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Voroněžská 13, 461 17 Liberec, Czech Republic

e-mail: Bohdan.Zelinka@vslib.cz

Abstract

We deal with the graph operator Pow2 defined to be the comple-
ment of the square of a graph: Pow2(G) = Pow2(G). Motivated by
one of many open problems formulated in [6] we look for graphs that
are 2-periodic with respect to this operator. We describe a class G of
bipartite graphs possessing the above mentioned property and prove
that for any m,n ≥ 6, the complete bipartite graph Km,n can be de-
composed in two edge-disjoint factors from G. We further show that
all the incidence graphs of Desarguesian finite projective geometries
belong to G and find infinitely many graphs also belonging to G among
generalized hypercubes.
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1. Introduction and Notation

The aim of this paper is to investigate the graph operator Pow2 defined and
studied (among many other graph operators) in [6].
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We start by definitions. We give some fundamental definitions of the graph
theory and some special definition from [6] concerning graph operators.

Our graphs are finite, undirected, having neither loops nor multiple
edges. If G is a graph, then V (G) (E(G)) denotes the vertex (edge) set
of G. We denote by dG(u) the degree of the vertex u in G, by dG(u, v) the
distance of the vertices u and v in G and by diam(G) the diameter of G.
If G1, and G2 are graphs, w shall write G1 = G2 if V (G1) = V (G2) and
E(G1) = E(G2); we shall write G1

∼= G2 if G1 and G2 are isomorphic. By
i, j, k, l,m and n we denote integers.

We take from a general theory of graph operators the following concepts
(cf. [6]). Let φ be an operator and G a graph such that φn(G) is defined for
every n ≥ 1 . We say that G is convergent under φ if {φn(G) : n ≥ 1 is finite}.
We say that G is periodic if there is an integer n such that G ∼= φn(G). (Ob-
serve that here only an isomorphy, not equality of G and φn(G) is required.)
The smallest n with this property is called the period of G in φ and G is
called n-periodic in φ. A 1-periodic graph G is called φ-fixed or a fixed point
of φ. A circuit is any sequence of the form (G,φ(G), . . . , φn−1(G), φn(G)),
where G ∼= φn(G). Notice that a subsequence of a circuit may also be a
circuit.

For k ≥ 2, the k-th power Powk(G) of a graph G is defined as follows:
V (Pow, (G)) = V (G), E(Powk(G)) = {{u, v} : u ∈ V (G), v ∈ V (G), 0 <
dG(u, v) ≤ k}. The second power of G is also called the square of G. The
complement G of a graph G is defined by V (G) = V (G), E(G) = {{u, v} :
u ∈ V (G), v ∈ V (G), dG(u, v) > 1}. The graph operator Powk is defined by
Powk(G) = Powk(G) .

Observe that for any k ≥ 2 and G, V (Powk(G)) = V (G), hence G is
convergent under Powk. The trivial circuits are (nK1,Kr, nK1) (where Km

denotes the complete graph on m vertices) and the main question is what
are further circuits.

From the literature certain Pow2-fixed graphs are known. First, for
general k ≥ 2 the graphs {G(l)

k : l ≥ 0} defined below are Powk-fixed. G
(0)
k

is the cycle C2k+3, and for l ≥ 1, G
(l)
k is constructed as follows: let u and

v be two vertices of G
(b)
k = C2k+3 at distance 2; add l new vertices to C

(0)
k

and join each to u and v. (The graphs G
(l)
k are constructed in [1], G

(0)
k also

in [6].)
For k = 2 have two more graphs that are Pow2-fixed. Both of them are

given in [1], the second one also in [6]. Apparently we are still far from the
exhaustive solution of the problem of Pow2-fixed graphs.
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The open problem No. 36 [6] (p. 194) asks to determine Pow2-fixed graphs
and to say something about periods (under this operator) greater than 1.

Below we will be dealing with the second part of this problem. We are
going to describe by simple means (using only the concept of a diameter of
a graph) a class G of bipartite graphs such that

G ∈ G ⇒ Pow2(Pow2(G)) = G.

Hence the graphs from G are 2-periodic with respect to Pow2. Looking for
examples of graphs G we show that
– for any m,n ≥ 6, the complete bipartite graph Km,n can be decomposed

into two edge-disjoint factors from G,
– G contains all incidence graphs of Desarguesian projective geometries

(cf. e.g. [3]),
– in the class of the s.c. generalized hypercubes (cf. [2]) there are infinitely

many graphs from G.

2. Bipartite Graphs that are 2-Periodic with Respect to Pow2

We start our search for graphs that are 2-periodic with respect to Pow2 with
the following statement:

Lemma 1. If a graph G is not connected, then Pow2(Pow2(G)) consists of
isolated vertices.

The proof is straightforward and we omit it.

Because of Lemma 1 we can limit ourselves, in what follows, only to con-
nected graphs. (We will, however, formulate the condition of connectedness
explicitly any time we need it.)

The concept of a bipartite graph will be used in its usual sense; we
will always assume that a bipartite graph has at least 2 vertices. Observe
that for a connected bipartite graph G the vertex set V (G) partitions into
the independent subsets in a unique way. We will say that vertices u, v ∈
V (G) are of the same (different) parity in G if dG(u, v) is even (odd). One
can define the s.c. complementary bipartite graph of G (we denote it by
ComplB(G)) as follows:

V (ComplB(G)) = V (G),

E(ComplB(G)) = {{u, v}; u, v ∈ V (ComplB(G)) and {u, v} 6∈ E(G),

and u, v are of different parity}.
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Observe that ComplB(ComplB(G)) = G.

Lemma 2. Let G be connected and bipartite, let H = ComplB(G). Then

(i) E(H) ⊆ E(Pow2(G)),
(ii) E(H) ∩ E(Pow2(Pow2(G))) = ∅,
(iii) if diam(G) = 3, then Pow2(G) = H,
(iv) if diam(G) > 3, then E(G) \ E(Pow2(Pow(G))) 6= ∅,
(v) if diam(G) = 3 and diam(H) > 3, then there is an edge in

E(Pow2(Pow2(G))) joining two vertices of the same parity in G.

Proof. Let G be connected and bipartite, let V1, V2 be the bipartition
classes of V (G), let H = ComplB(G).

(i) If {u, v} ∈ E(H) then dG(u, v) ≥ 3 and therefore {u, v} ∈ E(Pow2(G)).
(ii) Following (i) we have E(H) ⊆ E(Pow2(G)) and obviously also

E(Pow2(G)) ⊆ E(Pow2(Pow2(G)), hence

E(H) ⊆ E(Pow2(Pow2(G))

and this is what we need.
(iii) Observe that diam(G) = 3 yields

u, v ∈ Vj and u 6= v ⇒ dG(u, v) = 2, j = 1, 2,

u ∈ V1 and u ∈ V2 ⇒ dG(u, v) = 1 or dG(u, v) = 3.

Hence Pow2(G) is the union of G and of the complete graphs on the
vertex sets V1 and V2. This implies

Pow2(G) = H.

(iv) Let diam(G) > 3. Then there are vertices u, v of the same parity
in G such that dG(u, v) > 2. We have {u, v} /∈ Pow2(G) and thus
{u, v} ∈ Pow2(G). The graph Pow2(G) is the union of G and of the
graphs L1, L2 such that V (L1) = V1, V (L2) = V2 and at least one
of L1, L2 is a non-complete graph. The complement Pow2(G) is then
the union of H and of the complements of L1 and L2 with respect
to complete graphs on V1 and V2. We have {u, v} /∈ Pow2(G) and
thus {u, v} ∈ Pow2(G). Evidently then {u, v} ∈ Pow2(Pow2(G)) and
{u, v} /∈ Pow2(Pow2(G)). Finally, {u, v} ∈ E(G) \ E(Pow2(Pow2(G))
and this yields the assertion.
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(v) Let diam(G) = 3 and diam(H) > 3. As in (iii), we have Pow2(G) = H.
Analogously as in (iii) there exists vertices u, v of the same parity
such that dH(u, v) > 3. We have {u, v} ∈ E(Pow2(H)) and thus
{u, v} ∈ E(Pow2(H)) = E(Pow2(Pow2(G)) and the assertion is true.

Remark 1. For a bipartite graph G, diam(G) < 3 if and only if G is a
complete bipartite graph.

Theorem 1. Let G be a connected bipartite graph with at least 3 vertices.
Then the following two assertions are equivalent:

(i) diam(G) = diam(ComplB(G)) = 3,
(ii) Pow2(Pow2(G)) = G.

Proof. Let G be connected and bipartite, let |V (G)| ≥ 3, put

H = ComplB(G).

We first prove (i) ⇒ (ii), so assume diam(G) = diam(H) = 3. Using (iii) of
Lemma 2 we get Pow2(G) = H (from diam(G) = 3) and also Pow2(H) = G
(from diam(H) = 3). Hence

Pow2(Pow2(G)) = Pow2(H) = G.

To prove ¬(i) ⇒ ¬(ii) assume that (i) does not hold. We may assume
(because of Remark 1) that either diam(G) > 3 or diam(H) > 3.

(a) Let first diam(G) > 3. We use (iv) of Lemma 2 and get

E(G) \E(Pow2(Pow2)(G))) 6= ∅.

Hence the proof is finished in the case a).
(b) Assuming diam(G) = 3 and diam(H) > 3 we use (v) of Lemma 2 and

get
G 6= Pow2(Pow2(G))

as well.

An infinite number of examples of bipartite graphs satisfying (i) of Theo-
rem 1 are yielded by the incidence graphs of Desarguesian finite projective
geometries (see e.g. [3]).

An incidence graph of a given finite projective geometry G is the graph
whose vertex set is the union of the point set P and the line set L of G and
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in which a point and a line are adjacent if and only if they are incident in G.
Let G be such a graph. Obviously, G is a bipartite graph with vertex classes
P and L. The axioms of the projective geometry guarantee that to any two
distinct points there exists exactly one line incident to both of them and to
any two distinct lines there exists exactly one point incident to both of them.
This implies that diam(G) = 3. On the other hand, in every Desarguesian
projective geometry G each line is incident with at least three points and
each point is incident with at least three lines. Let H = ComplB(G). In
H, a point and a line are adjacent if and only if they are not incident in
G. To any two distinct points p1, p2 there exists at least one line l incident
with none of them: it suffices to take the line l′ joining p1, p2, to choose a
point p′ on l′ distinct from both p1 and p2 and to choose as l another line
incident with p′. Analogously, to any two distinct lines there exists at least
one point incident with none of them. Hence diam(H) = 3, (i) of Theorem 1
is fulfilled and we have the following

Corollary 1. Let G be the incidence graph of a Desarguesian finite projec-
tive geometry. Then

Pow2(Pow2(G)) = G.

Observe that if G is a connected bipartite graph with vertex classes V1 and
V2, where |V1| = m and |V2| = n, then G and ComplB(G) are edge-disjoint
factors of the complete bipartite graph Km,n whose union is Km,n. It is
natural to ask, in connection with Theorem 1, for which integers m,n there
is a decomposition of Km,n into two edge-disjoint factors of diameter 3.

The answer is given by the following

Theorem 2. A complete bipartite graph Km,n can be decomposed into two
edge-disjoint factors of diameter 3 if and only if min(m,n) ≥ 6.

First we prove the following lemmas:

Lemma 3. Let m,n ≥ 1. If the complete bipartite graph Km,n can be decom-
posed into two edge-disjoint factors of diameter 3 then so can be decomposed
both Km+1,n and Km,n+1.

Proof. Let m,n ≥ 1, assume that Km,n can be decomposed into two
edge-disjoint factors of diameter 3. Obviously, it suffices to show that such
a decomposition exists also for Km+1,n. Assume that Km+1,n has vertex
classes V1 and V2, where |V1| = m + 1 and |V2| = n. Choose two different
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vertices x, y ∈ V1 and consider the complete bipartite graph Km,n with
vertex classes V1 \ {y} and V2. Use the assumption of the statement and
consider G1, G2, two edge-disjoint factors of Km,n fulfilling diam(G1) =
diam(G2) = 3. Let G′

1 (G′
2) be the graph obtained from G1 (G2) by adding

the vertex y and joining it by new edges with exactly those vertices of
V2 which are adjacent in G1 (G2, respectively) to x. Then, for any two
vertices u, v ∈ V (G1), dG′1(u, v) = dG′1(u, u). If u ∈ V (G1), u 6= x, then
dG′1(u, y) = dG′1(u, x). Obviously, dG′1(x, y) = 2. Since diam(G1) = 3,
diam(G′

1) = 3 as well. One shows analogously also diam(G′
2) = 3.

Lemma 4. Let n ≥ 1. The complete bipartite graph K5,n cannot be decom-
posed into two edge-disjoint factors of diameter 3.

Proof. The statement obviously holds for n = 1, 2. Assume that for certain
n ≥ 3 there is a decomposition of K5,n into two edge-disjoint factors G1, G2

such that

diam(G1) = diam(G2) = 3.

We will show that this assumption leads to a contradiction. Let V1 and V2

be the vertex classes of K5,n, assume

V1 = {u1, u2, u3, u4, u5}, |V2| = n.

First we show that for every v ∈ V2, 2 ≤ dG1(u) ≤ 3 and 2 ≤ dG2(u) ≤ 3. In
fact, dG1(v) = 0 means that G1 is not connected, dG1(u) = 1 implies that
the only neighbor of v in G1 is adjacent in G1 to all the vertices of V2 (since
diam(G1) = 3) hence it is an isolated vertex of G2. Finally, dG1(u) ∈ {4, 5}
is equivalent to dG2(v) ∈ {0, 1} and we exclude it in a similar way. Put

D2 = {v ∈ V2; dG1(v) = 2}, D3 = {v ∈ V2; dG1(v) = 3},

and observe that

D2 = {v ∈ V2; dG2(v) = 3}, D3 = {v ∈ V2; dG2(v) = 2}, and D2∪D3 = V2.

It follows that for any v ∈ V2 either dG1(v) = 2 or dG2(v) = 2 (because
dKm,n(u) = 5). Since G1 and G2 play a symmetric role assume without loss
of generality that D2 6= ∅. We are going to prove that D3 6= ∅ as well.
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From diam(G1) = 3 we have

v1, v2 ∈ D2 and v1 6= v2 =⇒ dG1(v1, v2) = 2.

This is only possible (because of definition of D2) if either there is a vertex
in V1 adjacent in G1 to all vertices of D2 (case I) or there are three pairwise
different vertices in V1 (let us call them distinguished vertices of V1) such
that each vertex of D2 is adjacent in G1 to exactly two of them (case II).
We can already conclude that

D3 6= ∅

because otherwise (i.e., if V2 = D2) there would be either a vertex in V1

adjacent in G1 to all vertices of V2 and thus isolated in G2 or two vertices
in V1, each of them isolated in G1.

As a next step we show that the case II cannot occur. Assume on the
contrary that the case II occurs but the case I does not. Let u1, u2, u3 be
the distinguished vertices of V1. Observe that to any ui, 1 ≤ i ≤ 3, there
is a vertex in D2 which is not adjacent in G1 to ui. Consider arbitrary
vertices v ∈ D3, and v′ ∈ D2. Since dG1(v, v′) = 2 and v′ is adjacent in G1

neither to u4 nor to u5, we see that v is adjacent in G1 to at least two of
the distinguished vertices and thus it is adjacent in G1 to at most one of the
vertices u4, u5. Since

dG1(ui, u4) = 2, 1 ≤ i ≤ 3,

and u4 is adjacent in G1 to no vertex of D2, there are two different vertices
v41, v42 ∈ D3 such that each of them is adjacent in G1 to u4 and to two of the
distinguished vertices. The pairs of distinguished vertices adjacent in G1 to
v41, v42 are different because their union must be the whole set {u1, u2, u3}.
An analogous assertion holds for u5, let v51, v52 be the corresponding vertices
of D3. Observe that

dG2(v41) = dG2(v42) = dG2(v51) = dG2(v52) = 2.

Each of the vertices v41, v42 is adjacent in G2 to u5, moreover u41 is adjacent
in G2 to a distinguished vertex x1 ∈ {u1, u2, u3} and v42 is adjacent in G2 to
a distinguished vertex x2 ∈ {u1, u2, u3}, where x1 6= x2. Analogously, each
of the vertices v51, v52 is adjacent in G2 to u4; moreover v51 is adjacent in
G2 to y1 ∈ {u1, u2, u3} and v52 is adjacent in G2 to y2 ∈ {u1, u2, u3}, where
y1 6= y2. At least one of the vertices y1, y2 is different from x1, suppose
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without loss of generality that y1 6= x1. Observe that the vertex v41 is
adjacent in G2 to u5 and to x1, the vertex v51 is adjacent in G2 to u4 and
to y1. Since {u5, x1} ∩ {u4, y1} = ∅ we have

dG2(v41, v51) ≥ 4, hence diam(G2) ≥ 4,

which is a contradiction. So we have shown that the case II cannot occur.
Hence there is a vertex x ∈ V1 which is adjacent in G1 to all the vertices

of D2, and a vertex y ∈ V1 which is adjacent in G2 to all the vertices of D3.
The vertex y is adjacent in G1 only to vertices of D2. If x 6= y then x is
the only vertex in V1 fulfilling dG1(x, y) = 2; for any z ∈ V1 \ {x, y} we have
necessarily

dG1(z, y) ≥ 4, hence diam(G1) ≥ 4,

a contradiction. If x = y then x is adjacent in G1 to all the vertices of D2

and to no vertex of D3. Consider any vertex v ∈ D2; it is adjacent in G1 to
exactly one vertex w ∈ V1 \ {x}. Any path of length 2 from v to a vertex
of D3 in G1 must go through w and therefore w is adjacent in G1 to all the
vertices of D3. On the other hand, each vertex of V1 \ {x} must be adjacent
in G1 to a vertex of D2; otherwise its distance in G1 from x would be greater
than 2. Hence each vertex of V1 \ {x} is adjacent in G1 to all the vertices of
D3. As V1 \ {x} has 4 elements, each vertex of D3 has degree 4, which is a
contradiction accomplishing the whole proof.

Proof of Theorem 2. To prove the theorem it obviously suffices to
exhibit a decomposition of K6,6 into two edge-disjoint factors G1, G2 fulfilling
diam(G1) = diam(G2) = 3 and to apply Lemmas 3 and 4. Let

V (K6,6) = {u1, . . . , u6, v1, . . . , v6}, E(K6,6) = {{ui, vj}; 1 ≤ i, j ≤ 6}.

Put

V (G1) = V (G2) = {u1, . . . , u6, v1, . . . , v6},
E(G1) = {{ui, vj}; 1 ≤ i, j ≤ 6 and j = i or j ≡ i + 1 (mod 6) or

j ≡ i + 3 (mod 6)},

E(G2) = E(K6,6) \ E(G1).

One verifies easily that G1 and G2 posses the required properties.



22 I. Havel and B. Zelinka

Corollary 2. For any m ≥ 6, n ≥ 6, there is a connected bipartite graph G
with vertex classes V1 and V2 such that

(i) |V1| = m, V2 = n,
(ii) Pow2(Pow2(G)) = G and Pow2(Pow2(ComplB(G))) = ComplB(G).

3. Generalized Hypercubes and the Operator Pow2

Now we are going to investigate properties of the generalized hypercubes
with respect to the operator Pow2.

For n ≥ 1 we denote the set {1, . . . , n} by [n] and start with the basic
definition (cf. [2]):

Definition 1. Let n ≥ 1 and S ⊆ [n]. The generalized hypercube Qn(S)
has as vertices all the 0 − 1 vectors of size n. Two vertices are adjacent
in Qn(S) iff their Hamming distance (i.e., the number of coordinates they
differ in) belongs to S.

Observe the following facts: Qn(∅) ' 2nK1, Qn({1, . . . , n}) ' K2n , and
for the well-known graph of the n-dimensional hypercube Qn we have Qn '
Qn({1}) (we will omit in this and similar cases parentheses and write simply
Qn(1)). For n ≥ 1 and any S the vertex sets of Qn and Qn(S) coincide.

For basic properties of generalized hypercubes (in particular those re-
lated to isomorphism) see [2]. Generalized hypercubes (also called distance
graphs in [5]) are special case of the cube-like graphs, defined and studied
in [4]. It is proved in [5] that the chromatic number of a cube-like graph
cannot be 3. Lovász showed that a cube-like graph has an integral spectrum
(cf. [4]).

Given a 0− 1 vector x = (x1, . . . , xn) of size n ≥ 1, denote by w(x) the
number of 1-coordinates of x, i.e., w(x) =

∑n
i=1 xi. (Usually, w(x) is called

the Hamming weight of x.) Observe that for any S ⊆ [n], V (Qn(S)) =
Vo ∪ Ve, where Vo (Ve) is the set of all 0− 1 vectors x with w(x) odd (even,
respectively).

Now we are going to determine the complement and square of a gener-
alized hypercube. For S ⊆ [n] put

C(n)(S) = [n] \ S,

S(n,2) = {i ∈ [n]; ∃ j, k ∈ S such that |j − k| ≤ i ≤ min(j + k, 2n− j − k)
and i ≡ j + k (mod 2)},

P(n)
2 (S) = S ∪ S(n,2).
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Remark 2. If x = (x1, . . . , xn) and y = (y1, . . . , yn) are two 0 − 1 vectors
of size n, define their ⊕-sum (also called modulo 2 sum) as usual by

x⊕ y = (z1, . . . , zn),

where zi = 1 if xi 6= yi and zi = 0 if xi = yi, i = 1, . . . , n. One can see that
given S ⊆ [n] and i ∈ [n], i ∈ S(n,2) if and only if there are 0− 1 vectors x, y
of size n such that w(x) ∈ S, w(y) ∈ S, and i = w(x⊕ y).

We have the following

Lemma 5. Let n 6= 1 and S ⊆ [n]. Then

Qn(S) = Qn(C(n)(S)) and Pow2(Qn(S)) = Qn(P(n)
2 (S)).

Proof. The proof follows directly from definitions of the generalized hy-
percube, complement and the square of a graph.

Using Lemma 5 we can study behavior of generalized hypercubes under the
operators of square and complement by studying certain subsets of [n] under
the operators P(n)

2 and C(n).
Denote by R(n) the composed operator C(n)P(n)

2 C(n)P(n)
2 . We will be

interested in the sets S ⊆ [n] fulfilling

R(n)(S) = S

because of the following statement, which is an immediate consequence of
Lemma 5.

Proposition 1. Let n ≥ 1, let S ⊆ [n]. Then

Pow2(Pow2(Qn(S))) = Qn(S)

if and only if S fulfils diam(Qn(σ)) = 3.

Hence, if S fulfils diam(Qn(S)) = 3 then Qn(S) is 2-periodic with respect
to Pow2. It is an open problem whether this equality is also necessary
for the 2-periodicity with respect to Pow2. (Proposition 1 only deals with
the equality of the graphs Pow2(Pow2(Qn(S))) and Qn(S), not with their
isomorphy.) Observe that (4) is trivially fulfilled if S = ∅ or S = [n]. We will
be interested in the sets S ⊆ [n] fulfilling diam(Qn(S)) = 3 and ∅ 6= S 6= [n]:
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Definition 2. Let n ≥ 1 and S ⊆ [n]. We call S an R(n)-fixed point if
∅ 6= S 6= [n] and diam(Gn(S)) = 3 holds. We say that S is a minimal
R(n)-fixed point if no proper subset of S is an R(n)-fixed point.

The following statement follows directly from the definition.

Proposition 2. Let n ≥ 1, let S ⊆ [n] be an R(n)-fixed point. Then
S′ = C(n)(P(n)

2 (S)) is also an R(n)-fixed point and

S = C(n)(P(n)
2 (S′)).

Introduce still another denotation: For n ≥ 1, let

[n]o = {i ∈ [n]; i is odd},
[n]e = {i ∈ [n], i is even}.

Observe that Qn(S) is not connected if S ⊆ [n]e. If S ⊆ [n]o then Qn(S) is
a bipartite graph with vertex classes Vo and Ve; it is not connected only if
S = ∅ or S = {n}, otherwise it is connected. If S = [n]e then Qn(S) is a
disjoint union of two complete subgraphs induced by Vo and Ve. If [n]e⊆/ S
then Qn(S) contains the above described graph as a spanning subgraph and
moreover it contains at least one matching between Vo and Ve, in this case,
Pow2(Qn(S)) is a complete graph.

Remark 3. Using the above denotation and definition, we observe that the
following facts hold: for any n ≥ 1,

S′ ⊆ S ⊆ [n] =⇒ S′(n,2) ⊆ S(n,2),

S ⊆ [n]e or S ⊆ [n]o =⇒ S(n,2) ⊆ [n]e,

[n](n,2)
o = [n]e.

In what follows generalized hypercubes Qn(S) with S ⊆ [n]o will play an
important role. First, we have the following

Lemma 6. Let n ≥ 1, let S1 and S2 fulfil S1 ⊆ [n]o, S2 ⊆ [n], and S2 6⊆ [n]o.
Then

Qn(S1) 6' Qn(S2).

Proof. Let n, S1 and S2 fulfil the assumptions of Lemma 6. Then either
Qn(S1) ' 2n−1K2 (if n is odd and S1 = {n}) or Qn(S1) is connected and
bipartite (if S1 ⊆ [n]o and S1 6= {n}).

Similarly, for Qn(S2) we have the following possibilities:
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(a) Qn(S2) ' 2n−1K2, where n is even (if S2 = {n}),
(b) Qn(S2) consists of two connected components, each of them having

2n−1 vertices (if S2 ⊆ [n]e and S2 6= {n}),
(c) Qn(S2) is connected and non-bipartite (if S2 ∩ [n]e 6= ∅ and simultane-

ously also S2 ∩ [n]o 6= ∅).
Hence Qn(S1) 6' Qn(S2).

Theorem 3. For n ≥ 1 and S ⊆ [n]o, if

(1) Pow2(Pow2(Qn(S))) ' Qn(S),

then

(2) Pow2(Pow2(Qn(S))) = Qn(S).

Proof. Let n ≥ 1 and S ⊆ [n]o, we have to prove that (1) implies (2).
If n = 1 or S = ∅ then (2) holds. Let us assume n ≥ 1. If n is odd and
S = {n}, (1) does not hold (Lemma 1).

Thus we may assume that ∅ 6= S 6= {n}. After putting

G = Qn(S)

we observe that G is connected, bipartite and has at least 4 vertices. Let
H = ComplB(G). Suppose that (2) does not hold, i.e.,

Pow2(Pow2(G)) 6= G.

By Theorem 1, either diam(G) 6= 3 or diam(H) 6= 3. One easily gets a
contradiction in cases diam(G) = 1, diam(H) = 1, and diam(H) = 2. If
diam(G) = 2 then G is a complete bipartite graph with |V (G)| ≥ 4 and (1)
does not hold. If diam(G) = 3 and diam(H) > 3, then (by (v) of Lemma 2)
Pow2(Pow2(G)) contains an edge joining two vertices of the same parity. If
diam(G) > 3 then (by (ii) and (iv) of Lemma 2) either Pow2(Pow2(G)) is
a proper subgraph of G or again it contains an edge joining two vertices of
the same parity. Altogether,

Pow2(Pow2(G)) = Qn(S′),

where either S′⊆/ S or S′ ∩ [n]e 6= ∅. According to Lemma 6 then (1) does
not hold.
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Theorem 4. For n ≥ 1 and S ⊆ [n]o, the following statements are equiva-
lent:
(i) S(n,2) = ([n]o \ S)(n,2) = [n]e,
(ii) Pow2(Pow2(Qn(S))) = Qn(S).

Proof. For n = 1 and S = {1} or S = ∅ the assertion holds trivially. We
may assume therefore n ≥ 1 and S ⊆ [n]o.

(i) ⇒ (ii): As S ⊆ [n]o, Qn(S) is bipartite. It follows from (i) that
both the bipartition classes of V (Qn(S)) induce complete subgraphs in
Pow2(Qn(S)) and therefore

diam(Qn(S)) = 3.

We observe further that

Pow2(Qn(S)) = Qn([n]o \ S)

and arguing in a similar way as above we conclude that

diam(Q, ([n]o \ S)) = 3

as well. Using Theorem 1, (ii) follows.

(ii) ⇒ (i): Using again Theorem 1 we have

diam(Qn(S)) = diam(Pow2(Qn(5))) = 3

and this already implies (i).

Proposition 3. Let k and n be such that k is odd, k ≥ 3, and |n− 2k| ≥ 1.
Then {k}(n,2) = {k − 2, k + 2}(n,2) = [n]e and both {k} and {k − 2, k + 2}
are minimal R(n)-fixed points.

Proof. Let k and n fulfil the assumptions of the statement. Directly from
the definition we obtain

{k}(n,2) = [n]e and {k − 2, k + 2}(n,2) = [n]e.

Then, using Remark 3, Theorem 4, and Proposition 1 we conclude that
both {k} and {k − 2, k + 2} are R(n)-fixed points. It remains to be shown
that neither {k − 2} nor {k + 2} are R(n)-fixed points. Let us start with
{k − 2}. Since 2k − 2 ∈ [n]e \ {k − 2}(n,2) we get diam(Qn(k − 2)) > 3;
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using Theorem 1 and Proposition 1 we conclude that {k − 2} is not an
R(n)-fixed point. We proceed similarly with {k + 2}: since 2n − 2k − 2 ∈
[n]e \ {k + 2}(n,2) we see that diam(Qn(k + 2)) > 3 and therefore {k + 2} is
not an R(n)-fixed point.

Proposition 4. Let n ≥ 1. If S ⊆ [n]e or [n]e ⊆ S, then S is not an
R(n)-fixed point.

Proof. Assume n ≥ 1 and S ∈ [n], let S be an R(n)-fixed point.
a) If S ⊆ [n]e, then P

(n)
2 (S) ⊆ [n]e, hence

[n]o ⊆ C(n)(P(n)
2 (S)), P(n)

2 (C(n)(P(n)
2 (S))) = [n],

and R(n)(S) = ∅, a contradiction.
b) From [n]e ⊆ S one would have

P(n)
2 (C(n)(P(n)

2 (S))) ⊆ [n]o,

but this can only hold if

C(n)(P(n)
2 (S)) = {n} and n is odd.

Then one has

P(n)
2 (C(n)(P(n)

2 (S))) = {n},
S = C(n)P(n)

2 (C(n)(P(n)
2 (S))) = [n− 1].

However, P(n)
2 ([n− 1]) = [n], which is a contradiction.

One verifies directly (using also Proposition 4) that there are no R(n)-fixed
points for 1 ≤ n ≤ 4 and for n = 8. From the Proposition 3 and the following
Proposition 5 we conclude that for other n R(n)-fixed points do exist.

Proposition 5. Let k ≥ 3, let n = 4k. Then both {2k − 1, 2k + 1} and
{2k − 3, 2k + 3} are minimal R(n)-fixed points.

Proof. Let k ≥ 3 and n = 4k. Directly from the definition we have

{2k − 1, 2k + 1}(n,2) = {2k − 3, 2k + 3}(n,2) = [n]e,

hence according to Remark 3 and Theorem 4 it follows that both {2k − 1,
2k +1} and {2k− 3, 2k +3} are R(n)-fixed points. Similarly as in the proof
of Proposition 3 above we show that they are minimal: this follows from
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n 6∈ {2k− l}(n,2), n 6∈ {2k + 1}(n,2), n 6∈ {2k− 3}(n,2) and n 6∈ {2k + 3}(n,2)

using Theorem 1 and Proposition 1.

Proposition 6. Let n ≥ 1, let A, C ⊆ [n]o fulfil

A ∩ C = ∅ and A(n,2) = C(n,2) = [n]e.

Then every A′ fulfilling

A ⊆ A′ ⊆ [n]o and A′ ∩ C = ∅

is an R(n)-fixed point.

Proof. From the assumptions we have A′(n,2) = [n]e and P(n)
2 (A′) = A′ ∪

[n]e. Further,
P(n)(A′ ∪ [n]e) = [n]o \A′.

Since C(n,2) = [n]e and C ⊆ [n]o \ A′, it follows that ([n]o \ A′)(n,2) = [n]e
and therefore

P(n)
2 ([n]o \A′) = [n]o \A′ ∪ [n]e = C(n)(A′).

This already implies R(n)
2 (A′) = A′.

Example. Let k ≥ 1, let 4k + 1 ≤ n ≤ 4k + 3. It follows from Proposition
3 that

{2k + l}(n,2) = [n]e,

{2k−1, 2k +3}(n,2) = [n]e, and that {2k +1} is a minimal R(n)-fixed point.
From (2′) we obtain (using Remark)

([n]o \ {2k − 1, 2k + 3})(n,2) = [n]e.

Hence, using Proposition 2, we claim that {2k − 1, 2k + 3} is an R(n)-fixed
point (obviously a minimal one).
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4. Concluding Remarks and Open Problems

Our efforts to construct an R(n)-fixed point containing even numbers were
unsuccessful — all R(n)-fixed points we know so far consist only of odd
numbers. This is the reason we propose the following

Conjecture. If S is an R(n)-fixed point for certain n ≥ 1 then S ⊆ [n]o
(i.e., S contains no even number).

In order to clarify the situation with the Conjecture we argue as follows: let
for certain n ≥ 1 be an R(n)-fixed point. Put

B = P
(n)
2 (A), C = C(n)(B), and D = P(n)

2 (C).

So we have A = C(n)(D). Since both A and C are R(n)-fixed points, we
obtain (using Proposition 4)

B ∩ [n]e 6= ∅ 6= D ∩ [n]e.

From here it follows that exactly one of the following possibilities occurs:

I. [n]e ⊆ B and [n]e ⊆ D,

II. [n]e ⊆ B and [n]e 6⊆ D, or [n]e 6⊆ B and [n]e ⊆ D,

III. [n]e 6⊆ B and [n]e 6⊆ D.

The case I is just covered by the Conjecture; from [n]e ⊆ D one derives
A ∩ [n]e = ∅. All R(n)-fixed points we know so far are of the type I.

Now we show that II cannot hold: assume n ≥ 1, let A ⊆ [n] be anR(n)-
fixed point, let B, C,D be given as above, assume without loss of generality
[n]e 6⊆ B and [n]e ⊆ D. Then A ⊆ [n]o; by Proposition 1 and Theorem 4,
A(n,2) = [n]e, hence [n]e ⊆ B, a contradiction.

Our Conjecture would be settled in positive, if we were able similarly
to exclude III.
Coming back from sets of integers that are R(n)-fixed points, to graphs
again, we conclude that we succeeded to find graphs that are 2-periodic
with respect to the operator Pow2. It might be interesting also to consider
periods and powers different from 2; so, in the most general setting we
formulate the following

Problem. Let (i, j) be a pair of integers, i ≥ 1, j ≥ 2, (i, j) 6= (2, 2). Do
there exist n ≥ 1 and S ⊆ [n] such that the graph Qn(S) is i-periodic with
respect to the operator Powj ?
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