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Abstract

In this paper we present some hypergraphs which are chromatically
characterized by their chromatic polynomials. It occurs that these hy-
pergraphs are chromatically unique. Moreover we give some equalities
for the chromatic polynomials of hypergraphs generalizing known
results for graphs and hypergraphs of Read and Dohmen.
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1. Introduction

A simple hypergraph H = (V, E) consists of a finite non-empty set V of
vertices and a family E of edges which are distinct non-empty subsets of V
of the cardinality at least 2. An edge of cardinality h is called h-edge. H is
h-uniform if |e| = h for each edge e ∈ E , i.e., H contains only h-edges. A
hypergraph, no edge of which is a subset of another is called Sperner.

If λ ∈ N , a λ-coloring of H is such a function f : V (H) → {1, 2, . . . , λ}
that for each edge e of H there exist x, y in e for which f(x) 6= f(y). The
number of λ-colorings of H is given by a polynomial f(H, λ) of degree |V (H)|
in λ, called the chromatic polynomial of H.
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A class of hypergraphs is chromatically characterized by their chromatic
polynomials if for each hypergraph H from this class we have f(H, λ) =
f(H ′, λ) if and only if H ′ belongs to this class.

Two hypergraphs H1 and H2 are said to be chromatically equivalent or
χ-equivalent if f(H1, λ) = f(H2, λ). A hypergraph H is said to be chromati-
cally unique or χ-unique if f(H, λ) = f(H ′, λ) implies that H ′ is isomorphic
to H. These notions were first introduced and studied only for graphs by
Chao and Whitehead [2]. Afterwards many scientists, among them Dohmen,
Jones and Tomescu, started to study the chromaticity of hypergraphs. Till
now only few chromatically unique hypergraphs are known (see [7]). In or-
der to present our results dealing with this problem we have to recall some
theorems giving the methods of calculating the chromatic polynomial of any
hypergraph.

Theorem 1 [7]. Let H be a hypergraph with n vertices. Then f(H, λ) =
λn + an−1λ

n−1 + . . . + a1λ, and

ai =
∑

j≥0

(−1)jN(i, j) (1 ≤ i ≤ n− 1),

where N(i, j) denote the number of subhypergraphs of H with n vertices, i
components and j edges.

Theorem 2 [5]. Let e and g be two edges of H with e ⊆ g. There is an
one-to-one correspondence between the λ-colorings of H and those of H−g.

Let H = (V, E) be a Sperner hypergraph, e ∈ E and u, v ∈ e. Let H ′ denote
the hypergraph obtained by replacing e by the new 2-edge {u, v}, and H ′′ be
the hypergraph obtained by identyfying u and v as one vertex and removing
all multiple edges and loops if they arise.

Theorem 3 [5]. f(H, λ) = f(H ′, λ) + f(H ′′, λ).

Let H = (V, E) be a hypergraph and A ⊆ E . A rank function r on E is
defined in the following way:

r(A) = |V (H[A])| − c(H[A]),

where H[A] is the hypergraph induced by the edges of A and c(H[A]) is the
number of its connected components.
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Theorem 4 [4].

f(H,λ) =
∑

A⊆E
(−1)|A|λr(E)−r(A)+1.

2. Chromatically Unique Hypergraphs

Let for q ≥ 1 the symbol Hn
q,q+1 denotes a (q + 1)-uniform hypergraph with

n ≥ q + 1 vertices in which each two of its edges intersect in exactly q
vertices and all of its edges intersect in exactly q vertices. If n is known
then we write Hq,q+1 to denote such a hypergraph. By the definition we
have

∣∣∣E
(
Hn

q,q+1

)∣∣∣ = n − q. We prove that for q ≥ 2 a hypergraph Hq,q+1

is chromatically unique. The condition q ≥ 2 is very important because for
q = 1 a hypergraph Hn

1,2 is a graph K1,n−1, so it is a tree. However trees
are chromatically equivalent but not chromatically unique.

Theorem 5. A hypergraph H is a hypergraph Hq,q+1 with n ≥ q+1 vertices,
where q ≥ 2, if and only if

f (H, λ) = λ(λ− 1)
[
λn−2 + λn−3 + . . . + λn−q + (λ− 1)n−q−1

]
.(1)

Proof. Necessity. The proof uses the induction on q.
According to Theorems 3 and 2 for q = 2 the polynomial f (H2,3, λ)

is the sum of the chromatic polynomials of hypergraphs H ′
2,3 and H ′′

2,3. If
we take two common vertices of all edges of H2,3 as u and v then H ′

2,3 =
K2 ∪ (n− 2)K1 and H ′′

2,3 = K1,n−2. Therefore

f (H2,3, λ) = λn−1(λ− 1) + λ(λ− 1)n−2

= λ(λ− 1)
[
λn−2 + (λ− 1)n−3

]
.

Let us now assume that for 2 ≤ j ≤ q − 1 the chromatic polynomial of
the hypergraph Hj,j+1 with n ≥ j + 1 vertices is given by (1). In order
to calculate f (Hq,q+1, λ) we use Theorems 3 and 2 once again taking any
two of q common vertices of all edges of Hq,q+1 as u and v. Then H ′

q,q+1 =
K2 ∪ (n − 2)K1 and H ′′

q,q+1 = Hn−1
q−1,q, and by the induction hypothesis we

have
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f (Hq,q+1, λ) = f (K2 ∪ (n− 2)K1, λ) + f
(
Hn−1

q−1,q, λ
)

= λn−1(λ− 1) + λ(λ− 1)
[
λn−3 + λn−4

+ . . . + λn−1−(q−1) + (λ− 1)n−1−(q−1)−1
]

= λ(λ− 1)
[
λn−2 + λn−3 + . . . + λn−q + (λ− 1)n−q−1

]
.

Sufficiency. Let H be a hypergraph with the chromatic polynomial given
by (1). Then

f(H,λ) = λn +
(n−q

1

)
λn−q(−1)1 +

(n−q
2

)
λn−q−1(−1)2

+ . . . +
( n−q
n−q−1

)
λ2(−1)n−q−1 +

(n−q
n−q

)
λ1(−1)n−q

= λn +
∑n−q

j=1

(n−q
j

)
λn−q+1−j(−1)j .

We assume that f(H, λ) = anλn + an−1λ
n−1 + . . . + a1λ + a0, where an = 1,

and analyse all its coefficients.
1. Since an 6= 0 then f(H,λ) is of degree n, and so |V (H)| = n.
2. We have a1 6= 0 and according to Theorem 1, a1 =

∑
j≥0 N(1, j), so there

exists at least one connected spanning subhypergraph of H. Therefore
H has to be connected.

3. Using the induction we shall show that H has no j-edges for 2 ≤ j ≤ q.
(a) By Theorem 4, an−1 =

∑
A⊆E(−1)|A|, where each A is a subset of

E such that r(E) − r(A) + 1 = n − 1. Then r(A) = |V (H[A])|−
c(H[A]) = 1 because r(E) = n − 1. H is connected so A could only
be a set consisting of exactly one 2-edge. However, by (1) we have
an−1 = 0, so H has no 2-edges.

(b) Since an−2 = an−3 = . . . = an−q+1 = 0 then let us assume that
H has no j-edges for any 1 ≤ j ≤ t, where t < q. According to
Theorem 4 we have an−t =

∑
A⊆E(−1)|A| with r(A) = t. By the

induction hypothesis the condition r(A) = t holds if and only if all
sets A consist of exactly one (t + 1)-edge. If any A contained an
edge with the number of vertices greater than t + 1 then it would be
r(A) > t. Since an−t = 0 then H has no (t + 1)-edges.
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By the induction we conclude that H has no j-edges for 2 ≤ j ≤ q.
4. According to (1), an−q = −(n − q), but by Theorem 4 we have an−q =∑

A⊆E(−1)|A| with r(A) = q. H is connected and has no j-edges for
all 2 ≤ j ≤ q, so each set A has to consist of exactly one (q + 1)-edge.
Therefore the number of (q + 1)-edges in H is equal to n− q.

5. By Theorem 4 we have an−q−1 =
∑

A⊆E(−1)|A| with r(A) = q + 1. Ac-
cording to the previous conclusions each set A could be of the following
form:

• A consists of i, where 2 ≤ i ≤ q+2, (q+1)-edges and |V (H[A])| = q+2;
a set of this type having i edges will be denoted by Xi;

• A consists of exactly one (q+2)-edge; a set of this type will be denoted
by Y .

Then
an−q−1 =

∑
X2⊆E(−1)2 +

∑
X3⊆E(−1)3

+ . . . +
∑

Xq+2⊆E(−1)q+2 +
∑

Y⊆E(−1)1

= x2 − x3 + . . . + (−1)q+2xq+2 − y,

where the numbers xi =
∑

Xi⊆E 1, for 2 ≤ i ≤ q + 2, and y =
∑

Y⊆E 1
are, of course, non-negative. It is easy to see that xi ≥

(i+1
i

)
xi+1 for every

i ∈ {2, 3, . . . , q + 1} and x2 ≤
(n−q

2

)
because the number of (q + 1)-edges in

H equals n − q. According to (1) we have an−q−1 =
(n−q

2

)
. We prove that

x2 =
(n−q

2

)
and x3 = x4 = . . . = xq+2 = y = 0. To this end let us consider

two cases.

(a) If q is even then

(n−q
2

)
= an−q−1

= x2 − x3 + x4 − x5 + x6 − . . .− xq+1 + xq+2 − y

≤ (n−q
2

)− (4
3

)
x4 + x4 −

(6
5

)
x6 + x6 − . . .− (q+2

q+1

)
xq+2 + xq+2 − y

=
(n−q

2

)− [3x4 + 5x6 + . . . + (q + 1)xq+2 + y].

Since the numbers xi and y are non-negative we obtain x4 = x6 = . . . =
xq+2 = y = 0. Thus
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(n−q
2

)
= x2 − (x3 + x5 + . . . + xq+1)

≤ (n−q
2

)− (x3 + x5 + . . . + xq+1),

so x3 = x5 = . . . = xq+1 = 0 and x2 =
(n−q

2

)
.

(b) If q is odd then
(n−q

2

)
= an−q−1

= x2 − x3 + x4 − . . .− xq + xq+1 − xq+2 − y

≤ (n−q
2

)− (4
3

)
x4 + x4 − . . .− (q+1

q

)
xq+1 + xq+1 − xq+2 − y

=
(n−q

2

)− (3x4 + 5x6 + . . . + qxq+1 + xq+2 + y) .

Similarly as it was above we obtain x4 = x6 = . . . = xq+1 = 0 and
xq+2 = y = 0. Thus

(n−q
2

)
= x2 − (x3 + x5 + . . . + xq)

≤ (n−q
2

)− (x3 + x5 + . . . + xq),

so x3 = x5 = . . . = xq = 0 and x2 =
(n−q

2

)
.

In both cases we obtain α2 =
(n−q

2

)
and x3 = · · · = xq+2 = y = 0. It implies

that H has no (q +2)-edges and any number of its (q +1)-edges intersect in
exactly q vertices.

6. We shall prove by the induction that there are no (q + j)-edges in H for
2 ≤ j ≤ n− q.
(a) The case j = 2 was considered above.
(b) Let us suppose that for a certain t < n − q H has no (q + j)-edges

for dla 2 ≤ j ≤ t. According to (1) we have an−q−t =
(n−q

t+1

)
(−1)t+1,

while by Theorem 4, an−q−t =
∑

A⊆E(−1)|A| with r(A) = q+t. Since
any number of (q + 1)-edges of H intersect in exactly q vertices and
by the induction hypothesis we obtain

an−q−t =
∑

X⊆E
(−1)t+1 +

∑

Y⊆E
(−1)1,
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where X consists of t + 1 (q + 1)-edges, |V (H[X])| = q + t + 1 and
c(X) = 1, while Y consists of exactly one (q + t + 1)-edge. Since∑

X⊆E(−1)t+1 =
(n−q

t+1

)
(−1)t+1, so

∑
Y⊆E 1 = 0. It means that H has

no (q + t + 1)-edges.
By the induction we conclude that there are no (q + j)-edges in H for
2 ≤ j ≤ n− q.

The formula (1) implies the following properties of H:
• H is connected,
• |V (H)| = n,
• H is (q + 1)-uniform,
• each two of its edges intersect in q vertices,
• all of its edges intersect in q vertices.

It means that H is a hypergraph Hn
q,q+1.

Corollary 1. A hypergraph Hq,q+1 with n ≥ q + 1 vertices, where q ≥ 2, is
chromatically unique.

3. Some Generalizations of Known Theorems

The next theorem is a generalization for hypergraphs the corresponding
result of Read [6] for graphs.

Theorem 6. If H is a hypergraph such that H = H1 ∪ . . . ∪Hk, where

Hi ∩Hj = Kp for i 6= j and
k⋂

i=1

Hi = Kp,

where Kp is a complete graph with p vertices, then

f (H, λ) = [f (Kp, λ)]1−k f (H1, λ) f (H2, λ) · · · f (Hk, λ) .

Proof. The number of ways to color a common graph Kp with λ colors is
equal to f(Kp, λ). If we fix the colors of p vertices of Kp then there exist
f(Hi, λ)/f(Kp, λ) ways of coloring the remaining vertices of each hypergraph
Hi. Therefore

f (H, λ) = f (Kp, λ)
f (H1, λ)
f (Kp, λ)

f (H2, λ)
f (Kp, λ)

· · · f (Hk, λ)
f (Kp, λ)

,

which completes the proof.
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Another generalization deals with the chromatic polynomials of hypertrees.
A hypergraph is linear if any two of its edges do not intersect in more than
one vertex. A hypertree is a hypergraph which is linear, connected and
contains no cycle. (We use the term a cycle in a hypergraph in the meaning
of Berge [1].) Dohmen gave the explicit formula of the chromatic polynomial
of h-uniform hypertree.

Theorem 7 [3]. If T h
m is an h-uniform hypertree with m edges, where h ≥ 2

and m ≥ 0, then

f
(
T h

m, λ
)

= λ
(
λh−1 − 1

)m
.

This theorem needs the uniformity of a hypertree. We proved the theorem
related to a hypertree with arbitrary edges.

Theorem 8. If T i1,i2,...,ik
n1,n2,...,nk

is a hypertree with ns is-edges for 1 ≤ s ≤ k,
where is ≥ 2 for each s and n1 + n2 + . . . + nk ≥ 0, then

f
(
T i1,i2,...,ik

n1,n2,...,nk
, λ

)
= λ

(
λi1−1 − 1

)n1
(
λi2−1 − 1

)n2 · . . . ·
(
λik−1 − 1

)nk
.

Proof. The proof uses the induction on the number of edges of a hypertree.
The first step is a consequence of Theorem 7 for m = 0. Let us now assume
that for a certain number of edges not less than 1 a hypertree T i1,i2,...,ik

n1,n2,...,nk

has the chromatic polynomial given by Theorem 8. Now we calculate the
chromatic polynomial of a hypertree which comes into being by adding one
edge to T i1,i2,...,ik

n1,n2,...,nk
in such a way that this edge and T i1,i2,...,ik

n1,n2,...,nk
have exactly

one vertex in common. Without loss of generality we can assume that we
add one i1-edge. According to Theorem 6 for p = 1 we have

f
(
T i1,i2,...,ik

n1+1,n2,...,nk
, λ

)

=
λ(λi1−1−1)n1(λi2−1−1)n2 ···(λik−1−1)nkλ(λi1−1−1)

λ

= λ
(
λi1−1 − 1

)n1+1 (
λi2−1 − 1

)n2 · · · (λik−1 − 1
)nk ,

which completes the proof.
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