete.

Remark 3.3. In Theorem 3.2, the hypothesis that G^{c} does not have induced subgraph isomorphic to G_{1} can be dispensed, because it is implied by the assumption that G is triangulated.

4. Necessary Conditions for a Graph to be of Class E

Theorem 4.1. If the graph G has an induced subdigraph G^{\prime} such that $G^{\prime} \notin$ E, then $G \notin E$.

Proof. Let G^{\prime} be an induced sugraph of G, and suppose that $G^{\prime} \notin E$. We proceed by showing an m-orientation-coloration D of the graph G without C_{3} or T_{3}, whose closure $\zeta(D)$ is not a $K P$-digraph.

Since $G^{\prime} \notin E$, there is an m-orientation-coloration D^{\prime} of G^{\prime} that it has not C_{3} or T_{3} and such that $\zeta\left(D^{\prime}\right)$ is not a $K P$-digraph.

We choose a colour that appears in D^{\prime}, say black. We define D to be an m-orientation-coloration of G such that:
(i) $D\left[V\left(G^{\prime}\right)\right]=D^{\prime}$.
(ii) If $x \in V(D) \backslash V\left(D^{\prime}\right), y \in V\left(G^{\prime}\right)$ and they are adjacent in G, let (x, y) $\in A(D)$ be black.
(iii) All other arcs be black and in any direction.

First we note that D is an m-orientation-coloration of G without C_{3} or T_{3}, because D^{\prime} does not have C_{3} or T_{3}, and we have added only black arcs. Now notice that $\zeta(D)\left[V\left(G^{\prime}\right)\right]=\zeta\left(D^{\prime}\right)$, as no arc of D has its initial vertex in $V\left(D^{\prime}\right)$ and its final vertex in $V(D) \backslash V\left(D^{\prime}\right)$ and no monochromatic paths are created among the vertices of D^{\prime}. It follows that $\zeta(D)$ is not a $K P$ digraph because it has an induced subdigraph which is not a $K P$-digraph. We conclude that $G \notin E$.

Theorem 4.2. If G is a cycle of order higher than 3 , then $G \notin E$.
Proof. We proceed by showing a 3 -orientation-coloration D without C_{3} or T_{3} of G such that $\zeta(D)$ is not a $K P$-digraph.

Let the arcs of D induce a directed cycle γ. Take three consecutive vertices in order x, y, z of γ. Let $(x, y) \in A(D)$ be blue $(y, z) \in A(D)$ be red and (z, γ, x) be a monochromatic green path.

It is readily seen that D does not have C_{3} or $T_{3}, \operatorname{ker}(\zeta(D)[\{x, y, z\}])=\emptyset$, and $\zeta(D)$ is not a $K P$-digraph.

Theorem 4.3. If $G \in E$, then G is triangulated.
Proof. By Theorem 4.1 and 4.2, G does not have induced cycles of order higher than 3.

Theorem 4.4. Let G be a graph of class E. If its complement G^{c} has two nonadjacent edges $h, k \in E\left(G^{c}\right)$, then there is an edge $\ell \in E\left(G^{c}\right)$ such that ℓ is adjacent in G^{c} to both h and k.

Proof. We proceed by contradiction. Assume h and k have no common adjacent edge in G^{c}.

As h and k are not adjacent, they have four different vertices. The subgraph of G induced by these four vertices is isomorphic to C_{4}. G is not triangulated, contradicting Theorem 4.3.

Theorem 4.5. If G is a graph of class E, then its complement G^{c} has at most one nontrivial component.

Proof. We proceed by contradiction. Assume G^{c} has two nontrivial components.

Taking one edge of each one of the two nontrivial components, G^{c} has two nonadjacent edges which do not have any common adjacent edge in G^{c} (otherwise they would be in the same component in G^{c}), contradicting Theorem 4.4.

Theorem 4.6. If G is a graph of class E, then its complement G^{c} does not have induced subgraphs isomorphic to $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}, G_{6}, G_{7}$.

Proof. We proceed by contradiction. If G^{c} has induced subgraph G_{i}, $i \in\{1,2, \ldots, 6,7\}$, then G has induced subgraph G_{i}^{c}. But D_{i} is a 3-orientation-coloration of G_{i}^{c} without C_{3} or T_{3}, and $\zeta\left(D_{i}\right)[\{x, y, z\}]$ does not have a kernel. $\zeta\left(D_{i}\right)$ is not kernel-perfect, and G_{i}^{c} is not of class E, and by Theorem 4.1, G is not of class E, contradicting the hypothesis (see Figure $i, i \in\{1,2, \ldots, 6,7\})$.

Theorem 4.7. If G is a hamiltonian graph of class E, then its complement has at most one nontrivial component, and this component is K_{3} or a star.

Proof. By Theorem 4.6, G^{c} does not have induced subgraphs isomorphic to $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}, G_{6}, G_{7}$. By Theorem 4.3, G is triangulated, so by Theorem 3.2 the complement of G has at most one nontrivial component, and it is K_{3} or a star.

Remark 4.8. If, in Theorem 4.7, we ask only that G be of class E, and allow G to be not hamiltonian, the result does not hold, as shows the following example (see Figure 8).

Figure 1
G_{2}
 ○

D_{2}

Figure 2

Figure 3

On Graphs All of Whose $\left\{C_{3}, T_{3}\right\}$-Free Arc Colorations ...

Figure 4

Figure 5

On Graphs All of Whose $\left\{C_{3}, T_{3}\right\}$-Free Arc Colorations ... 91

Figure 6
G_{7}

G_{7}^{c}

D_{7}

Figure 7

Figure 8

Acknowledgement

The authors wish to thank the referee for many suggestions which improved the final form of this paper.

References

[1] H. Galeana-Sánchez and J.J. García, Kernels in the closure of coloured digraphs, submitted.
[2] Shen Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory (B) 45 (1988) 108-111.

