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Abstract
For each vertex v in a graph G, let there be associated a subgraph

Hv of G. The vertex v is said to dominate Hv as well as dominate
each vertex and edge of Hv. A set S of vertices of G is called a full
dominating set if every vertex of G is dominated by some vertex of S,
as is every edge of G. The minimum cardinality of a full dominating
set of G is its full domination number γFH(G). A full dominating
set of G of cardinality γFH(G) is called a γFH -set of G. We study
three types of full domination in graphs: full star domination, where
Hv is the maximum star centered at v, full closed domination, where
Hv is the subgraph induced by the closed neighborhood of v, and
full open domination, where Hv is the subgraph induced by the open
neighborhood of v.
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1. Introduction

A vertex v in a graph G is said to dominate itself and each of its neighbors.
A set S ⊆ V (G) is called a dominating set for G if every vertex of G is
dominated by some vertex of S. The minimum cardinality of a dominating
set is the domination number γ(G) of G. A dominating set of cardinality
γ(G) is a γ-set for G. There has been increased interest in recent years
in the study of domination in graphs. Indeed, the books [2, 3] by Haynes,
Hedetniemi, and Slater are devoted exclusively to this subject. In domina-
tion, a vertex dominates a set of vertices (according to some rule); while
in covering, a vertex covers the edges incident with it. We combine these
concepts to describe another variation of domination.

For a graph G, let H be a function that maps each vertex v of G into
a subgraph Hv of G. In this context, the vertex v is said to dominate Hv

as well as dominate each vertex and edge of Hv. A set S of vertices of G is
called a full dominating set if every vertex and every edge of G is dominated
by some vertex of S. For each full dominating set S of G and v ∈ V (G)−S,
the set S ∪ {v} is also a full dominating set. If G has no isolated vertices,
then we need only be concerned with each edge of G being dominated by
some vertex of S. The minimum cardinality of a full dominating set of G is
its full domination number (with respect to the function H) and is denoted
by γFH(G). A full dominating set of G of cardinality γFH(G) is called a
γFH-set of G. Certainly, γFH(G) is defined for a graph G if and only if V (G)
is a full dominating set for G.

In this paper we study three examples of full domination, namely full
star domination, where Hv is the maximum star Sv centered at v, full closed
domination, where Hv = 〈N [v]〉, the subgraph induced by the closed neigh-
borhood of v, and full open domination, where Hv = 〈N(v)〉, the subgraph
induced by the open neighborhood of v.

2. Full Star Domination in Graphs

We denote the full star domination number of a graph G by γFS(G). Cer-
tainly, γFS(G) is defined for every graph G. Indeed, if G is a graph without
isolated vertices, then γFS(G) = αo(G), the vertex covering number of G
(the minimum number of vertices that cover all edges of G). If G has I(G)
isolated vertices, then γFS(G) = αo(G)+I(G). Therefore, the full star dom-
ination number is not a new parameter; it only provides a new setting for
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an old one. A well-known theorem of Gallai [1] states that if G is a graph
of order n without isolated vertices, then αo(G) + βo(G) = n, where βo(G)
is the vertex independence number of G. This gives us the following.

Observation 2.1. For every graph G of order n without isolated vertices,

γFS(G) = n− βo(G).

Since every full star dominating set of a graph is also a dominating set, it
follows that γ(G) ≤ γFS(G). By Observation 2.1,

1 ≤ γ(G) ≤ γFS(G) ≤ n− 1

for every graph G of order n with at most n − 2 isolated vertices. We now
consider the realizablility of three integers a, b, n as the domination number,
full star domination number, and order, respectively, of some graph without
isolated vertices. Thus any such triple a, b, n described above must satisfy
1 ≤ a ≤ b ≤ n − 1. By Observation 2.1, however, γFS(G) = n − 1 if and
only if G = Kn, which implies that γ(G) = 1. Hence we may assume that
1 ≤ a ≤ b ≤ n− 2. On the other hand, the independent domination number
i(G) satisfies

γ(G) ≤ i(G) ≤ βo(G) = n− γFS(G).

This implies that γ(G)+γFS(G) ≤ n, thereby obtaining Ore’s [6] well-known
inequality γ(G) ≤ n/2 for graphs G of order n without isolated vertices. We
now present the desired realization result.

Proposition 2.2. For every triple a, b, n of integers with n ≥ 3, 1 ≤ a ≤
b ≤ n− 2, and a + b ≤ n, there exists a graph G of order n without isolated
vertices such that γ(G) = a and γFS(G) = b.

Proof. We consider two cases.

Case 1. a + b ≤ n − 1. Let Kb+1 be the complete graph with vertex
set {u1, u2, . . . , ub+1} and let G be the graph obtained from Kb+1 by adding
n− b−1 new vertices v1, v2, . . . , vn−b−1, the a−1 edges uivi (1 ≤ i ≤ a−1),
and the n− b− a edges uavi (a ≤ i ≤ n− b− 1). The graph G is shown in
Figure 1. Since {u1, u2, . . . , ua} is a γ-set and {u1, u2, . . . , ub} is a γFS-set
for G, it follows that γ(G) = a and γFS(G) = b.
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Figure 1. The graph G in Case 1

Case 2. a + b = n. Let K`1 ,K`2 , . . . , K`a be complete graphs, where
`i ≥ 2 for all i and

∑a
i=1 `i = n. Also, let vi1 and vi2 be distinct vertices in

K`i (1 ≤ i ≤ a). Then the graph G is obtained from the graph
⋃a

i=1 K`i by
adding the a− 1 edges vi1 vi+1,2 for 1 ≤ i ≤ a− 1. For a = 4, the graph G
is shown in Figure 2. Since {v11, v21, . . . , va1} is a γ-set, γ(G) = a. On the
other hand,

a⋃

i=1

V (K`i)− {v12, v22, . . . , va2}

is a γFS-set and so γFS(G) = n− a = b.

G :

v11 v21 v31 v41

K`1 K`2 K`3 K`4

v12 v22 v32 v42

Figure 2. The graph G in Case 2 when a = 4

3. Full Closed Domination in Graphs

Recall that a set S of vertices in a graph G is a full closed dominating set if
every vertex and edge of G belongs to 〈N [v]〉 for some v ∈ S. The minimum
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cardinality of a full closed dominating set is the full closed domination num-
ber γFC(G). A full closed dominating set of cardinality γFC(G) is referred
to as a γFC-set. This parameter was first introduced by Sampathkumar and
Neeralagi in [5], where it was called the neighborhood number of a graph,
and further studied by Jayaram, Kwong, and Straight in [4]. The following
two propositions appeared in [5].

Proposition 3.1. For every graph G, γ(G) ≤ γFC(G) ≤ γFS(G).

Proposition 3.2. If G is a triangle-free graph, then γFC(G) = γFS(G).

The converse of Proposition 3.2 is not true in general unless γFC(G) =
γFS(G) = 1, in which case G is a star. To see this, we recall that the
corona of a graph G with V (G) = {v1, v2, . . . , vn} is that graph of order
2n obtained from G by adding n new vertices u1, u2, . . . , un and the n new
edges uivi (1 ≤ i ≤ n). For n ≥ 3, let Gn denote the corona of Kn.
Define G2 as the graph obtained from G3 by deleting an end-vertex. Then
γFS(Gn) = γFC(Gn) = n for n ≥ 2 but certainly Gn is not triangle-free.

If γ(G) = 1, then γFC(G) = 1 while 1 ≤ γFS(G) ≤ n − 1. For each
integer k with 1 ≤ k ≤ n− 1, the graph H obtained by deleting the edges of
a complete subgraph of order n − k from Kn has γ(H) = γFC(H) = 1 and
γFS(H) = k. For γ(G) ≥ 2, the following realization result appeared in [4].

Theorem 3.3. For every triple a, b, c of integers with 2 ≤ a ≤ b ≤ c, there
exists a graph G with γ(G) = a, γFC(G) = b, and γFS(G) = c.

It is often of interest to know how the value of a graphical parameter is
affected when a small change is made in a graph. In this connection, we
now consider this question in the case of γFC(G) when an edge is deleted
from G. We show, in fact, that such an operation produces a graph whose
full closed domination number differs from that of the original graph by at
most 1.

Proposition 3.4. For each edge e of a graph G,

|γFC(G)− γFC(G− e)| ≤ 1.

Proof. Let e = uv be an edge of G and let S be a γFC-set of G− e. Then
S ∪ {u} is a full closed dominating set of G. So γFC(G) ≤ |S ∪ {u}| ≤
γFC(G− e) + 1. Next we show that γFC(G− e) ≤ γFC(G) + 1. We consider
two cases.
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Case 1. There exists a γFC-set S′ of G such that u, v /∈ S′. Then S′ is a
full closed dominating set of G− e as well. Therefore, γFC(G− e) ≤ |S′| =
γFC(G) < γFC(G) + 1.

Case 2. For every γFC-set S of G, at least one of u and v belongs to S.
Since S ∪ {u, v} is a full closed dominating set of G− e, it follows that

γFC(G− e) ≤ |S ∪ {u, v}| ≤ |S|+ 1 = γFC(G) + 1.

The bounds presented in Proposition 3.4 are sharp. To see this, we consider
the graph G of Figure 3, where γFC(G) = 3 and the vertices of a γFC-set in
G are indicated by solid circles. Observe that

γFC(G− e0) = γFC(G) = 3,
γFC(G− e1) = γFC(G)− 1 = 2,
γFC(G− e2) = γFC(G) + 1 = 4.

G :

e1

e2

e0

e3

Figure 3. How the full closed domination number is affected by the removal
of an edge

In view of Proposition 3.4, the edge set of a graph G can be partitioned into
the following subsets:

E0(G) = {e ∈ E(G) : γFC(G− e) = γFC(G)},
E−(G) = {e ∈ E(G) : γFC(G− e) = γFC(G)− 1},
E+(G) = {e ∈ E(G) : γFC(G− e) = γFC(G) + 1}.

The graph G of Figure 3 shows that it is possible for all three of these subsets
to be nonempty for a single graph G. We now present some facts concerning
elements in E−(G) and E+(G).
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Proposition 3.5. Let G be a graph containing an edge e = uv. Then
e ∈ E−(G) if and only if for every γFC-set S′ of G− e,

(a) neither u, v, nor any common neighbor of u and v belongs to S′, and
(b) for each w ∈ NG[u] ∩NG[v], the set S′ ∪ {w} is a γFC-set of G.

Proof. Suppose that e = uv ∈ E−(G). Let S′ be a γFC-set of G − e.
We first verify (a). Assume, to the contrary, that either u, v, or some
common neighbor of u and v belongs to S′. Thus S′ is also a full closed
dominating set of G. So γFC(G) ≤ |S′|, a contradiction. To verify (b),
let w ∈ NG[u] ∩ NG[v]. Then w /∈ S′ by (a). Let S = S′ ∪ {w}. Thus
|S| = |S′| + 1 = γFC(G). Since S is a full closed dominating set of G, it
follows that S is a γFC-set for G and so (b) holds.

For the converse, let S′ be a γFC-set of G− e, satisfying (a) and (b). It
then follows from (a) that S′∩ (NG[u] ∩NG[v]) = ∅. Let w ∈ NG[u]∩NG[v].
By (b) the set S = S′∪{w} is a γFC-set of G and so |S| = |S′|+1 = γFC(G).
Thus |S| = γFC(G)− 1, implying that e ∈ E−(G).

Proposition 3.6. Let G be a graph containing an edge e = uv. Then
e ∈ E+(G) if and only if for every γFC-set S of G,

(a) |S ∩ {u, v}| = 1, and
(b) S ∪ {u, v} is a γFC-set of G− e.

Proof. Let e = uv ∈ E+(G) and let S be a γFC-set of G. First we verify
(a). Assume, to the contrary, that |S ∩ {u, v}| 6= 1. If S ∩ {u, v} = ∅, then,
since e is dominated by some vertex in S, there is a vertex w ∈ S adjacent
to both u and v. However, then, S is a full closed dominating set for G− e,
contradicting the fact that e ∈ E+(G). On the other hand, if {u, v} ⊆ S,
then, once again, S is full closed dominating set for G− e, a contradiction.
Next we verify (b). Certainly, S ∪ {u, v} is a full closed dominating set of
G− e. By (a), however,

|S ∪ {u, v}| = |S|+ 1 = γFC(G) + 1 = γFC(G− e)

and so S ∪ {u, v} is a γFC-set for G− e.
For the converse, let S be a γFC-set of G that satisfies (a) and (b).

By (a), S contains exactly one of u and v. Let S′ = S ∪ {u, v} and so
|S′| = |S|+ 1. By (b), S′ is a γFC-set of G− e. Thus γFC(G− e) = |S′| =
|S|+ 1 = γFC(G) + 1, implying that e ∈ E+(G).
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If we were to delete two edges from G, one belonging to E−(G) and the
other belonging to E+(G), then the full closed domination number of the
resulting graph is the same as γFC(G).

Proposition 3.7. Let G be a graph. If e1 ∈ E−(G) and e2 ∈ E+(G), then

γFC(G− e1 − e2) = γFC(G)

Proof. Removing e1 first and then e2 shows that γFC(G − e1 − e2) ≤
γFC(G); while removing e2 first and then e1 produces the inequality γFC(G−
e2 − e1) ≥ γFC(G).

Accordingly, if the edges e1 and e2 of graph G of Figure 3 are deleted, then
γFC(G− e1 − e2) = 3 since γFC(G) = 3. Observe that the edges e1 and e2

of this graph are not adjacent. This is no coincidence as we next show.

Proposition 3.8. Let G be a graph. If e1 ∈ E−(G) and e2 ∈ E+(G), then
e1 and e2 are not adjacent in G.

Proof. Assume, to the contrary, that there exists a graph G containing
adjacent edges e1 and e2 with e1 ∈ E−(G) and e2 ∈ E+(G). Let e1 = uv
and e2 = vw. Let S′ be a γFC-set for G−uv. By Proposition 3.5, v /∈ S′. Let
S′′ = S′ ∪ {v} and consider the graph G − vw. The edge uv is dominated
by v ∈ S′′. Since vw is dominated by some vertex of S′, it follows that
either vw is dominated by w ∈ S′ or dominated by some x ∈ S′, where x
is adjacent to both v and w. In either case, w is dominated in G − vw by
some vertex of S′′. Hence, S′′ is a full closed dominating set for G − vw.
However,

|S′′| = γFC(G− uv) + 1 = γFC(G) < γFC(G− vw),

which is impossible.

By Proposition 3.8 then, for the graph G of Figure 3, it follows that e3 ∈
E0(G). Indeed, if G is a connected graph in which E+(G) 6= ∅ and E−(G) 6=
∅, then E0(G) 6= ∅. There are numerous graphs G in which every edge of G
belongs to E0(G), such as even cycles and Kn (n ≥ 3). There is, however,
no graph G in which every edge belongs to E+(G).

Proposition 3.9. No graph G exists every edge of which belongs to E+(G).
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Proof. Assume, to the contrary, that there exists a graph G such that
E(G) = E+(G). Let S be a γFC-set of G. Then, by Proposition 3.6, for
every edge uv in G, one of u and v belongs to S and the other to V (G)−S.
This implies that G is a bipartite graph with partite sets S and V (G)− S.
Thus G is triangle-free. By Observation 2.1, γFC(G) = γFS(G) = αo(G).
However,

γFC(G) + 1 = γFC(G− e) = αo(G− e) ≤ αo(G) = γFC(G)

for every edge e in G, which contradicts the fact that e ∈ E+(G).

There are graphs G, though, every edge of which belongs to E−(G). For
example, odd cycles of order at least 5 have this property.

For a set S of vertices of a graph G and a vertex v of G, the distance
between v and S is defined as

d(v, S) = min{d(v, u) : u ∈ S}.
The diameter of S is defined as

diamS = max{d(u, v) : u, v ∈ S}.
Thus diamV (G) = diamG.

For a nonempty set S of vertices in a connected graph G, a Steiner S-
tree is a tree of minimum size in G containing S. Certainly, every end-vertex
of a Steiner S-tree belongs to S. An edge e = uv in a Steiner S-tree T is
called S-free if both u /∈ S and v /∈ S.

Lemma 3.10. For every γFC-set S of a connected graph G, there exists a
Steiner S-tree containing no S-free edges.

Proof. Assume, to the contrary, that there is a connected graph G and a
γFC-set S of G such that every Steiner S-tree in G contains S-free edges.
Among all Steiner S-trees, let T be a Steiner S-tree containing a minimum
number of S-free edges. Then T contains an S-free edge e = uv and a
vertex x ∈ S such that x, u, v is a path in T . Since S is a γFC-set of G, it
follows that e is dominated by some vertex in S. If e is dominated by x, then
necessarily x is adjacent to both u and v. Hence (T−uv)+xv is a Steiner S-
tree in G containing fewer S-free edges than T , which is impossible. Thus e
is dominated by some vertex w ∈ S, where w 6= x. Let Tu and Tv be the two
components of T−uv, where Tu contains u and Tv contains v. Necessarily, w
belongs to exactly one of Tu and Tv, say Tu. Then (T −uv)+wv is a Steiner
S-tree in G containing fewer S-free edges than T , again an impossibility.
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Lemma 3.11. If S is a γFC-set of a connected graph G, then the order of
any Steiner S-tree is at most 2γFC(G)− 1.

Proof. Let T be a Steiner S-tree containing no S-free edges. Then V (T ) =
S ∪W , where S ∩W = ∅. Let |W | = a. Thus the order of T is a + γFC(G)
and the size of T is a + γFC(G)− 1. Assume that a ≥ γFC(G). Since T is a
Steiner S-tree, every end-vertex in T belongs to S. Thus every vertex in W
has degree at least 2 in T . Also, since T has no S-free edge, every vertex in
W is adjacent only to vertices of S in T .

Therefore, the size of T is at least
∑

w∈W

degT w ≥ 2a ≥ a + γFC ,

producing a contradiction.

Corollary 3.12. If S is a γFC-set in a connected graph G, then

diamS ≤ 2γFC(G)− 2.

Proof. Let T be a Steiner S-tree of G and suppose that that order of T is
k. By Lemma 3.11, k ≤ 2γFC(G)− 1. Among all trees of order k, the path
Pk has the greatest diameter, namely k − 1, and k − 1 ≤ 2γFC(G)− 2.

Theorem 3.13. If G is a graph of diameter d, then

γFC(G) ≥ d/2.

Proof. Let x and y be vertices of G such that d(x, y) = d and let S be
a γFC-set in G. Then x is dominated by some vertex u ∈ S and y is
dominated by some v ∈ S. Either u = x or ux ∈ E(G). Similarly, either
v = y or vy ∈ E(G). Thus, using Corollary 3.12, we have

d = diamG = d(x, y) ≤ d(u, v) + 2 ≤ diamS + 2 ≤ 2γFC(G),

producing the desired result.

To show that the bound presented in Theorem 3.13 is sharp, let G = P2k+1

be the path of order 2k +1. Then diamG = 2k and γFC(G) = k, as desired.
A set S of vertices in a graph G is an open dominating set (or total

dominating set) if every vertex of G is adjacent to at least one vertex of S. An
open dominating set of minimum cardinality is a minimum open dominating
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set and its cardinality is the open domination number γt(G), also called the
total domination number. The open domination number is also referred to
as the total domination number. No graph containing isolated vertices has
an open dominating set.

In order to obtain a relationship between the open domination number
and the full closed domination number, we present the following lemma.

Lemma 3.14. For every γFC-set S in a connected graph and each vertex
v ∈ S,

d (v, S − {v}) ≤ 2.

Proof. Assume, to the contrary, that there is a γFC-set S in a connected
graph G and a vertex v ∈ S such that d(v, S−{v}) = k ≥ 3. Let w ∈ S such
that d(v, w) = d(v, S − {v}) and let P : v = u0, u1, . . . , uk = w be a v − w
geodesic in G. Thus, neither u1 nor u2 is in S; for otherwise, d(v, S−{v}) ≤
2 < k. Hence the edge e = u1u2 is dominated by some vertex y ∈ S
(that is necessarily adjacent to both u1 and u2). Hence d(v, y) ≤ 2 < k, a
contradiction.

We have already seen (in Corollary 3.12) that if S is a γFC-set in a connected
graph G, then diamS ≤ 2γFC(G)−2. We now show that γt(G) has a similar
upper bound.

Theorem 3.15. For every connected graph G,

γt(G) ≤ 2γFC(G)− 1.

Proof. Let S be a γFC-set. Since S is also a dominating set for G, every
vertex in V (G)− S is dominated by and therefore adjacent to some vertex
in S. Consequently, S openly dominates all vertices in V (G) − S. By
Lemma 3.14, for every vertex u ∈ S, there is a vertex v (6= u) in S such
that d(u, v) ≤ 2. If every vertex in S is adjacent to some vertex in S, then
S is also an open dominating set and so γt(G) ≤ γFC(G). On the other
hand, suppose that there is a vertex x ∈ S that is adjacent to no vertex in
S. Then there is a vertex y ∈ S such that d(x, y) = 2. Let w be a vertex of
G adjacent to x and y. Hence w /∈ S. For each vertex u ∈ S − {x, y}, let u′

be a vertex of G that is adjacent to u. So u′ may or may not be in S. Let
S′ = {u′ | u ∈ S − {x, y}}. Then S ∪ S′ ∪ {w} is an open dominating set,
|S ∪ S′ ∪ {w}| ≤ 2γFC(G)− 1, and so γt(G) ≤ 2γFC(G)− 1.

To see that the upper bound in Theorem 3.15 is sharp, we show that for each
integer k ≥ 5, there exists a connected graph Gk such that γFC(Gk) = k
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and γt(G) = 2k − 1. Let Gk be the graph obtained from a cycle Ck :
v0, v1, v2, . . . , vk−1, v0 by (i) adding a vertex a0 and the edges a0v0 and v0vi

for 2 ≤ i ≤ k − 2 and (ii) adding the vertices ai and bi (1 ≤ i ≤ k − 1) and
the edges aibi and bivi for 1 ≤ i ≤ k−1. The graph G5 is shown in Figure 4.

v3 v2

v0

v1

a0

a4
b4

b2

a2a3

b3

v4

a1
b1

Figure 4. The graph G5

4. Full Open Domination in Graphs

A vertex v in a graph G openly dominates the subgraph 〈N(v)〉 induced
by the (open) neighborhood N(v) of v, but v does not openly dominate
itself or any edge incident with it. A set S of vertices in G is a full open
dominating set if every vertex and every edge of G belongs to 〈N(v)〉 for
some v ∈ S. The minimum cardinality of a full open dominating set is
the full open domination number γFO(G). A full open dominating set of
cardinality γFO(G) is referred to as a γFO-set. Note that a graph G has a
full open dominating set if and only if G contains no isolated vertices and
every edge of G lies on a triangle in G. Consequently, we have the following.

Observation 4.1. Let S be a full open dominating set in a graph G. Every
vertex of S (and consequently every edge joining two vertices of S) belongs
to a triangle every vertex of which belongs to S.

To illustrate these concepts, consider the graphs G1 = P5 + K1 and G2 =
K2,2,2 shown in Figure 5. In G1, since each edge vivi+1 (1 ≤ i ≤ 4) is
openly dominated only by u, the edge uv1 is openly dominated only by v2,
and the edge uv5 is openly dominated only by v4, it follows that u, v2, v4
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belong to every γFO-set of G1. However, the set {u, v2, v4} is not a full open
dominating set of G1 as the edges uv2 and uv4 are not openly dominated by
any vertex in {u, v2, v4}. Since S1 = {u, v2, v3, v4} is a full open dominating
set, S1 is a γFO-set of G1 and so γFO(G1) = 4. In G2, the set S2 =
{x1, x2, x3} is a full open dominating set. Moreover, there is no 2-element
full open dominating set. Thus, S2 is a γFO-set of G2 and γFO(G2) = 3.

v2v1 v3 v5v4

G2 :G1 :

u

x1 y1

x3 y2

y3 x2

Figure 5. Graphs G1 = P5 + K1 and G2 = K2,2,2

By Observation 4.1, every full open dominating set of a graph G must con-
tain at least three vertices and so γFO(G) ≥ 3. Certainly, every full open
dominating set of a graph G is also a full closed dominating set and so
γFO(G) ≥ γFC(G). This observation yields the following lower bound for
γFO(G).

Corollary 4.2. For a graph G without isolated vertices and in which every
edge belongs to a triangle,

γFO(G) ≥ max{3, γFC(G)}.

Certainly, if G is a nontrivial connected graph of order n, then 1 ≤ γ(G) ≤
γFC(G) ≤ γFS(G) ≤ n− 1. Hence no nontrivial connected graph G of order
n has γFC(G) = n or γFS(G) = n. However, this is not true for γFO(G),
as we show next. For a graph G consisting of k (k ≥ 1) disjoint copies of a
graph H, we write G = kH. In particular, G = H for k = 1.

Theorem 4.3. For n ≥ 3, there exists a connected graph G of order n such
that γFO(G) = n if and only if n /∈ {4, 6}.
Proof. We first show that for n = 4 or n = 6, there is no connected graph
G of order n with γFO(G) = n. If n = 4, then K4 − e and K4 are the
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only graphs of order 4 in which every edge belongs to a triangle. However,
γFO(K4−e) = γFO(K4) = 3. Next we show that there is no connected graph
of order 6 with full open domination number 6. Assume, to the contrary, that
there is a connected graph G of order 6 such that γFO(G) = 6. Let V (G) =
{v1, v2, . . . , v6}. Since every edge of G belongs to a triangle in G, there exist
at least two triangles in G that have a common edge. Thus G contains
K4−e as a subgraph. Assume, without loss of generality, that v2v4 ∈ E(G),
vivi+1 ∈ E(G) for i = 1, 2, 3, and v1v4 ∈ E(G). Since {v1, v2, v3, v4} openly
dominates the induced subgraph 〈{v1, v2, v3, v4}〉, which is K4 − e or K4,
the vertex v5 must openly dominate v6 or some edge incident with v6. If
v5 openly dominates v6, then v5v6 ∈ E(G). However, then, the edge v5v6

must be openly dominated by some vertex vi for i ∈ {1, 2, 3, 4}. If v5 openly
dominates some edge e that is incident with v6, then e = viv6 for some
i ∈ {1, 2, 3, 4} and v5 is adjacent to both vi and v6. In either case, G contains
a triangle vi, v5, v6, vi for some i ∈ {1, 2, 3, 4}. Thus, we may assume that G
contains at least one of the two graphs G1 or G2 of Figure 6 as a subgraph.
Let S = V (G) − {v1}. Since 〈S〉 contains 2K2 + K1 as a subgraph, every
edge of 〈S〉 belongs to a triangle. Thus S is a full open dominating set
of 〈S〉. Moreover, the vertex v1 and all edges incident with v1 are openly
dominated by S. This implies that S is also a full open dominating set of
G. Therefore, γFO(G) ≤ |S| = 5, which is a contradiction.

v5

v3

v1G1 :

v2

v4 v6

G2 :

v1 v3

v2

v6 v5

v4

Figure 6. Subgraphs G1 and G2

For the converse, assume that n ≥ 3 but n 6= 4, 6. We construct a graph
G of order n with γFO(G) = n. If n = 2k + 1 for some integer k ≥ 1, let
G = kK2 + K1 for some positive integer k. Then the order of G is 2k + 1.
Since V (G) is the only full open dominating set, γFO(G) = 2k + 1. Now let
n = 2k some integer k ≥ 4. For k = 4, let F be the graph of Figure 7. Note
that for every vertex w in G, there is an edge that is only openly dominated
by w. Hence V (G) is the only full open dominating set and so γFO(G) = 8.
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y3y1 y2

x2 x3x1

u v
F :

Figure 7. A graph F of order 8 with γFO(F ) = 8

For k ≥ 5, let G be obtained from the graph F of Figure 7 and the graph
(k − 4)K2 by joining every vertex of (k − 4)K2 to the vertex v in F . Then
the order of G is 2k and γFO(F ) = 2k, as desired.

Since there is no graph G of order 4 and γFO(G) = 4 while the disconnected
graph G = 2K3 has order 6 and γFO(G) = 6, we have the following corollary.

Corollary 4.4. For n ≥ 3, there exists a graph G of order n such that
γFO(G) = n if and only if n 6= 4.

We have seen that if G is a graph in which every edge belongs to a triangle
and γFC(G) = a and γFO(G) = b, then 1 ≤ a ≤ b and b ≥ 3. Next we show
that the converse of this fact is also true.

Theorem 4.5. For each pair a, b of integers with 1 ≤ a ≤ b and b ≥ 3,
there exists a connected graph G in which every edge belongs to a triangle
with γFC(G) = a and γFO(G) = b.

Proof. We consider three cases, according to whether a = 1, a = 2, or
a ≥ 3.

Case 1. a = 1. Suppose, first, that b is odd. Then b = 2k + 1 for
some integer k ≥ 1. Let G = kK2 + K1, where degG u = 2k. Since {u}
is a full closed dominating set, γFC(G) = 1. Moreover, V (G) is the only
full open dominating set, so γFO(G) = |V (G)| = 2k + 1 = b. Next suppose
that b is even. Then b = 2k for some integer k ≥ 2. Here we let G =
(P5 ∪ (k − 2)K2) + K1, where P5 : v1, v2, v3, v4, v5 and degG u = 2k + 1.
Then G = P5 + K1 (shown in Figure 5) for k = 2. Again, {u} is a full
closed dominating set and so γFC(G) = 1. On the other hand, the set
{u, v2, v3, v4} ∪ V ((k − 2)K2) is a γFO-set, implying that γFO(G) = 2k.

Case 2. a = 2. For b = 3, let G = K2,2,2 (shown in Figure 5). Then
γFC(G) = 2 and γFO(G) = 3. For b = 2k + 1, where k ≥ 2, let G be
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obtained from K2,2,2 and F = (k − 1)K2 + K1, where degF u = 2k − 2, by
identifying some vertex in K2,2,2 and the vertex u in F . Then γFC(G) = 2
and γFO(G) = 3 + 2(k − 1) = 2k + 1 = b.

Now suppose that b is even. Then b = 2k for some integer k ≥ 2. Let
G1 = P5 + K2, where P5 : v1, v2, v3, v4, v5 and the remaining two vertices of
G1 are u and v; and for k ≥ 3, let G2 = (k − 2)K2 + K1, where degG2

x =
2k − 4. For k = 2, let G = G1 and for k ≥ 3, let G be the graph obtained
from G1 and G2 by identifying u and x. Then γFC(G) = 2, while γFO(G) =
4 + 2(k − 2) = 2k = b.

Case 3. a ≥ 3. We consider three subcases here, depending on whether
b = a, b = a + 1, or b ≥ a + 2.

Subcase 3.1. b = a. Let F0 be a copy of the complete graph Ka with
V (F0) = {u1, u2, . . . , ua}. For each i with 1 ≤ i ≤ a, let Fi : xi, yi be a copy
of K2. Then let G be the graph obtained from the graphs Fi (0 ≤ i ≤ a)
by adding the 4a new edges ui−1xi, uixi, uiyi, and ui+1yi for all 1 ≤ i ≤ a,
where each subscript is one of the integers 1, 2, . . . , a modulo a. The graph
G is shown in Figure 8 for a = 3, 4. We show that γFO(G) = γFC(G) = a.

x1

y2

u2

y2u2

x3

x2

y4

y3

x1 y1

u3

u1

y1 x2

u1

u3u4

y3x4

x3

Figure 8. Graphs G with γFO(G) = γFC(G) = a for a = 3, 4

Let S = {u1, u2, . . . , ua}. Since S is a full closed and full open dominating set
of G, it follows that γFC(G) ≤ a and γFO(G) ≤ a. On the other hand, each
edge xiyi (1 ≤ i ≤ k) in G is dominated only by xi, yi, or ui. Hence every
full closed dominating set of G must contain at least one vertex from each
set {ui, xi, yi} for all 1 ≤ i ≤ a. Thus γFC(G) ≥ a. Since γFO(G) ≥ γFC(G),
it follows that γFO(G) ≥ a. Therefore, γFO(G) = γFC(G) = a.
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Subcase 3.2. b = a+1. Let G be obtained from the graph G constructed
in Subcase 3.1 by first subdividing the edge x1y1 into x1z and zy1 and then
adding the edge zu1. The graph G is shown in Figure 9 for a = 3. Since
S = {u1, u2, . . . , ua} is a γFC-set of G, it follows that γFC(G) = a. On the
other hand, S ∪ {x1} is a γFO-set and so γFO(G) = a + 1.

y2

y3

x3

u2

y1x1 z

u1

x2u3

Figure 9. A graph G with γFO(G) = 4 and γFC(G) = 3

Subcase 3.3. b ≥ a + 2. Suppose first that b = a + 2k, where k ≥ 1. For
each integer i with 1 ≤ i ≤ k, let Hi : vi, wi be a copy of K2. Now let H
be the graph obtained from the graph G in Subcase 3.1 and the graphs Hi

(1 ≤ i ≤ k) by adding the 2k edges u1vi, u1wi for all i with 1 ≤ i ≤ k. For
a = 3 and k = 1 (so b = 5), the graph H is shown in Figure 10(a).

Next, suppose that b = a + 2k + 1, where k ≥ 1. Let H be the graph
obtained from the graph G in Subcase 3.2 and the graphs Hi (1 ≤ i ≤ k) by
adding the 2k edges u1vi, u1wi for all 1 ≤ i ≤ k. For a = 3 and k = 1 (so
b = 6), the graph H is shown in Figure 10(b).

Since S = {u1, u2, . . . , ua} is a γFC-set in H for all b ≥ a + 2, it follows
that γFC(H) = a. Next we show that γFO(H) = b. Let V = {v1, v2, . . . , vk}
and W = {w1, w2, . . . , wk}. For b = a + 2k, the set S1 = S ∪ V ∪ W is a
γFO-set of H and so γFO(H) = |S1| = a+2k = b. For b = a+2k+1, the set
S2 = S∪{x1}∪V ∪W is γFO-set of H and so γFO(H) = |S2| = a+1+2k = b.

Certainly, every full open dominating set of a graph G is also an open
dominating set. Thus if G is a graph without isolated vertices in which
every edge is in a triangle, then γFO(G) ≥ γt(G). Next we show that there
is no graph G with γFO(G) = γt(G).
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x2u2
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y2
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x1 y1
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u1
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x3
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u2u3

Figure 10. Graphs in Subcase 3.3 for a = 3 and b = 5, 6

Proposition 4.6. If G is a graph without isolated vertices in which every
edge is in a triangle, then γFO(G) > γt(G).

Proof. Assume, to the contrary, that there exists a graph G with γt(G) =
γFO(G). Let S be a γFO-set of G. Since every full open dominating set is
also an open dominating set and γt(G) = γFO(G), it follows that S is also
a γt-set in G. Let u ∈ S. We consider two cases.

Case 1. There exists a vertex x that is openly dominated by vertex u ∈ S
but not by any vertex in S − {u}. This implies that x is adjacent to u, but
x is not adjacent to any vertex in S − {u}. On the other hand, since S is a
γFO-set of G, the edge ux is openly dominated by some vertex in v ∈ S−{u}.
Hence ux belongs to 〈N(v)〉, implying that x is adjacent to v ∈ S − {u}, a
contradiction.

Case 2. Each vertex in G that is openly dominated by u is also openly
dominated by some vertex in S − {u}. Since S is a γt-set in G, there is a
vertex v adjacent to u such that v is not adjacent to any other vertex in
S−{u}. However, then, the edge uv is not openly dominated by any vertex
in S, a contradiction.

Next we show that every pair a, b of integers with 2 ≤ a < b is realiz-
able as the open domination number and the full open domination number,
respectively, of some graph.



Full Domination in Graphs 61

Theorem 4.7. For every pair a, b of integers with 2 ≤ a < b, there exists a
graph G with γt(G) = a and γFO(G) = b.

Proof. We consider two cases.

Case 1. b = a+1 or b = a+2. Let Ga be the graph obtained from Ka+1

with V (Ka+1) = {v1, v2, . . . , va+1} by adding, for each edge eij = vivj , where
1 ≤ i < j ≤ a+1, a new vertex wij and joining it to vi and vj . The graphs G2

and G3 are shown in Figure 11. Let Ha = Ga+1−w12. The graph H2 is shown
in Figure 11. Since {v1, v2, . . . , va} is a γt-set of Ga and {v1, v2, . . . , va+1} is
a γFO-set of Ga, it follows that γt(Ga) = a and γFO(Ga) = a+1. Moreover,
since {v3, v4, . . . , va+2} is a γt-set of Ha and {v1, v2, . . . , va+2} is a γFO-set
of Ha, we have γt(Ha) = a and γFO(Ha) = a + 2.

v1

w14

v2v3

w12w24 w13

w23

w34

w13 w12
v1

w23

G2 : G3 :

w34

w14

v1 v2

v2

H2 :

v3v4

v3v4

w24 w13

w23

Figure 11. The graphs G2, G3, and H2

Case 2. b ≥ a+3. Suppose, first, that b = a+2k +1 (k ≥ 1). Let G be
the graph obtained from the graph Ga (from Case 1) and kK2 by joining v1

to each of the vertices of kK2. If b = a+2k (k ≥ 2), then let G be the graph
obtained from the graph Ha (of Case 1) and (k− 1)K2 by joining v3 to each
vertex of (k − 1)K2. It is routine to verify that γt(G) = a and γFO(G) = b.
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We conclude this paper with a problem.

Problem 4.8. Determine all triples a, b, c of integers with max{a, b} ≤ c,
a ≥ 2, c ≥ 3, and a < c for which there exists a graph G with γt(G) = a,
γFC(G) = b, and γFO(G) = c.
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