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Abstract

We show that for every integer k& > 2 and every k graphs Gy,
Go,...,Gy, there exists a hull graph with k& hull vertices vy, va, ..., vk
such that link L(v;) = G; for 1 < i < k. Moreover, every pair a,b of
integers with 2 < a < b is realizable as the hull number and geodetic
number (or upper geodetic number) of a hull graph. We also show that
every pair a, b of integers with ¢ > 2 and b > 0 is realizable as the hull
number and forcing geodetic number of a hull graph.
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number, hull graph.
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1. Introduction

The best known metric space in graph theory is (V(G),d), where V(G) is
the vertex set of a connected graph G and d(u,v) is the distance between
two vertices u and v in G (defined as the length of a shortest u — v path).
A u — v path of length d(u,v) is called a u — v geodesic. The set (interval)
I(u,v) consists of all vertices lying on some u — v geodesic of G, while for
S V(G),

I(S) = U I(u,v).

A set S of vertices in a connected graph G is convex if I(S) = S. The convex
hull [S] is the smallest convex set containing S. The convex hull [S] of S
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can also be obtained from the sequence {I¥(S)}, k& > 0, where I°(S) = S,
IY(S) = I(S), and I¥(S) = I(1¥=1(S)) for k > 2. From some term on, this
sequence is constant. The convex hull [S] is the set IP(S), where p is an
integer such that IP(S) = IPT1(S). A set S of vertices of G is called a hull
set of G if [S] = V(G), and a hull set of minimum cardinality is a minimum
hull set of G. If a vertex v belongs to every hull set in a graph G, then v is
called a hull vertex. Of course, every hull vertex belongs to every minimum
hull set of G as well. The cardinality of a minimum hull set in G is its hull
number h(G). Clearly, 2 < h(G) < n for every connected graph G of order
n > 2.

The intervals I (u, v) were studied and characterized by Nebesky [12, 13].
These sets were also investigated extensively in the book by Mulder [10],
where it was shown that these sets provide an important tool for studying
metric properties of connected graphs. Convexity in graphs is discussed in
the book by Buckley and Harary [1] and studied by Harary and Nieminen
[8]. The hull number of a graph was introduced by Everett and Seidman [7]
and investigated further in [3], [6] and [11]. We refer to the book by Buckley
and Harary [1] for concepts and results on distance in graphs.

As an illustration of these concepts, consider the graphs shown in
Figure 1. All three graphs have hull number 2. In Gy, {z,y} and {z’,y'} are
(disjoint) minimum hull sets. For S1 = {u,v} in Gy, I(S1) = V(G1) — {w}
and I(I1(S1)) = V(Gy1). Therefore, [Si] = V(G1) and so S7 is a minimum
hull set of G;. On the other hand, Sy is not the unique minimum hull set
of Gy since G has two minimum hull sets, namely S; and 5] = {u,w}.
Consequently, G1 does not have a unique minimum hull set. However, the
set {s,t} in the graph G2 of Figure 1 is the unique minimum hull set of G.
Therefore, for 0 < i < 2, G; contains exactly ¢ hull vertices.

Figure 1. Three graphs with hull number 2
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For a vertex v in a graph G, the link L(v) of v is the subgraph induced by the
neighbors of v. A vertex v in a graph G is called an extreme vertex if L(v)
is complete. For example, the vertex u in the graph G and the vertex s in
the graph G2 of Figure 1 are extreme vertices. Certainly, if v is an extreme
vertex of a graph G, then v is an end-vertex of every geodesic containing v.
This observation gives the following result, which was mentioned in [7].

Theorem A. FEvery hull set in a graph contains its extreme vertices. In
particular, every hull set in a graph contains its end-vertices.

By Theorem A, it follows that every extreme vertex is a hull vertex. The
converse is not true, however, since the vertex ¢ in the graph G4 of Figure 1
is a hull vertex that is not extreme.

In [6] the forcing hull number of a graph was introduced. For a minimum
hull set S of G, a subset T of S is called a forcing subset of S if S is the
unique minimum hull set containing 7. The forcing hull number f(S,h) of
S is the minimum cardinality of a forcing subset for S, while the forcing hull
number f(G,h) of G is the smallest forcing number among the minimum
hull sets of G. For example, let G = K3 with partite sets {z,y} and
{u,v,w}. Then S1 = {z,y} and Sy = {u,v} are minimum hull sets of G.
The remaining minimum hull sets are similar to Sy. Since .57 is the unique
minimum hull set containing x, it follows that f(S7,h) = 1. On the other
hand, S5 is not the unique minimum hull set containing any of its proper
subsets, so f(Se2, h) = 2. Therefore, f(G,h) = 1.

If G is a graph with f(G,h) = 0, then G has a unique minimum hull set
and conversely. Hence f(G,h) = 0 if and only if G contains exactly h(G)
hull vertices. We refer to any graph containing a unique minimum hull set
as a hull graph. Therefore, the graph G2 of Figure 1 is a hull graph, while
Gp and G7 are not. It is the goal of this paper to study hull graphs with
certain prescribed properties or prescribed geodetic parameters.

For a cut-vertex v in a connected graph G and a component H of G — v,
the subgraph H and the vertex v together with all edges joining v and V (H)
is called a branch of G at v. An end-block of GG is a block containing exactly
one cut-vertex of G. We present a lemma whose routine proof is omitted.

Lemma 1.1. Let S be a minimum hull set in a nontrivial connected graph G.
Then

(a) no cut-vertez in G belongs to S, and
(b) for each cut-vertex v of G and every branch B of G atv, V(B)NS # (.
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The following corollaries are immediate consequences of Lemma 1.1.

Corollary 1.2. Let S be a minimum hull set in a nontrivial connected graph
G. If B is an end-block of G containing a cut-vertexr v, then v ¢ S and
V(B)NS #0.

Corollary 1.3. If G is a connected graph containing k end-blocks, then
h(G) > k.

2. Hull Graphs Whose Hull Vertices Have
Prescribed Links

In the closing section of the paper by Everett and Seidman [7], they state
that a hull graph need not contain any extreme vertices and give an example
of a hull graph with hull number 3, each of whose hull vertices has degree 2
and whose two neighbors are not adjacent. In this section, we show in fact
that a hull graph can have any prescribed hull number and its hull vertices
can have any prescribed links.

Theorem 2.1. For every integer k > 2 and every k graphs G1,Go, ..., Gy,
there exists a connected hull graph with hull vertices vy, v, ..., v such that
L(vi) =G; for1 <i<k.

Proof. We construct a graph G with the desired property. For each
integer i (1 <1i < k), let F; = Ko + G;, where V(K2) = {u;,v;}. Then the
graph G is constructed from the graphs F; by adding a new vertex x and
the k edges zu; (1 < i < k). Thus in G, L(v;) = G; for 1 < i < k. Let
S = {v1,v2,...,v}. Since S is a hull set of G, it follows that h(G) < k and
by Corollary 1.3 h(G) > k. Therefore, h(G) = k. Hence S is a minimum
hull set of G. Assume, to the contrary, that S’ is a minimum hull set of G
distinct from S. By Lemma 1.1, S’ must contain exactly one vertex from
each subgraph F; (1 <1i < k). Since S # S’, we may assume that v; ¢ S'.
However, v; lies only those geodesics having v; as an end-vertex or having
both end-vertices in V(Fy). Thus, v; ¢ [S’], which is impossible. Therefore,
S is the unique minimum hull set of G, as desired. [

The graph G constructed in the proof of Theorem 2.1 has a cut-vertex and
so is not 2-connected. However, we can extend Theorem 2.1 by modifying
the structure of the graph G in the proof of Theorem 2.1 to construct a
2-connected hull graph with the properties described in Theorem 2.1.
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Corollary 2.2. For every integer k > 2 and every k graphs G1,Go,...,Gg,
there exists a 2-connected hull graph with hull vertices vi,va, ..., v such that

L(v;) = G; for1 <i<k.

Proof. For each integer i (1 <i < k), let F; = K3+ G;, where V(K3) =
{ui,vi,w;}. Then a 2-connected graph G is constructed from the graphs F;
by adding 2k edges w;w; and w;u; 11 for 1 < ¢ < k, where the subscripts are
expressed modulo k. Thus in G, L(v;) = G; for 1 <1i < k. For k = 3, the
graph G is shown in Figure 2.

Figure 2. A 2-connected hull graph G with three hull vertices

A proof similar to that of Theorem 2.1 shows that G has the desired prop-
erties. -

3. Hull Graphs with Prescribed Geodetic
Number

In [1] a set S of vertices in a connected graph G is called a geodetic set
if I(S) = V(G). A geodetic set of minimum cardinality is a minimum
geodetic set, and this cardinality is the geodetic number g(G). Certainly,
2 < h(G) < g(G) < n for every connected graph G of order n > 2. For
example, the set S = {z,y,z} in the graph Gy of Figure 1 is a geodetic
set. Since no 2-element subset of V(Gy) is a geodetic set of Gy, it follows
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that S is a minimum geodetic set of Gy and so g(Gy) = 3. The geodetic
number of a graph is discussed in the book by Buckley and Harary [1] and
further studied in [2]; while the geodetic number of an oriented graph has
been studied in [4]. It was shown in [9] that the determination of g(G) is an
NP-hard problem and its decision problem is NP-complete.

For every pair a,b of integers with 2 < a < b, it was shown in [3]
that there exists a connected graph G with h(G) = a and ¢g(G) = b. In this
section, we extend this result by verifying that every pair a, b of integers with
2 < a < bisrealizable as the hull number and geodetic number, respectively,
of some connected hull graph G that contains a unique minimum geodetic
set as well. In the following two sections, we extend this result in a different
manner by showing that under certain appropriate conditions, every two
given integers are realizable as the hull number and a certain type of geodetic
numbers of some hull graph.

The following result, which appeared in [2], is an analogue of Theorem A.

Theorem B. Every geodetic set of a graph G contains its extreme vertices.
In particular, every geodetic set of a graph G contains the end-vertices of G.

Similarly, if the set S of extreme vertices of a graph G is a geodetic set of
G, then S is the unique minimum geodetic set of GG, but the converse is not
true as the graph Ga of Figure 1 shows. In fact, since the hull graph G
constructed in the proof of Theorem 2.1 has the additional property that
the unique minimum hull set S of G is also the unique minimum geodetic
set of GG, we have the following result.

Corollary 3.1. For every integer k > 2 and every k graphs G1,Go,...,Gg,
there exists a connected hull graph G with unique minimum geodetic set
S = {v1,v2,...,vk} such that L(v;) = G; for 1 <i<k.

It was shown in [2, 3] that for each integer n > 2, h(K,,) = g(K,) = n, where
V(K,,) is the unique minimum hull set and unique minimum geodetic set of
K,,. Moreover, for each integer n > 2 and every integer k with 2 < k < n—1,
a tree T of order n with exactly k end-vertices has h(T') = g(T) = k, where
the set of end-vertices of T is the unique minimum hull set and unique
geodetic set. Therefore, we have the following result.

Theorem 3.2. For every pair k,n of integers with 2 < k < n, there exists
a connected hull graph G of order n with h(G) = g(G) = k such that G
contains a unique minimum geodetic set.
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We are now prepared to present the main result of this section.

Theorem 3.3. For each pair a,b of integers with 2 < a < b there exists
a connected hull graph G with a unique minimum geodetic set such that

h(G) =a and g(G) = b.

Proof. For each integer ¢ with 1 <i < b—a, let H; : x;,y;, z;, w;, S;, t; be a
copy of Cs. Then the graph F; (1 <1i < b—a) is obtained from H; by adding
a new vertex v; and the two edges t;v; and v;2;. Then a graph G is formed
from graphs F; (1 < i < b— a) by adding a new vertices u; (1 < j < a)
and the edges (1) uiz; and vjwp—q (2 < j < a) and (2) zxiq1, wiwiqq for
(1 <i<b—a—1). This completes the construction of G.

We now show that the graph G has the desired properties. Let S =
{u1,ug,...,uqs} be the set of end-vertices of G. Then I(S) = V(G) —
{v1,v2,...,05_q}. Since I%(S) = [S] = V(G), it follows that S is the unique
minimum hull set of G. So G is a hull graph with h(G) = a. Next we show
that G contains a unique minimum geodetic set of cardinality b.

First we show that g(G) = b. Let S1 = S U {v1,ve,...,0p_q}. It is
routine to verify that S; is a geodetic set and so g(G) < b. Let W be a
geodetic set of G. Certainly, S C W. Let V; = {v;, v, i, wi, S, t; }, where
1 < i < b—a. Since v; does not lie on any x —y geodesic in G for z,y ¢ V;, it
follows that W contains at least one vertex from each set V; (1 <i <b—a)
and so |W| > a + (b — a) = b. Therefore, g(G) = b.

Next we show that S; is the unique minimum geodetic set of G. Let Sy
be a minimum geodetic set of G. By the discussion above, S C Sy and Ss
contains exactly one vertex from each set V; (1 <1i < b—a). Because v; lies
only on those geodesics having v; as one of its end-vertices or having both
end-vertices belonging to V;, it follows that v; € Sy for 1 <4 < b — a. Thus
S9 = 51, and S is the unique minimum geodetic set of G. [ |

In every example we have seen thus far, if a hull graph G also contains a
unique minimum geodetic set, then its minimum hull set is a subset of the
minimum geodetic set of G. In fact, it may seem that this is true in general.
However, this is not the case. Indeed, there are hull graphs G possessing
a unique minimum geodetic set that does not contain its unique minimum
hull set as a subset. For example, in the hull graph G of Figure 3, the set
S = {u,v} is the unique minimum hull set of G and the set S’ = {u, z, y} is
the unique minimum geodetic set of G. Of course, S € 5.
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¥

Figure 3. A hull graph

4. Hull Graphs with Prescribed Upper Geodetic
Number

A geodetic set S in a connected graph G is minimal if no proper subset of
S is a geodetic set. Of course, every minimum geodetic set is a minimal
geodetic set, but the converse is not true. For example, let G = K53 with
partite sets Vi = {z,y} and Vo = {u,v,w}. Then {u,v,w} is a minimal
geodetic set of Ko 3 but is not a minimum geodetic set of Ky 3 since {x,y}
is its unique minimum geodetic set. The upper geodetic number g™ (G) is
the maximum cardinality of a minimal geodetic set of G. So g(Ks33) = 2
and g*(Ky3) = 3. Obviously, h(G) < ¢g(G) < g7 (G). Next we show that
every pair a,b of integers with 2 < a < b is realizable as the hull number
and upper geodetic number of some connected hull graph. First we state a
lemma, which is an analogue of Corollary 1.2.

Lemma 4.1. Let S be a minimal geodetic set in a nontrivial connected
graph G. If B is an end-block of G containing a cut vertex v, then v ¢ S
and V(B)N S # (.

Theorem 4.2. For each pair a,b of integers with 2 < a < b there exists a
connected hull graph G such that h(G) = a and g*(G) = b.

Proof. For a = b, any tree with exactly a end-vertices has the desired
properties. So we assume that a < b. We consider two cases.

Case 1. b = a + 1. We construct a hull graph G with A(G) = a and
g7 (G) = a + 1. First assume that a = 2 and b = 3. For the hull graph
G of Figure 1, we have seen that h(G2) = 2. Since {s,s’,¢'} is a minimal
geodetic set of maximum cardinality of Ga, it follows that g7 (Gs) = 3. So
now let @ > 3. Let H = K3 with partite sets {u,v,w} and {z,y}. Then



ON GRrAPHS WITH A UNIQUE MINIMUM HULL SET 39

the graph G is obtained from H by adding a new vertices u; (1 <1i < a) and
the a edges uuy, rug, and wu; for 3 < i < a. Let U = {uy,ug,...,u,} be
the set of end-vertices of G. Since U is a minimum hull set of G, it follows
that G is a hull graph and h(G) = a. On the other hand, by Lemma 4.1,
G has only two distinct minimal geodetic sets, namely S; = U U {v} and
So = U U {y}. (In fact, S; and Sy are also minimum geodetic sets of G.)
Therefore, g7(G) = a + 1.

Case 2. b > a+ 2. Let H = Ky} 442 with partite sets {u,v} and
{v1,v2,...,Up—qt2}. Then the graph G is obtained from H by adding a new
vertices u; (1 <1i < a) and the a edges ujv; and u;vp_q 12 (2 < 7 < a). Since
U = {ui,ug,...,uq.} is a minimum hull set, G is a hull graph with A(G) = a.
It remains to show that g*(G) = b.

Let S = U U {va,v3,...,0—_qr1}. Since I(S) = V(G), it follows that
S is a geodetic set. Next we show that S is a minimal geodetic set of G.
Let € S. We show that I(S — {z}) # V(G). Since every geodetic set
contains the end-vertices of G, we may assume that x ¢ U. So x = v; for
some ¢ with 2 <4 <b—a+ 1. Since I(S — {v;}) = V(G) — {v;}, it follows
that S is a minimal geodetic set with |S| = b. Therefore, g*(G) > b. On
the other hand, let W be a minimal geodetic set with |W| = g*(G) > b.
Necessarily, U C W. By Lemma 4.1, vi,vp_q12 ¢ W. If u,v ¢ W, then
W C V(G) — {v1,vp—qs2,u,v} and so |[W| < b, implying that gt (G) < b.
So we may assume that at least one of u and v belongs to W. Certainly,
u,v € I(ug,u). Assume first that exactly one of u and v belongs to W, say
u. Then W — {u} is not a geodetic set and so there exists x ¢ I(W — {u}).
Consequently, x ¢ W and z lies on some u — w geodesic, where w € W.
However, each such u — w geodesic is a u — u; geodesic for 1 < ¢ < a. This
implies that z = v or © = vy_gyo. But vi,vp_gir2 € I(ug,ue) C I(W —
{u}), producing a contradiction. Hence both u and v belong to W. Then
{va,v3, ..., vp—qt1} C I(u,v) and I(W —{ve,v3,...,Up—q+1}) = I(W). This
implies that vy, v3,...,vp_qr1 € W. Therefore, g7 (G) = |[W|=2+a<b. =

5. Hull Graphs with Prescribed Forcing Geodetic
Number
As we have seen, the graphs with a unique minimum hull set are precisely

those having forcing hull number 0. We now define a related concept. For
a minimum geodetic set S of a nontrivial connected graph G, a subset T
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of S is called a forcing subset of S if S is the unique minimum geodetic set
containing T'. The forcing geodetic number f(S, g) of S is the minimum car-
dinality of a forcing subset for S, while the forcing geodetic number f(G, g)
of GG is the smallest forcing number among all minimum geodetic sets of G.
These concepts were introduced and studied in [5]. Hence if G is a graph
with f(G,g) = a and ¢g(G) = b, then 0 < a < b and there exists a minimum
geodetic set S of cardinality b containing a forcing subset T' of cardinality a
but no forcing subset of smaller cardinality.

For a graph G, the forcing geodetic number f(G, g) = 0 if and only if G
has a unique minimum geodetic set. Moreover, f(G, g) = 1 if and only if G
does not have a unique minimum geodetic set but some vertex of G belongs
to exactly one minimum geodetic set. Next we show that every pair a, b of
integers with a > 2 and b > 0 is realizable as the hull number and forcing
geodetic number of some connected hull graph. This verifies a conjecture
stated in [6].

Theorem 5.1. For each pair a,b of integers with a > 2 and b > 0 there
exists a connected hull graph G such that h(G) = a and f(G,g) = b.

Proof. For a > 2 and b = 0, any tree T with exactly a end-vertices is a
hull graph with A(T) = a and f(T,g) = 0. So we assume that b > 1. For
each pair a,b of integers with a > 2 and b > 1, we construct a connected
hull graph G, with h(Gap) = a and f(Gap,g) = b.

First we assume that a > 2 and b = 1. To define the graph Gy 1,
we begin with four paths P(i), 0 < ¢ < 3. Let P(0) : ui,ug,...,us, let
P(i) @ vi1,vig, ... 243 for ¢ = 1,2, and let P(3) : wy,ws,...,wg. Then
the graph G is obtained from the graphs P(i), 0 < ¢ < 3, by adding a
new vertices x1,xo,...,z, and the edges (1) z1ug and z;ws for 2 < i < a,
(2) ui1v11, V11021, V21W1, and (3) Uu5v15, V15027, V27W9. Since the set X =
{z1,22,...,2,} of end-vertices of G 1 is a minimum hull set, it follows that
G is a hull graph with (G, 1) = a. It remains to show that f(Gg1,9) = 1.

We first show that ¢(Gg1) = a + 2. Let S = X U {v13,v24}. Since
I(S) = V(Gq,), it follows that g(G41) < @+ 2. On the other hand, for
every v € V(Gg1) — X, the set X U {v} is not a geodetic set of G,1 and so
9(Ga1) > a+2. Therefore, g(G) = a+2. We now show that f(Gq1,9) = 1.
Since S" = X U {va1,v27} is a geodetic set of G, 1 distinct from S, it follows
that f(Gq,1,9) > 1. On the other hand, S is the unique minimum geodetic
set containing v13 and so f(S,g) = 1. Therefore, f(Gq1,9) = 1.
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For the remainder of the proof we assume that a,b > 2. The structure
of Gg1 can be modified to produce a graph G, with h(G,p) = a and
f(Gap,g) =0b. Let P(0) : ug,ug,...,us and P(b+2) : wi,ws,..., w7 be
paths, and for 1 <¢ < b+ 1, let P(3) : vj1, vi2, . . . Vi 2i+3 be paths. Then the
graph G, is obtained from the b+ 3 paths P(i), 0 < i < b+ 2, by adding a
new vertices x1,xa, ..., x, and the edges (1) xjus and wyqx; for 2 <i < a,
(2) w1v11, Vpy1,1w1, and v v for 1 < < b, and (3) usvis, Vbt1,20+5W2b+7
and v; 2;43vi4+1,2i45 for 1 <4 < b. Thus for each b > 2, the graph G, is a hull
graph with unique minimum hull set X = {1, 22,...,2,}. Thus h(Gap) =
a. We show only that f(Gg2,9) = 2 as the proofs that f(Ggp,g9) = b for
b > 3 are similar and are therefore omitted.

Since S = X U {v13,v24,v35} is a minimum geodetic set of Ga, it
follows that ¢(Ga2) = a + 3. We now show that f(Gg2,9) = 2. Let
Vi = {vi1,vig, ..., vi 2543} for 1 < i < 3. If S' is a minimum geodetic set of

G, then S’ has one of the following three forms: (1) S’ = X U{v1,v2,v3}, (2)
S" = XU{wva1,v97,v3}, and (3) S" = X U{vs1, v39, v1 }, where I({vy,va,v3}) =
I({U21,U27,U3}) = I({’Ugl,’vgg,vl}) =ViuWUVsand v, € V; for 1 <1i¢ < 3.
Thus for each y € S’, there exists no unique minimum geodetic set contain-
ing y; while the 2-element set {v13,v24} is only a subset of one minimum
geodetic set, namely S. Therefore, f(Gg2,9) = 2. Similarly, f(Gep,9) =0
for all b > 3. [ |

In [6] it was shown that for infinitely many nonnegative integers a, there exist
infinitely many integers b with b > a such that there exists a connected graph
G with f(G,h) = a and f(G,g) = b. Also, for infinitely many nonnegative
integers ¢, there exist infinitely many integers d with d > ¢ such that there
exists a connected graph H with f(H,g) = ¢ and f(H,h) = d. Whether
such graphs exist with prescribed hull numbers as well is an open question.
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