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Abstract

We show that for every integer k ≥ 2 and every k graphs G1,
G2, . . . , Gk, there exists a hull graph with k hull vertices v1, v2, . . . , vk

such that link L(vi) = Gi for 1 ≤ i ≤ k. Moreover, every pair a, b of
integers with 2 ≤ a ≤ b is realizable as the hull number and geodetic
number (or upper geodetic number) of a hull graph. We also show that
every pair a, b of integers with a ≥ 2 and b ≥ 0 is realizable as the hull
number and forcing geodetic number of a hull graph.
Keywords: geodetic set, geodetic number, convex hull, hull set, hull
number, hull graph.
2000 Mathematics Subject Classification: 05C12.

1. Introduction

The best known metric space in graph theory is (V (G), d), where V (G) is
the vertex set of a connected graph G and d(u, v) is the distance between
two vertices u and v in G (defined as the length of a shortest u − v path).
A u− v path of length d(u, v) is called a u− v geodesic. The set (interval)
I(u, v) consists of all vertices lying on some u − v geodesic of G, while for
S ⊆ V (G),

I(S) =
⋃

u,v∈S

I(u, v).

A set S of vertices in a connected graph G is convex if I(S) = S. The convex
hull [S] is the smallest convex set containing S. The convex hull [S] of S
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can also be obtained from the sequence {Ik(S)}, k ≥ 0, where I0(S) = S,
I1(S) = I(S), and Ik(S) = I(Ik−1(S)) for k ≥ 2. From some term on, this
sequence is constant. The convex hull [S] is the set Ip(S), where p is an
integer such that Ip(S) = Ip+1(S). A set S of vertices of G is called a hull
set of G if [S] = V (G), and a hull set of minimum cardinality is a minimum
hull set of G. If a vertex v belongs to every hull set in a graph G, then v is
called a hull vertex. Of course, every hull vertex belongs to every minimum
hull set of G as well. The cardinality of a minimum hull set in G is its hull
number h(G). Clearly, 2 ≤ h(G) ≤ n for every connected graph G of order
n ≥ 2.

The intervals I(u, v) were studied and characterized by Nebeský [12, 13].
These sets were also investigated extensively in the book by Mulder [10],
where it was shown that these sets provide an important tool for studying
metric properties of connected graphs. Convexity in graphs is discussed in
the book by Buckley and Harary [1] and studied by Harary and Nieminen
[8]. The hull number of a graph was introduced by Everett and Seidman [7]
and investigated further in [3], [6] and [11]. We refer to the book by Buckley
and Harary [1] for concepts and results on distance in graphs.

As an illustration of these concepts, consider the graphs shown in
Figure 1. All three graphs have hull number 2. In G0, {x, y} and {x′, y′} are
(disjoint) minimum hull sets. For S1 = {u, v} in G1, I(S1) = V (G1)− {w}
and I(I(S1)) = V (G1). Therefore, [S1] = V (G1) and so S1 is a minimum
hull set of G1. On the other hand, S1 is not the unique minimum hull set
of G1 since G1 has two minimum hull sets, namely S1 and S′1 = {u,w}.
Consequently, G1 does not have a unique minimum hull set. However, the
set {s, t} in the graph G2 of Figure 1 is the unique minimum hull set of G2.
Therefore, for 0 ≤ i ≤ 2, Gi contains exactly i hull vertices.

Figure 1. Three graphs with hull number 2
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For a vertex v in a graph G, the link L(v) of v is the subgraph induced by the
neighbors of v. A vertex v in a graph G is called an extreme vertex if L(v)
is complete. For example, the vertex u in the graph G1 and the vertex s in
the graph G2 of Figure 1 are extreme vertices. Certainly, if v is an extreme
vertex of a graph G, then v is an end-vertex of every geodesic containing v.
This observation gives the following result, which was mentioned in [7].

Theorem A. Every hull set in a graph contains its extreme vertices. In
particular, every hull set in a graph contains its end-vertices.

By Theorem A, it follows that every extreme vertex is a hull vertex. The
converse is not true, however, since the vertex t in the graph G2 of Figure 1
is a hull vertex that is not extreme.

In [6] the forcing hull number of a graph was introduced. For a minimum
hull set S of G, a subset T of S is called a forcing subset of S if S is the
unique minimum hull set containing T . The forcing hull number f(S, h) of
S is the minimum cardinality of a forcing subset for S, while the forcing hull
number f(G,h) of G is the smallest forcing number among the minimum
hull sets of G. For example, let G = K2,3 with partite sets {x, y} and
{u, v, w}. Then S1 = {x, y} and S2 = {u, v} are minimum hull sets of G.
The remaining minimum hull sets are similar to S2. Since S1 is the unique
minimum hull set containing x, it follows that f(S1, h) = 1. On the other
hand, S2 is not the unique minimum hull set containing any of its proper
subsets, so f(S2, h) = 2. Therefore, f(G,h) = 1.

If G is a graph with f(G,h) = 0, then G has a unique minimum hull set
and conversely. Hence f(G,h) = 0 if and only if G contains exactly h(G)
hull vertices. We refer to any graph containing a unique minimum hull set
as a hull graph. Therefore, the graph G2 of Figure 1 is a hull graph, while
G0 and G1 are not. It is the goal of this paper to study hull graphs with
certain prescribed properties or prescribed geodetic parameters.

For a cut-vertex v in a connected graph G and a component H of G−v,
the subgraph H and the vertex v together with all edges joining v and V (H)
is called a branch of G at v. An end-block of G is a block containing exactly
one cut-vertex of G. We present a lemma whose routine proof is omitted.

Lemma 1.1. Let S be a minimum hull set in a nontrivial connected graph G.
Then
(a) no cut-vertex in G belongs to S, and
(b) for each cut-vertex v of G and every branch B of G at v, V (B)∩S 6= ∅.



34 G. Chartrand and P. Zhang

The following corollaries are immediate consequences of Lemma 1.1.

Corollary 1.2. Let S be a minimum hull set in a nontrivial connected graph
G. If B is an end-block of G containing a cut-vertex v, then v /∈ S and
V (B) ∩ S 6= ∅.
Corollary 1.3. If G is a connected graph containing k end-blocks, then
h(G) ≥ k.

2. Hull Graphs Whose Hull Vertices Have
Prescribed Links

In the closing section of the paper by Everett and Seidman [7], they state
that a hull graph need not contain any extreme vertices and give an example
of a hull graph with hull number 3, each of whose hull vertices has degree 2
and whose two neighbors are not adjacent. In this section, we show in fact
that a hull graph can have any prescribed hull number and its hull vertices
can have any prescribed links.

Theorem 2.1. For every integer k ≥ 2 and every k graphs G1, G2, . . . , Gk,
there exists a connected hull graph with hull vertices v1, v2, . . . , vk such that
L(vi) = Gi for 1 ≤ i ≤ k.

Proof. We construct a graph G with the desired property. For each
integer i (1 ≤ i ≤ k), let Fi = K2 + Gi, where V (K2) = {ui, vi}. Then the
graph G is constructed from the graphs Fi by adding a new vertex x and
the k edges xui (1 ≤ i ≤ k). Thus in G, L(vi) = Gi for 1 ≤ i ≤ k. Let
S = {v1, v2, . . . , vk}. Since S is a hull set of G, it follows that h(G) ≤ k and
by Corollary 1.3 h(G) ≥ k. Therefore, h(G) = k. Hence S is a minimum
hull set of G. Assume, to the contrary, that S′ is a minimum hull set of G
distinct from S. By Lemma 1.1, S′ must contain exactly one vertex from
each subgraph Fi (1 ≤ i ≤ k). Since S 6= S′, we may assume that v1 /∈ S′.
However, v1 lies only those geodesics having v1 as an end-vertex or having
both end-vertices in V (F1). Thus, v1 /∈ [S′], which is impossible. Therefore,
S is the unique minimum hull set of G, as desired.

The graph G constructed in the proof of Theorem 2.1 has a cut-vertex and
so is not 2-connected. However, we can extend Theorem 2.1 by modifying
the structure of the graph G in the proof of Theorem 2.1 to construct a
2-connected hull graph with the properties described in Theorem 2.1.
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Corollary 2.2. For every integer k ≥ 2 and every k graphs G1, G2, . . . , Gk,
there exists a 2-connected hull graph with hull vertices v1, v2, . . . , vk such that
L(vi) = Gi for 1 ≤ i ≤ k.

Proof. For each integer i (1 ≤ i ≤ k), let Fi = K3 + Gi, where V (K3) =
{ui, vi, wi}. Then a 2-connected graph G is constructed from the graphs Fi

by adding 2k edges uiwi and wiui+1 for 1 ≤ i ≤ k, where the subscripts are
expressed modulo k. Thus in G, L(vi) = Gi for 1 ≤ i ≤ k. For k = 3, the
graph G is shown in Figure 2.

Figure 2. A 2-connected hull graph G with three hull vertices

A proof similar to that of Theorem 2.1 shows that G has the desired prop-
erties.

3. Hull Graphs with Prescribed Geodetic
Number

In [1] a set S of vertices in a connected graph G is called a geodetic set
if I(S) = V (G). A geodetic set of minimum cardinality is a minimum
geodetic set, and this cardinality is the geodetic number g(G). Certainly,
2 ≤ h(G) ≤ g(G) ≤ n for every connected graph G of order n ≥ 2. For
example, the set S = {x, y, z} in the graph G0 of Figure 1 is a geodetic
set. Since no 2-element subset of V (G0) is a geodetic set of G0, it follows
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that S is a minimum geodetic set of G0 and so g(G0) = 3. The geodetic
number of a graph is discussed in the book by Buckley and Harary [1] and
further studied in [2]; while the geodetic number of an oriented graph has
been studied in [4]. It was shown in [9] that the determination of g(G) is an
NP-hard problem and its decision problem is NP-complete.

For every pair a, b of integers with 2 ≤ a ≤ b, it was shown in [3]
that there exists a connected graph G with h(G) = a and g(G) = b. In this
section, we extend this result by verifying that every pair a, b of integers with
2 ≤ a ≤ b is realizable as the hull number and geodetic number, respectively,
of some connected hull graph G that contains a unique minimum geodetic
set as well. In the following two sections, we extend this result in a different
manner by showing that under certain appropriate conditions, every two
given integers are realizable as the hull number and a certain type of geodetic
numbers of some hull graph.

The following result, which appeared in [2], is an analogue of Theorem A.

Theorem B. Every geodetic set of a graph G contains its extreme vertices.
In particular, every geodetic set of a graph G contains the end-vertices of G.

Similarly, if the set S of extreme vertices of a graph G is a geodetic set of
G, then S is the unique minimum geodetic set of G, but the converse is not
true as the graph G2 of Figure 1 shows. In fact, since the hull graph G
constructed in the proof of Theorem 2.1 has the additional property that
the unique minimum hull set S of G is also the unique minimum geodetic
set of G, we have the following result.

Corollary 3.1. For every integer k ≥ 2 and every k graphs G1, G2, . . . , Gk,
there exists a connected hull graph G with unique minimum geodetic set
S = {v1, v2, . . . , vk} such that L(vi) = Gi for 1 ≤ i ≤ k.

It was shown in [2, 3] that for each integer n ≥ 2, h(Kn) = g(Kn) = n, where
V (Kn) is the unique minimum hull set and unique minimum geodetic set of
Kn. Moreover, for each integer n ≥ 2 and every integer k with 2 ≤ k ≤ n−1,
a tree T of order n with exactly k end-vertices has h(T ) = g(T ) = k, where
the set of end-vertices of T is the unique minimum hull set and unique
geodetic set. Therefore, we have the following result.

Theorem 3.2. For every pair k, n of integers with 2 ≤ k ≤ n, there exists
a connected hull graph G of order n with h(G) = g(G) = k such that G
contains a unique minimum geodetic set.
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We are now prepared to present the main result of this section.

Theorem 3.3. For each pair a, b of integers with 2 ≤ a < b there exists
a connected hull graph G with a unique minimum geodetic set such that
h(G) = a and g(G) = b.

Proof. For each integer i with 1 ≤ i ≤ b−a, let Hi : xi, yi, zi, wi, si, ti be a
copy of C6. Then the graph Fi (1 ≤ i ≤ b−a) is obtained from Hi by adding
a new vertex vi and the two edges tivi and vizi. Then a graph G is formed
from graphs Fi (1 ≤ i ≤ b − a) by adding a new vertices uj (1 ≤ j ≤ a)
and the edges (1) u1x1 and ujwb−a (2 ≤ j ≤ a) and (2) xixi+1, wiwi+1 for
(1 ≤ i ≤ b− a− 1). This completes the construction of G.

We now show that the graph G has the desired properties. Let S =
{u1, u2, . . . , ua} be the set of end-vertices of G. Then I(S) = V (G) −
{v1, v2, . . . , vb−a}. Since I2(S) = [S] = V (G), it follows that S is the unique
minimum hull set of G. So G is a hull graph with h(G) = a. Next we show
that G contains a unique minimum geodetic set of cardinality b.

First we show that g(G) = b. Let S1 = S ∪ {v1, v2, . . . , vb−a}. It is
routine to verify that S1 is a geodetic set and so g(G) ≤ b. Let W be a
geodetic set of G. Certainly, S ⊆ W . Let Vi = {vi, yi, zi, wi, si, ti}, where
1 ≤ i ≤ b−a. Since vi does not lie on any x−y geodesic in G for x, y /∈ Vi, it
follows that W contains at least one vertex from each set Vi (1 ≤ i ≤ b− a)
and so |W | ≥ a + (b− a) = b. Therefore, g(G) = b.

Next we show that S1 is the unique minimum geodetic set of G. Let S2

be a minimum geodetic set of G. By the discussion above, S ⊆ S2 and S2

contains exactly one vertex from each set Vi (1 ≤ i ≤ b− a). Because vi lies
only on those geodesics having vi as one of its end-vertices or having both
end-vertices belonging to Vi, it follows that vi ∈ S2 for 1 ≤ i ≤ b− a. Thus
S2 = S1, and S1 is the unique minimum geodetic set of G.

In every example we have seen thus far, if a hull graph G also contains a
unique minimum geodetic set, then its minimum hull set is a subset of the
minimum geodetic set of G. In fact, it may seem that this is true in general.
However, this is not the case. Indeed, there are hull graphs G possessing
a unique minimum geodetic set that does not contain its unique minimum
hull set as a subset. For example, in the hull graph G of Figure 3, the set
S = {u, v} is the unique minimum hull set of G and the set S′ = {u, x, y} is
the unique minimum geodetic set of G. Of course, S 6⊆ S′.
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Figure 3. A hull graph

4. Hull Graphs with Prescribed Upper Geodetic
Number

A geodetic set S in a connected graph G is minimal if no proper subset of
S is a geodetic set. Of course, every minimum geodetic set is a minimal
geodetic set, but the converse is not true. For example, let G = K2,3 with
partite sets V1 = {x, y} and V2 = {u, v, w}. Then {u, v, w} is a minimal
geodetic set of K2,3 but is not a minimum geodetic set of K2,3 since {x, y}
is its unique minimum geodetic set. The upper geodetic number g+(G) is
the maximum cardinality of a minimal geodetic set of G. So g(K2,3) = 2
and g+(K2,3) = 3. Obviously, h(G) ≤ g(G) ≤ g+(G). Next we show that
every pair a, b of integers with 2 ≤ a ≤ b is realizable as the hull number
and upper geodetic number of some connected hull graph. First we state a
lemma, which is an analogue of Corollary 1.2.

Lemma 4.1. Let S be a minimal geodetic set in a nontrivial connected
graph G. If B is an end-block of G containing a cut vertex v, then v /∈ S
and V (B) ∩ S 6= ∅.

Theorem 4.2. For each pair a, b of integers with 2 ≤ a ≤ b there exists a
connected hull graph G such that h(G) = a and g+(G) = b.

Proof. For a = b, any tree with exactly a end-vertices has the desired
properties. So we assume that a < b. We consider two cases.

Case 1. b = a + 1. We construct a hull graph G with h(G) = a and
g+(G) = a + 1. First assume that a = 2 and b = 3. For the hull graph
G2 of Figure 1, we have seen that h(G2) = 2. Since {s, s′, t′} is a minimal
geodetic set of maximum cardinality of G2, it follows that g+(G2) = 3. So
now let a ≥ 3. Let H = K2,3 with partite sets {u, v, w} and {x, y}. Then
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the graph G is obtained from H by adding a new vertices ui (1 ≤ i ≤ a) and
the a edges uu1, xu2, and wui for 3 ≤ i ≤ a. Let U = {u1, u2, . . . , ua} be
the set of end-vertices of G. Since U is a minimum hull set of G, it follows
that G is a hull graph and h(G) = a. On the other hand, by Lemma 4.1,
G has only two distinct minimal geodetic sets, namely S1 = U ∪ {v} and
S2 = U ∪ {y}. (In fact, S1 and S2 are also minimum geodetic sets of G.)
Therefore, g+(G) = a + 1.

Case 2. b ≥ a + 2. Let H = K2,b−a+2 with partite sets {u, v} and
{v1, v2, . . . , vb−a+2}. Then the graph G is obtained from H by adding a new
vertices ui (1 ≤ i ≤ a) and the a edges u1v1 and uivb−a+2 (2 ≤ i ≤ a). Since
U = {u1, u2, . . . , ua} is a minimum hull set, G is a hull graph with h(G) = a.
It remains to show that g+(G) = b.

Let S = U ∪ {v2, v3, . . . , vb−a+1}. Since I(S) = V (G), it follows that
S is a geodetic set. Next we show that S is a minimal geodetic set of G.
Let x ∈ S. We show that I(S − {x}) 6= V (G). Since every geodetic set
contains the end-vertices of G, we may assume that x /∈ U . So x = vi for
some i with 2 ≤ i ≤ b− a + 1. Since I(S − {vi}) = V (G)− {vi}, it follows
that S is a minimal geodetic set with |S| = b. Therefore, g+(G) ≥ b. On
the other hand, let W be a minimal geodetic set with |W | = g+(G) ≥ b.
Necessarily, U ⊆ W . By Lemma 4.1, v1, vb−a+2 /∈ W . If u, v /∈ W , then
W ⊆ V (G) − {v1, vb−a+2, u, v} and so |W | ≤ b, implying that g+(G) ≤ b.
So we may assume that at least one of u and v belongs to W . Certainly,
u, v ∈ I(u1, u2). Assume first that exactly one of u and v belongs to W , say
u. Then W − {u} is not a geodetic set and so there exists x /∈ I(W − {u}).
Consequently, x /∈ W and x lies on some u − w geodesic, where w ∈ W .
However, each such u− w geodesic is a u− ui geodesic for 1 ≤ i ≤ a. This
implies that x = v1 or x = vb−a+2. But v1, vb−a+2 ∈ I(u1, u2) ⊆ I(W −
{u}), producing a contradiction. Hence both u and v belong to W . Then
{v2, v3, . . . , vb−a+1} ⊆ I(u, v) and I(W −{v2, v3, . . . , vb−a+1}) = I(W ). This
implies that v2, v3, . . . , vb−a+1 /∈ W . Therefore, g+(G) = |W | = 2 + a ≤ b.

5. Hull Graphs with Prescribed Forcing Geodetic
Number

As we have seen, the graphs with a unique minimum hull set are precisely
those having forcing hull number 0. We now define a related concept. For
a minimum geodetic set S of a nontrivial connected graph G, a subset T
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of S is called a forcing subset of S if S is the unique minimum geodetic set
containing T . The forcing geodetic number f(S, g) of S is the minimum car-
dinality of a forcing subset for S, while the forcing geodetic number f(G, g)
of G is the smallest forcing number among all minimum geodetic sets of G.
These concepts were introduced and studied in [5]. Hence if G is a graph
with f(G, g) = a and g(G) = b, then 0 ≤ a ≤ b and there exists a minimum
geodetic set S of cardinality b containing a forcing subset T of cardinality a
but no forcing subset of smaller cardinality.

For a graph G, the forcing geodetic number f(G, g) = 0 if and only if G
has a unique minimum geodetic set. Moreover, f(G, g) = 1 if and only if G
does not have a unique minimum geodetic set but some vertex of G belongs
to exactly one minimum geodetic set. Next we show that every pair a, b of
integers with a ≥ 2 and b ≥ 0 is realizable as the hull number and forcing
geodetic number of some connected hull graph. This verifies a conjecture
stated in [6].

Theorem 5.1. For each pair a, b of integers with a ≥ 2 and b ≥ 0 there
exists a connected hull graph G such that h(G) = a and f(G, g) = b.

Proof. For a ≥ 2 and b = 0, any tree T with exactly a end-vertices is a
hull graph with h(T ) = a and f(T, g) = 0. So we assume that b ≥ 1. For
each pair a, b of integers with a ≥ 2 and b ≥ 1, we construct a connected
hull graph Ga,b with h(Ga,b) = a and f(Ga,b, g) = b.

First we assume that a ≥ 2 and b = 1. To define the graph Ga,1,
we begin with four paths P (i), 0 ≤ i ≤ 3. Let P (0) : u1, u2, . . . , u5, let
P (i) : vi1, vi2, . . . vi,2i+3 for i = 1, 2, and let P (3) : w1, w2, . . . , w9. Then
the graph Ga,1 is obtained from the graphs P (i), 0 ≤ i ≤ 3, by adding a
new vertices x1, x2, . . . , xa and the edges (1) x1u3 and xiw5 for 2 ≤ i ≤ a,
(2) u1v11, v11v21, v21w1, and (3) u5v15, v15v27, v27w9. Since the set X =
{x1, x2, . . . , xa} of end-vertices of Ga,1 is a minimum hull set, it follows that
G is a hull graph with h(Ga,1) = a. It remains to show that f(Ga,1, g) = 1.

We first show that g(Ga,1) = a + 2. Let S = X ∪ {v13, v24}. Since
I(S) = V (Ga,1), it follows that g(Ga,1) ≤ a + 2. On the other hand, for
every v ∈ V (Ga,1)−X, the set X ∪ {v} is not a geodetic set of Ga,1 and so
g(Ga,1) ≥ a+2. Therefore, g(G) = a+2. We now show that f(Ga,1, g) = 1.
Since S′ = X ∪ {v21, v27} is a geodetic set of Ga,1 distinct from S, it follows
that f(Ga,1, g) ≥ 1. On the other hand, S is the unique minimum geodetic
set containing v13 and so f(S, g) = 1. Therefore, f(Ga,1, g) = 1.
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For the remainder of the proof we assume that a, b ≥ 2. The structure
of Ga,1 can be modified to produce a graph Ga,b with h(Ga,b) = a and
f(Ga,b, g) = b. Let P (0) : u1, u2, . . . , u5 and P (b + 2) : w1, w2, . . . , w2b+7 be
paths, and for 1 ≤ i ≤ b + 1, let P (i) : vi1, vi2, . . . vi,2i+3 be paths. Then the
graph Ga,b is obtained from the b + 3 paths P (i), 0 ≤ i ≤ b + 2, by adding a
new vertices x1, x2, . . . , xa and the edges (1) x1u3 and wb+4xi for 2 ≤ i ≤ a,
(2) u1v11, vb+1,1w1, and vi1vi+1,1 for 1 ≤ i ≤ b, and (3) u5v15, vb+1,2b+5w2b+7,
and vi,2i+3vi+1,2i+5 for 1 ≤ i ≤ b. Thus for each b ≥ 2, the graph Ga,b is a hull
graph with unique minimum hull set X = {x1, x2, . . . , xa}. Thus h(Ga,b) =
a. We show only that f(Ga,2, g) = 2 as the proofs that f(Ga,b, g) = b for
b ≥ 3 are similar and are therefore omitted.

Since S = X ∪ {v13, v24, v35} is a minimum geodetic set of G2, it
follows that g(Ga,2) = a + 3. We now show that f(Ga,2, g) = 2. Let
Vi = {vi1, vi2, . . . , vi,2i+3} for 1 ≤ i ≤ 3. If S′ is a minimum geodetic set of
G, then S′ has one of the following three forms: (1) S′ = X∪{v1, v2, v3}, (2)
S′ = X∪{v21, v27, v3}, and (3) S′ = X∪{v31, v39, v1}, where I({v1, v2, v3}) =
I({v21, v27, v3}) = I({v31, v39, v1}) = V1 ∪ V2 ∪ V3 and vi ∈ Vi for 1 ≤ i ≤ 3.
Thus for each y ∈ S′, there exists no unique minimum geodetic set contain-
ing y; while the 2-element set {v13, v24} is only a subset of one minimum
geodetic set, namely S. Therefore, f(Ga,2, g) = 2. Similarly, f(Ga,b, g) = b
for all b ≥ 3.

In [6] it was shown that for infinitely many nonnegative integers a, there exist
infinitely many integers b with b ≥ a such that there exists a connected graph
G with f(G,h) = a and f(G, g) = b. Also, for infinitely many nonnegative
integers c, there exist infinitely many integers d with d ≥ c such that there
exists a connected graph H with f(H, g) = c and f(H,h) = d. Whether
such graphs exist with prescribed hull numbers as well is an open question.
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