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Abstract

In this paper we present some hypergraphs which are chromatically
characterized by their chromatic polynomials. It occurs that these hy-
pergraphs are chromatically unique. Moreover we give some equalities
for the chromatic polynomials of hypergraphs generalizing known
results for graphs and hypergraphs of Read and Dohmen.
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1. INTRODUCTION

A simple hypergraph H = (V,&) consists of a finite non-empty set V of
vertices and a family £ of edges which are distinct non-empty subsets of V'
of the cardinality at least 2. An edge of cardinality h is called h-edge. H is
h-uniform if |e| = h for each edge e € &, i.e., H contains only h-edges. A
hypergraph, no edge of which is a subset of another is called Sperner.

If A € NV, a A-coloring of H is such a function f:V(H) — {1,2,...,\}
that for each edge e of H there exist x,y in e for which f(z) # f(y). The
number of A-colorings of H is given by a polynomial f(H, \) of degree |V (H)|
in A, called the chromatic polynomial of H.
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A class of hypergraphs is chromatically characterized by their chromatic
polynomials if for each hypergraph H from this class we have f(H,\) =
f(H',\) if and only if H' belongs to this class.

Two hypergraphs H; and Hs are said to be chromatically equivalent or
x-equivalent if f(Hy,\) = f(H2,A). A hypergraph H is said to be chromati-
cally unique or x-unique if f(H,\) = f(H',\) implies that H' is isomorphic
to H. These notions were first introduced and studied only for graphs by
Chao and Whitehead [2]. Afterwards many scientists, among them Dohmen,
Jones and Tomescu, started to study the chromaticity of hypergraphs. Till
now only few chromatically unique hypergraphs are known (see [7]). In or-
der to present our results dealing with this problem we have to recall some
theorems giving the methods of calculating the chromatic polynomial of any
hypergraph.

Theorem 1 [7]. Let H be a hypergraph with n vertices. Then f(H,\) =
AN+ A"+ a ), and

a;=>» (-1N(i,j) (1<i<n-1),
Jj=>0

where N(i,j) denote the number of subhypergraphs of H with n vertices, i
components and j edges.

Theorem 2 [5]. Let e and g be two edges of H with e C g. There is an
one-to-one correspondence between the A-colorings of H and those of H —g.

Let H = (V, &) be a Sperner hypergraph, e € € and u,v € e. Let H' denote
the hypergraph obtained by replacing e by the new 2-edge {u, v}, and H” be
the hypergraph obtained by identyfying u and v as one vertex and removing
all multiple edges and loops if they arise.

Theorem 3 [5]. f(H,\) = f(H',\) + f(H",\).

Let H = (V,&) be a hypergraph and A C €. A rank function r on £ is
defined in the following way:

r(A) = [V(H[A])| — c(H[A]),

where H[A] is the hypergraph induced by the edges of A and c(H[A]) is the
number of its connected components.
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Theorem 4 [4].

f(H, )\) — Z (_1)|A|>\r(€)7T(A)+1'
ACE

2. CHROMATICALLY UNIQUE HYPERGRAPHS

Let for ¢ > 1 the symbol H} ., denotes a (¢ + 1)-uniform hypergraph with
n > q + 1 vertices in which each two of its edges intersect in exactly ¢
vertices and all of its edges intersect in exactly ¢ vertices. If n is known
then we write H, 441 to denote such a hypergraph. By the definition we
have ’8 (ngﬂ)’ = n —q. We prove that for ¢ > 2 a hypergraph H, 441
is chromatically unique. The condition ¢ > 2 is very important because for
q = 1 a hypergraph H{'y is a graph Kj,—1, so it is a tree. However trees
are chromatically equivalent but not chromatically unique.

Theorem 5. A hypergraph H is a hypergraph Hy g1 with n > q+1 vertices,
where ¢ > 2, if and only if

(1) f(HA) = MA=1) A2 4 X073 A (A= 1)l

Proof. Necessity. The proof uses the induction on q.

According to Theorems 3 and 2 for ¢ = 2 the polynomial f (Ha3,\)
is the sum of the chromatic polynomials of hypergraphs Hj 3 and Hy 3. If
we take two common vertices of all edges of Hy3 as u and v then H§73 =
Ky U (n —2)K; and 5'73 = K n—2. Therefore

f(Hoz,\) =X1A—1)+ A\ —1)"2
=AXA =D [N\ 24+ (A =13,

Let us now assume that for 2 < j < ¢ — 1 the chromatic polynomial of
the hypergraph H; ;i1 with n > j 4 1 vertices is given by (1). In order
to calculate f(Hgq41,A) we use Theorems 3 and 2 once again taking any
two of ¢ common vertices of all edges of Hy 441 as u and v. Then H, .4 =
KyU(n—2)K;y and H) .y = H;:l{q, and by the induction hypothesis we
have
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F(Hygii,A) = f (Ko U (n—2)Ky, A) + f (HP7 )

= A = 1)+ A — 1) [A73 4 vt
I )\nflf(qfl) + ()\ _ 1)n717(q71)71:|

=AA =) N2 N AT (A= )]

Sufficiency. Let H be a hypergraph with the chromatic polynomial given
by (1). Then

f(H, )\) . (HIQ))\n*q(_l)l + (HEQ))\n*qfl(_l)Q
+o o (TN )T QTN (=)

n—q

_)\n+zn Q(n Q)/\n q+1 _]( 1)j'

We assume that f(H,\) = ap A" + a1 A" '+ ...+ a1\ +ag, where a, = 1,

and analyse all its coefficients.

1. Since a,, # 0 then f(H, ) is of degree n, and so |V (H)| = n.

2. We have a1 # 0 and according to Theorem 1, a1 = 3~ N(1, ), so there
exists at least one connected spanning subhypergraph of H. Therefore
H has to be connected.

3. Using the induction we shall show that H has no j-edges for 2 < j <gq.

(a)

By Theorem 4, ap,_1 = Y 4ce(—1)41, where each A is a subset of
& such that 7(§) —r(A) + 1 = n — 1. Then r(A) = |V(H[A])|-
c(H[A]) = 1 because 7(£) =n — 1. H is connected so A could only
be a set consisting of exactly one 2-edge. However, by (1) we have
an—1 =0, so H has no 2-edges.

Since ap—2 = ap—3 = ... = ap—g+1 = 0 then let us assume that
H has no j-edges for any 1 < j < t, where t < ¢. According to
Theorem 4 we have a,_; = Y. 4ce(—1)4 with r(A) = t. By the
induction hypothesis the condition r(A) = t holds if and only if all
sets A consist of exactly one (¢ + 1)-edge. If any A contained an
edge with the number of vertices greater than ¢t + 1 then it would be
r(A) > t. Since ap—¢ = 0 then H has no (¢ + 1)-edges.
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By the induction we conclude that H has no j-edges for 2 < j <gq.

4. According to (1), an—q = —(n — @), but by Theorem 4 we have a,_q =
ZAgg(—l)M' with 7(A) = ¢q. H is connected and has no j-edges for
all 2 < j < g, so each set A has to consist of exactly one (¢ + 1)-edge.
Therefore the number of (¢ + 1)-edges in H is equal to n — q.

5. By Theorem 4 we have a,,_q—1 = ZAgg(—l)M' with 7(A) = ¢+ 1. Ac-
cording to the previous conclusions each set A could be of the following
form:

e A consists of i, where 2 < i < g+2, (¢g+1)-edges and |V (H[A])| = ¢+2;
a set of this type having ¢ edges will be denoted by Xj;
e A consists of exactly one (¢+2)-edge; a set of this type will be denoted
by Y.
Then
an—gq-1 = Dx,ce(—1)* + X x,ce(=1)?

+...+ ZXq+2Qc9(_1)q+2 + Eygs(_l)l

= a2 — a3+ ...+ (=1)" g2 —y,

where the numbers z; = > x.c¢1, for 2 <@ < ¢+ 2, and y = >yl
are, of course, non-negative. It is easy to see that x; > (itl)xiﬂ for every
i€{2,3,...,q+ 1} and x5 < (",%) because the number of (¢ + 1)-edges in
H equals n — g. According to (1) we have ap_q—1 = (",7). We prove that
zy = (";9) and 23 = x4 = ... = 2442 = y = 0. To this end let us consider
two cases.

(a) If g is even then

(n;q) = Op—g-1
=22 — T3+ T4 —X5+Tg— ... — Tgr1 T Tg42 — Y
< ("57) = (5)za + 24— (§)we + w6 — .. = (T1)7gr2 + Tgr2 —y

— (”;q) — [Bxa +5x6+ ...+ (¢ + D)zgr2 + yl.

Since the numbers x; and y are non-negative we obtain x4 = xg = ... =
ZTg+2 =y = 0. Thus
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(n;q) = T2 — (x3+x5+...+:cq+1)

< (") - (@3 +as+.. .+ 2g41),
S0 x3 =x5 = ... = Tqy1 = 0 and zp = (", 9).

(b) If ¢ is odd then

("29) = an—q—1
=T —T3+ X4 — ... —Tg+ Tg41 — Tgy2 — Y
< (") - (g)m T4 (qurl)qu +Tgp1 — Tgt2 — Y

= ("3%) — (34 + 526 + ... + Qg 11 + Tqr2 + ).

Similarly as it was above we obtain 4 = 26 = ... = 2441 = 0 and
ZTg42 =y = 0. Thus

(n;q)zxg—(x3+$5+...+xq)

< (") = (w3t a5+ ...+ x4),
sox3=x5=...=z,=0and z = (";9).
In both cases we obtain ap = (",?) and x3 = - - = xg42 = y = 0. It implies
that H has no (q+ 2)-edges and any number of its (¢ + 1)-edges intersect in

exactly g vertices.

6. We shall prove by the induction that there are no (¢ + j)-edges in H for
2<j<n-—gq.
(a) The case j = 2 was considered above.

(b) Let us suppose that for a certain t < n — ¢ H has no (q + j)-edges
for dla 2 < j < t. According to (1) we have an—q—+ = (3 7)(~=1)"*,
while by Theorem 4, a,—q—; = EAgg(—l)V" with 7(A) = ¢+t. Since
any number of (¢ + 1)-edges of H intersect in exactly g vertices and

by the induction hypothesis we obtain

n—g-t= Y (=1)F+ Y (-1},

XCE YCE
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where X consists of ¢t + 1 (¢ + 1)-edges, |V(H[X])| =¢+t+ 1 and
c¢(X) = 1, while Y consists of exactly one (¢ + ¢t + 1)-edge. Since
Yxce(=1)F = (1D (=1, s0 Yy ce 1 = 0. It means that H has
no (¢ +t+ 1)-edges.
By the induction we conclude that there are no (¢ + j)-edges in H for
25j<n—gq.
The formula (1) implies the following properties of H:
e H is connected,
V() =n,
H is (¢ + 1)-uniform,

each two of its edges intersect in ¢ vertices,

all of its edges intersect in ¢ vertices.

It means that H is a hypergraph H' ;. [

Corollary 1. A hypergraph Hy 411 with n > q + 1 vertices, where ¢ > 2, is
chromatically unique.

3. SOME GENERALIZATIONS OF KNOWN THEOREMS

The next theorem is a generalization for hypergraphs the corresponding
result of Read [6] for graphs.

Theorem 6. If H is a hypergraph such that H = Hy U ... U Hy, where
k
H,NH; =K, for i#j and ﬂHi:Kp,
i=1

where K, is a complete graph with p vertices, then

FOEHN) = [f (Kp, N8 F(HLA) f (HoN) - f (Hi, N

Proof. The number of ways to color a common graph K, with A colors is
equal to f(Kp,A). If we fix the colors of p vertices of K, then there exist
f(Hi, N)/ f(Kp, X) ways of coloring the remaining vertices of each hypergraph
H;. Therefore

f(H,A) f(He A)  f (Hi, A)
FKp X) f(Kp, X)) f (Kp, A)

which completes the proof. [

fHA) = [ (Kp,A)
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Another generalization deals with the chromatic polynomials of hypertrees.
A hypergraph is linear if any two of its edges do not intersect in more than
one vertex. A hypertree is a hypergraph which is linear, connected and
contains no cycle. (We use the term a cycle in a hypergraph in the meaning
of Berge [1].) Dohmen gave the explicit formula of the chromatic polynomial
of h-uniform hypertree.

Theorem 7 [3]. IfT" is an h-uniform hypertree with m edges, where h > 2
and m > 0, then
F(ThA) =2 (A =1)"

This theorem needs the uniformity of a hypertree. We proved the theorem
related to a hypertree with arbitrary edges.

Theorem 8. If Tivi2-ik s q hypertree with ng is-edges for 1 < s < k,

N1,N2,e 05N

where 15 > 2 for each s and ny +ng + ...+ ng >0, then

(Tt A) = A (A= 1) (A1) (e 1)

n1,N2,...,NE?

Proof. The proof uses the induction on the number of edges of a hypertree.
The first step is a consequence of Theorem 7 for m = 0. Let us now assume
that for a certain number of edges not less than 1 a hypertree T,?l%“;%
has the chromatic polynomial given by Theorem 8. Now we calculate the
chromatic polynomial of a hypertree which comes into being by adding one
edge to T,?l%“;% in such a way that this edge and Tflllz,%“;% have exactly
one vertex in common. Without loss of generality we can assume that we

add one i1-edge. According to Theorem 6 for p = 1 we have

11,82, 0k
f (Tm—&-lmz,-n,nk’ )‘)

_ )\(}\ilfl_l)"l (Ai271_1)n2.‘_(Aik—l_l)"kA(Ailfl_l)
- A

= A (Ao (e )R (i )

which completes the proof. [ ]
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