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04510, México, D.F., Mexico

Abstract

A digraph D is called a kernel-perfect digraph or KP -digraph when
every induced subdigraph of D has a kernel.

We call the digraph D an m-coloured digraph if the arcs of D are
coloured with m distinct colours. A path P is monochromatic in D if
all of its arcs are coloured alike in D. The closure of D, denoted by
ζ(D), is the m-coloured digraph defined as follows:

V (ζ(D)) = V (D), and
A (ζ(D)) = ∪

i
{(u, v) with colour i: there exists a monochromatic

path of colour i from the vertex u to the vertex v contained in D}.
We will denoted by T3 and C3, the transitive tournament of order 3

and the 3-directed-cycle respectively; both of whose arcs are coloured
with three different colours.

Let G be a simple graph. By an m-orientation-coloration of G we
mean an m-coloured digraph which is an asymmetric orientation of G.

By the class E we mean the set of all the simple graphs G that for
any m-orientation-coloration D without C3 or T3, we have that ζ(D)
is a KP -digraph.

In this paper we prove that if G is a hamiltonian graph of class E,
then its complement has at most one nontrivial component, and this
component is K3 or a star.
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1. Introduction

Let D be a digraph; V (D) and A(D) will denote the sets of vertices and arcs
of D, respectively. An arc (u, v) ∈ A(D) is called asymmetrical if (v, u) 6∈
A(D). An arc (u, v) ∈ A(D) is called symmetrical if (v, u) ∈ A(D). The
asymmetrical part of D, denoted by asym(D), is the spanning subdigraph
of D whose arcs are the asymmetrical arcs of D. The symmetrical part of
D, denoted by sym(D), is the spanning subdigraph of D whose arcs are the
symmetrical arcs of D. A digraph D is called asymmetrical if D = asym(D).

If S is a nonempty subset of V (D), then the subdigraph D[S] induced
by S is the digraph having vertex set S and whose arcs are all those arcs of
D joining vertices of S.

A set I ⊆ V (D) is independent in D if A (D[I]) = ∅. A set I ⊆ V (D)
is said to be absorbent in D if for each vertex x ∈ V (D) \ I, there exists a
vertex y ∈ I such that(x, y) ∈ A(D). A set I ⊆ V (D) will be called a kernel
of D if I is an independent and absorbent set in D.

The set of all the independent (absorbent) sets in D is denoted by ind(D)
(abs(D)).

The set of all the kernels of D is denoted by ker(D), i.e., ker(D) =
ind(D) ∩ abs(D).

A digraph D is called a critical-kernel-imperfect digraph or CKI-digraph
when D has no kernel but every proper induced subdigraph of D has a kernel;
i.e., ker(D) = ∅ and for every nonempty set of vertices I ⊆ V (D), I 6= V (D)
implies ker(D[I]) 6= ∅.

A digraph D is called complete if for every two different vertices u, v ∈
V (D), (u, v) ∈ A(D) or (v, u) ∈ A(D). A tournament is a complete asym-
metrical digraph.

If γ is a directed cycle and x, y ∈ V (γ), then we denote by (x, γ, y) the
directed path from x to y contained in γ.

We call the digraph D an m-coloured digraph if the arcs of D are coloured
with m distinct colours.

By an orientation of a graph G we mean a digraph D such that V (D) =
V (G) and in which for every edge [u, v] ∈ E(G) we have that at least one
of the arcs (u, , v) or (v, u) is in A(D). An asymmetrical orientation of G is
an orientation of G which is also an asymmetrical digraph.

If γ is a cycle of G, then a chord of γ is an edge [u, v] between two
nonconsecutive vertices of γ. The length of the chord [u, v] in the cycle γ
is the length of the shortest undirected path from u to v contained in γ.
A graph G is triangulated if every cycle of G has at least one chord.
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A star with m peaks is a simple graph with m + 1 vertices in which there is
a vertex, called the center of the star, adjacent to all the other vertices of
the star (called peaks) and with no adjacencies among the peaks.

For a simple graph G, we define its complement Gc, as the following
simple graph.
V (Gc) = V (G) and [u, v] ∈ E(Gc) if and only if [u, v] 6∈ E(G).

2. Notation

Let G be a simple graph. We recall that by an m-orientation-coloration of G
we mean an m-coloured digraph which is an asymmetrical orientation of G.

By the class E we mean the simple graphs that under any orientation
coloration D without C3 or T3, we have that ζ(D) is a KP -digraph.

Our main task is to give a characterization of the class E. It has been
proved before that complete graphs and graphs which miss an edge are of
class E.

Theorem 2.1 [2]. Complete graphs are of the class E.

Theorem 2.2 [1]. Complete graphs that miss an edge are of class E.

We can consider only connected graphs. A directed graph is kernel-perfect
if and only if every one of its connected components are kernel-perfect, so a
graph G is of class E if and only if every one of its connected components
are of class E.

3. A Special Class of Triangulated Hamiltonian
Graphs

Theorem 3.1. Let G be a graph with more than 3 vertices and γ a hamil-
tonian cycle of G. If G is triangulated, then there is a vertex, say x, such
that γ has a chord between two neighbours of x in γ.

Proof. As G is triangulated and γ is a cycle of order higher than three, γ
must have a chord. Let [u, v] be the shortest chord of γ. The length of the
chord [u, v] of the cycle γ must be two: otherwise there would be a cycle of
order higher than three without chords, contradicting that G is triangulated.
As [u, v] is of length two, it is a chord between the two neighbours in γ of
some vertex x.
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Theorem 3.2. Let G be a triangulated hamiltonian graph. If Gc does not
have induced subgraphs isomorphic to G1, G2, G3, G4, G5, G6, G7, then Gc

has at most one nontrivial component, and it is K3 or a star.

Proof. We proceed by induction on the number of vertices of G.
For graphs up to three vertices the result is clear.
Let G be a triangulated hamiltonian graph with more than three ver-

tices.
Assume the result is valid for all triangulated hamiltonian graphs with

the number of vertices less than |V (G)|.
Let γ be a hamiltonian cycle of G. By Theorem 3.1, there is a vertex

x ∈ V (G) such that its two neighbours in γ are adjacent in G.
Let γ = (x, v1, v2, . . . , vn, x) and δ = (v1, v2, . . . , vn, v1). Note that δ is a

hamiltonian cycle of G−{x}, so G−{x} is a triangulated hamiltonian graph
whose complement (G−{x})c does not have induced subgraphs isomorphic
to G1, G2, G3, G4, G5, G6, G7 and with less vertices than G. By the induction
hypothesis, (G − {x})c has at most one nontrivial component, and this
component is K3 or a star.

We proceed by cases, considering (G−{x})c. In each case we reach the
conclusion of the theorem or a contradiction.

Case 1. (G− {x})c has only trivial components.
In this case, it is clear that Gc has at most one nontrivial component, and
it is a star centered at x.

Case 2. (G − {x})c has one nontrivial component, and it is K2 with
[u, v] as an edge.
We proceed by considering two subcases.

Case 2.1. For every vertex y ∈ V (G) \ {x, u, v}, [x, y] 6∈ E(Gc).
Clearly E(Gc) ⊆ {[u, v], [v, x], [x, u]}. It follows that Gc has one nontrivial
component, and it is K3 or a star with one or two peaks.

Case 2.2. There is a vertex y ∈ V (G)\{x, u, v}, such that [x, y] ∈ E(Gc).
As [x, y] and [u, v] are two nonadjacent edges of Gc, and Gc does not have
an induced G1, we have that they should have a common adjacent edge in
Gc. The vertex x must be adjacent in Gc to at least one of the two vertices
u, v; as Gc[{y}] is a connected component of (G− {x})c.

If x is adjacent in Gc to exactly one of two vertices u, v we can assume,
without loss of generality, that [x, u] ∈ E(Gc), [x, v] 6∈ E(G). Since G is
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hamiltonian, x must have at least two neighbours in G. As [x, u] ∈ E(Gc)
and [x, y] ∈ E(Gc), there must be at least another vertex z ∈ V (G) (besides
v) such that [x, z] ∈ E(G). Notice that Gc[{z}] is a connected component of
(G−{x})c. But now Gc[{u, v, x, y, z, w}] ∼= G2, contradicting the hypothesis.

If x is adjacent to both u, v in Gc, then, as G is hamiltonian, x must
have at least two neighbours in G. As {[x, u], [x, v], [x, y]} ⊆ E(Gc), there
must be at least another two vertices z, w ∈ V (G) such that [x, z] ∈ E(G)
and [x,w] ∈ E(G). Recall that Gc[{z}] and Gc[{w}] are different connected
components of (G − {x})c. But now Gc[{u, v, x, y, z}] ∼= G4, contradicting
the hypothesis.

Case 3. (G−{x})c has one nontrivial component, and it is an star with
m peaks, m > 1.
Let v be the center of the star, and u1, u2, . . . , um be its peaks.
We have again two cases, and proceed to consider each one.

Case 3.1. x is adjacent to v in Gc, i.e., [x, v] ∈ E(Gc).
Here we have to consider three cases.

Case 3.1.1. x is adjacent in Gc to every peak of the star.
As G is hamiltonian, there are at least two vertices, say y and z, adjacent
to x in G.

Clearly, y is not adjacent to v in Gc or to any peak to the star, as
Gc[{y}] is a connected component of (G−{x})c. Similarly, z is not adjacent
to v in Gc or to any peak of the star. Recaling that the star has at least two
peaks. We have Gc[{x, y, z, v, u1, u2}] ∼= G5. This contradicts the original
hypothesis.

Case 3.1.2. There is exactly one peak of the star, say uj , which is not
adjacent to x in Gc.

Since the star has at least two peaks, there is at least one peak, say ui,
which is adjacent to x in Gc. Moreover, there is a vertex, say y (y 6= uj),
which is adjacent to x in G (because G is hamiltonian) and, there is another
vertex, namely z (z 6= y), adjacent to v in G.

If [x, z] ∈ E(Gc), then Gc[{x, y, z, v, uj}] ∼= G2, a contradiction.
If [x, z] 6∈ E(Gc), then Gc[{x, y, z, v, uj , ui}] ∼= G4, another contradic-

tion.

Case 3.1.3. There are at least two peaks of the star, namely uj and ui,
which are not adjacent to x in Gc.
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There are at least two vertices, say z1 and z2, adjacent to v in G, because
G is hamiltonian.

Now we consider three possible cases.

Case 3.1.3.1. x is not adjacent in Gc to any vertex of
V (G) \ {x, v, u1, . . . , um}.

If x is not adjacent in Gc to any peak of the star, then Gc has only one
nontrivial component, and it is a star with m + 1 peaks.

If x is adjacent to some peak of the star, say uk, then
Gc[{x, v, uj , uk, z1, z2}] ∼= G4, a contradiction with the hypothesis of the
theorem.

Case 3.1.3.2. There is a vertex of V (G) \ {x, v, u1, . . . , um} which is
adjacent to x in Gc, and there is another vertex of V (G) \ {x, v, u1, . . . , um}
which is not adjacent to x in Gc.

Assume, without loss of generality, that [x, z1] ∈ E(Gc) and that [x, z2] 6∈
E(Gc). We have that Gc[{x, v, uj , z1, z2}] ∼= G2, a contradiction.

Case 3.1.3.3. x is adjacent in Gc to every vertex of
V (G) \ {x, v, u1, . . . , um}.

Now, Gc[{x, v, ui, uj , z1, z2}] ∼= G6, another contradiction.

Case 3.2. x is not adjacent to v in Gc, i.e., [x, v] 6∈ E(Gc).
We consider two possible cases.

Case 3.2.1. There is a vertex y ∈ V (G)\{x, v, u1, um} such that [x, y] ∈
E(Gc).

We have that x must be adjacent in Gc to every peak of the star. Indeed:
Gc does not have induced subgraph isomorphic to G1, by the condition in
(3.2) that [x, v] 6∈ E(Gc), and Gc[{y}] is connected component of (G−{x})c.
Further, there is another vertex, say z (z 6= v), which is adjacent to x in
G, because G is hamiltonian. As Gc[{z}] also is a connected component
of (G − {x})c, we have that Gc[{x, y, v, u1, z}] ∼= G2, another contradiction
with the hypothesis.

Case 3.2.2. For every vertex y ∈ V (G) \ {x, v, u1, . . . , um} we have
[x, y] 6∈ E(Gc).

We state that there is a vertex z, besides x, which is adjacent to v in G.
If x is not adjacent in Gc to any peak of the star, then Gc has exactly

one nontrivial component, and it is a star with m peaks.
If there are two peaks of the star, ui and uj , such that [x, ui] ∈ E(Gc)

and [x, uj ] 6∈ E(Gc), then Gc[{x, v, z, ui, uj}] ∼= G2, a contradiction.
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Finally, if x is adjacent in Gc to every peak of the star, then there must be one
more vertex w (w 6= v, w 6= z) adjacent to at least x or v one of the vertices
in G, because the hamiltonian cycle γ can not contain three arcs [v, x], [x, z]
and [z, v]. Now if w is adjacent to both we have Gc[{x, v, u1, u2, z, w}] ∼= G3,
one contradiction. If w is adjacent to exactly one of the vertices x, v in G, say
wx ∈ E(G) and wv ∈ E(Gc), then Gc[{w, v, u1, x, z}] ∼= G2, a contradiction.

Case 4. (G− {x})c has one nontrivial component and it is K3.
Let Gc[{u, v, w}] be the unique nontrivial component of (G− {x})c.

Case 4.1. There is a vertex y ∈ V (G) \ {x, u, v, w} such that [x, y] ∈
E(Gc).

We have that x must be adjacent in Gc to at least two of the three ver-
tices u, v, w, because Gc does not have induced subgraph isomorphic to G1.

If x is adjacent to exactly two of the three vertices in Gc, say u and v,
then it must be another vertex z, besides w, adjacent to x in G. But now
we have Gc[{v, w, x, y, z]} ∼= G2, a contradiction.

If x is adjacent to the three vertices u, v, w in Gc, then there are two ver-
tices, say z1 and z2, adjacent to x in G. We have that Gc[{v, w, x, y, z1, z2}] ∼=
G4, another contradiction. We discard this case (4.1).

Case 4.2. For every vertex y ∈ V (G)\{x, u, v, w} we have [x, y] 6∈ EG(c).
If x is not adjacent to any of the three vertices u, v, w in Gc, then Gc

has only one nontrivial component, and it is K3.
If x is adjacent to exactly one of the three vertices in Gc, say to u, then

there must be two vertices z1, z2 adjacent to u in G, As [x, z1] 6∈ E(Gc) and
[x, z2] 6∈ E(Gc), we have that Gc[{u, v, w, x, z1, z2}] ∼= G4, a contradiction.

If x is adjacent to exactly two of the three vertices in Gc, say to u and
v, then there must be two vertices z1, z2 adjacent to u in G, As [x, z1] 6∈
E(Gc) and [x, z2] 6∈ E(Gc), we have that Gc[{u, v, w, x, z1, z2}] ∼= G5, a
contradiction.

Finally, if x is adjacent to the three vertices in Gc, then there must be
other four vertices z1, z2, z3, z4 in G. Indeed: G is hamiltonian and the ver-
tices in the hamiltonian cycle can not be repeated vertices. Recall that each
one of these four vertices z1, z2, z3, z4 is a connected component of (G−{x})c.
As x is not adjacent in Gc to any of them, Gc[{x, u, v, w, z1, z2, z3, z4}] ∼= G7,
another contradiction.

The proof of Theorem 3.2 is complete.
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Remark 3.3. In Theorem 3.2, the hypothesis that Gc does not have induced
subgraph isomorphic to G1 can be dispensed, because it is implied by the
assumption that G is triangulated.

4. Necessary Conditions for a Graph to be of
Class E

Theorem 4.1. If the graph G has an induced subdigraph G′ such that G′ 6∈
E, then G 6∈ E.

Proof. Let G′ be an induced sugraph of G, and suppose that G′ 6∈ E. We
proceed by showing an m-orientation-coloration D of the graph G without
C3 or T3, whose closure ζ(D) is not a KP -digraph.

Since G′ 6∈ E, there is an m-orientation-coloration D′ of G′ that it has
not C3 or T3 and such that ζ(D′) is not a KP -digraph.

We choose a colour that appears in D′, say black. We define D to be
an m-orientation-coloration of G such that:
(i) D[V (G′)] = D′.
(ii) If x ∈ V (D) \ V (D′), y ∈ V (G′) and they are adjacent in G, let (x, y)

∈ A(D) be black.
(iii) All other arcs be black and in any direction.

First we note that D is an m-orientation-coloration of G without C3 or T3,
because D′ does not have C3 or T3, and we have added only black arcs.
Now notice that ζ(D)[V (G′)] = ζ(D′), as no arc of D has its initial vertex
in V (D′) and its final vertex in V (D) \ V (D′) and no monochromatic paths
are created among the vertices of D′. It follows that ζ(D) is not a KP -
digraph because it has an induced subdigraph which is not a KP -digraph.
We conclude that G 6∈ E.

Theorem 4.2. If G is a cycle of order higher than 3, then G 6∈ E.

Proof. We proceed by showing a 3-orientation-coloration D without C3 or
T3 of G such that ζ(D) is not a KP -digraph.

Let the arcs of D induce a directed cycle γ. Take three consecutive
vertices in order x, y, z of γ. Let (x, y) ∈ A(D) be blue (y, z) ∈ A(D) be red
and (z, γ, x) be a monochromatic green path.

It is readily seen that D does not have C3 or T3, ker(ζ(D)[{x, y, z}]) = ∅,
and ζ(D) is not a KP -digraph.
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Theorem 4.3. If G ∈ E, then G is triangulated.

Proof. By Theorem 4.1 and 4.2, G does not have induced cycles of order
higher than 3.

Theorem 4.4. Let G be a graph of class E. If its complement Gc has two
nonadjacent edges h, k ∈ E(Gc), then there is an edge ` ∈ E(Gc) such that
` is adjacent in Gc to both h and k.

Proof. We proceed by contradiction. Assume h and k have no common
adjacent edge in Gc.

As h and k are not adjacent, they have four different vertices. The
subgraph of G induced by these four vertices is isomorphic to C4. G is not
triangulated, contradicting Theorem 4.3.

Theorem 4.5. If G is a graph of class E, then its complement Gc has at
most one nontrivial component.

Proof. We proceed by contradiction. Assume Gc has two nontrivial com-
ponents.

Taking one edge of each one of the two nontrivial components, Gc has
two nonadjacent edges which do not have any common adjacent edge in
Gc (otherwise they would be in the same component in Gc), contradicting
Theorem 4.4.

Theorem 4.6. If G is a graph of class E, then its complement Gc does not
have induced subgraphs isomorphic to G1, G2, G3, G4, G5, G6, G7.

Proof. We proceed by contradiction. If Gc has induced subgraph Gi,
i ∈ {1, 2, . . . , 6, 7}, then G has induced subgraph Gc

i . But Di is a 3-
orientation-coloration of Gc

i without C3 or T3, and ζ(Di)[{x, y, z}] does not
have a kernel. ζ(Di) is not kernel-perfect, and Gc

i is not of class E, and by
Theorem 4.1, G is not of class E, contradicting the hypothesis (see Figure
i, i ∈ {1, 2, . . . , 6, 7}).
Theorem 4.7. If G is a hamiltonian graph of class E, then its complement
has at most one nontrivial component, and this component is K3 or a star.

Proof. By Theorem 4.6, Gc does not have induced subgraphs isomorphic
to G1, G2, G3, G4, G5, G6, G7. By Theorem 4.3, G is triangulated, so by
Theorem 3.2 the complement of G has at most one nontrivial component,
and it is K3 or a star.
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Remark 4.8. If, in Theorem 4.7, we ask only that G be of class E, and allow
G to be not hamiltonian, the result does not hold, as shows the following
example (see Figure 8).

Figure 1



On Graphs All of Whose {C3, T3}-Free Arc Colorations ... 87

Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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