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Abstract

An additive hereditary property of graphs is a class of simple gra-
phs which is closed under unions, subgraphs and isomorphisms. If
P1, . . . ,Pn are properties of graphs, then a (P1, . . . ,Pn)-decomposition
of a graph G is a partition E1, . . . , En of E(G) such that G[Ei], the sub-
graph of G induced by Ei, is in Pi, for i = 1, . . . , n. We define P1⊕· · ·⊕
Pn as the property {G ∈ I : G has a (P1, . . . ,Pn)-decomposition}.
A property P is said to be decomposable if there exist non-trivial he-
reditary properties P1 and P2 such that P = P1 ⊕ P2. We study the
decomposability of the well-known properties of graphs Ik, Ok, Wk,
Tk, Sk, Dk and Op.
Keywords: property of graphs, additive, hereditary, decomposable
property of graphs.
2000 Mathematics Subject Classification: O5C70.

1 Introduction

Following [2] we denote the class of all finite simple graphs by I. A property
of graphs is a non-empty isomorphism-closed subclass of I. The fact that
H is a subgraph of G is denoted by H ⊆ G and the disjoint union of two
graphs G and H is denoted by G ∪ H. A property P is called hereditary
if G ∈ P and H ⊆ G implies H ∈ P; P is called additive if G ∪ H ∈ P
whenever G ∈ P and H ∈ P. Throughout this paper the term property (of
graphs) is used to refer to an additive hereditary property (of graphs).
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Example. Some well-known properties are given in the list below.
O = {G ∈ I : E(G) = ∅},
Ik = {G ∈ I : G does not contain Kk+2},
Ok = {G ∈ I : each component of G has at most k + 1 vertices},
Wk = {G ∈ I : the length of any path in G is at most k},
Tk = {G ∈ I : G contains no subgraph homeomorphic to Kk+2 or

Kb k+3
2
c,d k+3

2
e},

Sk = {G ∈ I : the maximum degree of G is at most k},
Dk = {G ∈ I : G is k-degenerate, i.e. every subgraph of G has a vertex of

degree at most k}.
We remark that D1 = T1 is the class of all forests so that
SF = D1 ∩W2 = {G ∈ I : every component of G is a star }.
The properties I and O are defined to be the trivial properties and an
edgeless graph is called a trivial graph. We use the phrase G has property P
to denote the fact that G ∈ P.

2 Decomposability

Let P1, . . . ,Pn be properties of graphs. A (P1, . . . ,Pn)-decomposition of a
graph G is a partition E1, . . . , En of E(G) such that G[Ei], the subgraph
of G induced by Ei, has property Pi, for i = 1, . . . , n. We denote by P1 ⊕
· · · ⊕ Pn the property {G ∈ I : G has a (P1, . . . ,Pn)-decomposition}. If
G ∈ P1 ⊕ · · · ⊕ Pn we also write G = G1 ⊕ · · · ⊕ Gn where Gi = G[Ei] for
i = 1, . . . , n. If P1 = · · · = Pn = P, then the property P1 ⊕ · · · ⊕ Pn is also
denoted by nP. Note that O is the identity element for ⊕ in the sense that
P ⊕O = P for every property P. It is easy to see that if Pi is additive and
hereditary for every i then P1 ⊕ · · · ⊕ Pn is also additive and hereditary.

If L is a set of hereditary properties and P ∈ L then P is said to be
decomposable in L if there exist non-trivial hereditary properties P1 and P2

in L such that P = P1 ⊕P2; otherwise P is said to be indecomposable in L.
Throughout this paper we use for L the lattice La

⊆ of all additive hereditary
properties of graphs — see [2] for more details on this lattice.

The property P◦Q is the vertex-analoque of P⊕Q. For the sake of com-
pleteness we give the necessary definitions: For given properties P1, . . . ,Pn,
a vertex (P1, . . . ,Pn)-partition of a graph G is a partition V1, . . . , Vn of V (G)
such that for each i = 1, . . . , n the induced subgraph G[Vi] has property Pi.
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(In this context it is convenient to regard the empty set ∅ as a set indu-
cing a subgraph with every property P.) The product P1 ◦ · · · ◦ Pn of the
properties P1, . . . ,Pn is now defined as the set of all graphs having a ver-
tex (P1, . . . ,Pn)-partition; each Pi is called a factor of this product. If
P1 = · · · = Pn = P, then we write Pn = P1 ◦ · · · ◦ Pn. As an example we
note that Ok denotes the class of all k-colourable graphs.

These operations come together in the following distributive law which
is proved in [3].

Lemma 21. Let P, Q1 and Q2 be additive and hereditary properties of
graphs. Then P ⊕ (Q1 ◦ Q2) = (P ⊕Q1) ◦ (P ⊕Q2).

A property R is reducible if there are properties P and Q such that R =
P ◦ Q; otherwise it is irreducible. Reducible properties play an important
role in the lattice La

⊆ because of following Unique Factorization Theorem of
Mihók, Semanǐsin and Vasky which appears in [5].

Theorem 22. Every reducible property P 6= I is uniquely factorizable into
irreducible factors (up to the order of the factors).

In the light of this result it seems imperative to study the decomposability
of properties of graphs. It is our aim to study the decomposability of the
well-known properties of graphs Ik, Ok, Wk, Tk, Sk, Dk and Op.

3 The Indecomposability of Ik, Ok, Wk, and Tk

The indecomposability of Ik is easy to show using the following well-known
result of Nešetřil and Rödl — see [6]. In it we use the notation ω(G) to
denote the clique number of a graph G.

Theorem 31. For every graph G there is a graph H with ω(G) = ω(H)
such that for every partition E1, E2 of E(H) there is an induced subgraph
G′ of H with G′ isomorphic to G and E(G′) ⊆ E1 or E(G′) ⊆ E2.

Theorem 32. For every positive integer k the property Ik is indecomposa-
ble in La

⊆.

Proof. Suppose to the contrary that Ik = P ⊕Q with both P and Q non-
trivial. Applying Theorem 31 to G = Kk+2 − e ∈ Ik it follows that there is
a graph H ∈ Ik so that H has a (P,Q)-decomposition and by considering
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any (P,Q)-decomposition of H we see that Kk+2 − e ∈ P or Kk+2 − e ∈ Q.
But then Kk+2 ∈ P ⊕Q = Ik, a contradiction.

The following lemma will prove to be useful to show the indecomposability
of some properties.

Lemma 33. If P is decomposable in La
⊆ then 2S1 ⊆ P.

Proof. If P = Q⊕R with Q and R non-trivial then S1 ⊆ Q and S1 ⊆ R
since S1 is the smallest non-trivial property in La

⊆. It follows that 2S1 ⊆
Q⊕R.

Corollary 34. For every positive integer k the properties Ok and Wk are
indecomposable in La

⊆.

Proof. The path Pk+2 of order k + 2 is in 2S1 but not in Ok, hence Ok is
indecomposable by Lemma 33. Since Pk+2 is not in Wk either, Wk is also
indecomposable.

Theorem 35. If SF ⊆ P and P 6= ∅ is closed under taking subdivisions of
graphs, then P is indecomposable in La

⊆.

Proof. Suppose that P = Q ⊕ R with Q and R non-trivial. Let G be
any graph in P and let G′ be the graph obtained from G by subdividing
every edge of G twice. Clearly, G′ ∈ SF ⊕ S1. Since G′ 6∈ P it follows that
SF 6⊆ Q and SF 6⊆ R. Therefore there exist positive integers a and b such
that K1,a 6∈ Q and K1,b 6∈ R. But then K1,a+b−1 6∈ Q⊕R, contradicting the
assumption that SF ⊆ P.

Corollary 36. For every positive integer k the property Tk is indecompo-
sable in La

⊆.

4 The Decomposability of Sk

Theorem 41. Let p and q be any positive integers. Then
(1) Sp ⊕ Sq ⊆ Sp+q.
(2) Sp ⊆ (p + 1)S1.
(3) Sp+q ⊆ Sp+1 ⊕ Sq.
(4) S2p = pS2.
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Proof. (1) If G 6∈ Sp+q then G has a vertex of degree at least p + q + 1,
hence K1,p+q+1 ⊆ G. But since K1,p+q+1 6∈ Sp ⊕ Sq, it then follows that
G 6∈ Sp ⊕ Sq.

(2) This is Vizing’s fundamental result on edge colourings of graphs.

(3) From (2) and (1) it follows that Sp+q ⊆ (p + q + 1)S1 ⊆ Sp+1 ⊕ Sq.

(4) The inclusion pS2 ⊆ S2p follows from (1). For the other inclusion,
suppose that G ∈ S2p. Then G is a subgraph of a 2p-regular graph H. Since
H is regular of even degree, H is 2-factorable by Petersen’s Theorem. This
2-factorization of H clearly is a (pS2)-decomposition of H and therefore
induces a (pS2)-decomposition of G. Therefore G ∈ pS2.

We are now ready to determine exactly when equality holds in part (1) of
Theorem 41.

Corollary 42. Let p and q be any even positive integers. Then Sp ⊕ Sq =
Sp+q.

Proof. An easy calculation using part (4) of Theorem 41.

Theorem 43. Let p and q be positive integers with q odd. Then Sp+q 6⊆
Sp ⊕ Sq.

Proof. Suppose first that p is odd too. Since Kp+q+1 ∈ Sp+q it is sufficient
to show that Kp+q+1 6∈ Sp ⊕Sq: Suppose, to the contrary, that E1, E2 is an
(Sp,Sq)-decomposition of E(Kp+q+1). Then E1 has at most 1

2 [p(p+q+1)−1]
edges, since any graph of maximum degree p on n vertices has at most
1
2pn edges and if n is odd this inequality is strict. Similarly, E2 has at
most 1

2 [q(p + q + 1) − 1] edges. But Kp+q+1 has 1
2(p + q)(p + q + 1) >

1
2 [p(p + q + 1)− 1] + 1

2 [q(p + q + 1)− 1] edges, a contradiction.
Next let p = 2. Let F = Kq+1,q+1 with (vertex) partite sets V =

{v1, . . . , vq+1} and W = {w1, . . . , wq+1}. Let H be the graph obtained
from F by adding vertices x and y and edges {xvi : i = 1, . . . , q + 1},
{wiwi+1 : i = 1, 3, . . . , q} and xy. Suppose now that E1, E2 is any (S2,Sq)-
decomposition of E(H). Since every vertex other than y has degree q + 2
in H, every such vertex must have degree 2 in H[E1]. Therefore xy 6∈ E1,
otherwise H[E1] would have an odd number of odd vertices. Now let G
be the graph obtained from q + 1 copies of H by identifying the vertices
of degree one. Then G ∈ S2+q but, by the above argument, G 6∈ S2 ⊕ Sq.
Hence S2+q 6⊆ S2 ⊕ Sq for every odd positive integer q.
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Finally, let p = 2k with k ≥ 2 and suppose that S2k+q ⊆ S2k ⊕ Sq. Then
S2+(2(k−1)+q) = S2k+q ⊆ S2k ⊕ Sq = S2 ⊕ (S2(k−1) ⊕ Sq) ⊆ S2 ⊕ S2(k−1)+q,
contradicting the statement proven in the previous paragraph.

Lemma 44. If Sk = P⊕Q with P ∈ La
⊆ and Q ∈ La

⊆ both non-trivial, then
Sk = Sp ⊕ Sq for some positive integers p and q with p + q = k.

Proof. If G ∈ P has a vertex v of degree a and H ∈ Q has a vertex w of
degree b then there is a graph in P ⊕ Q with a vertex of degree a + b, for
example the graph obtained from G ∪H by identifying v and w. Therefore
there exist positive integers p and q such that P ⊆ Sp, Q ⊆ Sq and p+q ≤ k.
If p + q < k then K1,k ∈ Sk but K1,k 6∈ P ⊕ Q; therefore p + q = k. Now
Sk = P ⊕Q ⊆ Sp ⊕ Sq ⊆ Sk, hence Sk = Sp ⊕ Sq.

We are now ready to prove the main result of this section.

Theorem 45. Sk is decomposable in La
⊆ if and only if k = 2n for some

n ≥ 2.

Proof. Suppose Sk is decomposable and k is odd or k = 2. Then, by
Lemma 44, Sk = Sp ⊕ Sq, where p + q = k. In either case p or q is odd and
Theorem 43 is contradicted.

The other direction follows from part (4) of Theorem 41.

5 The Decomposability of Dk

Theorem 51. D1 is indecomposable in La
⊆.

Proof. The cycle C4 is in 2S1 but not in D1, hence D1 is indecomposable
in La

⊆ by Lemma 33.

The indecomposability of D2 is also known — see [4]. We state their result
as

Theorem 52. D2 is indecomposable.

In order to prove that Dk is indecomposable for each k ≥ 3, we first discuss
some decomposable bounds for Dk which are useful. The first bound is due
to Borowiecki and HaÃluszczak — see [1].

Theorem 53. For all positive integers a and b the inclusion Da+b ⊆ Da⊕Db

holds.



The Decomposability of Additive Hereditary ... 287

In order to show that Da ⊕ Db is not an upper bound for Da+b+1, we need
the following lemma.

Lemma 54. For all positive integers a, b and n there is a positive integer t
such that for every (Da,Db)-decomposition E1, E2 of Ka+b,t, the inclusions
Ka,n ⊆ Ka+b,t[E1] and Kb,n ⊆ Ka+b,t[E2] hold.

Proof. In order to simplify the arguments we assume throughout that
n > a + b. For a = b = 1 we can take t = 2n + 2. Assume now inductively
that the statement is true for a, b, n and t and consider any (Da,Db+1)-
partition E1, E2 of E(G) where G = Ka+b+1,2t. Let V be the (vertex)
partite set of order a + b + 1 of G, U = V (G) − V and let v be any vertex
of V . We consider two cases:

(1) At least t edges incident with v are in E2: In this case we apply the
induction hypothesis to the subgraph of G induced by (V − v) ∪ {u ∈ U :
vu ∈ E2} to obtain Ka,n ⊆ G[E1] and Kb,n ⊆ G[E2]. Together with the t
edges in E2 incident with v we then also have Kb+1,n ⊆ G[E2]. (Note that
the b independent vertices of the Kb,n in G[E2] is necessarily a subset of V
since n > b.)

(2) At least t edges incident with v are in E1: By the same arguments as
in case (1) we now obtain that Ka+1,n ⊆ G[E1]. Since n > a we have a
contradiction, hence this case is impossible.

Theorem 55. Let a and b be positive integers. Then Da+b+1 6⊆ Da ⊕Db.

Proof. Clearly Ka+b+1,t ∈ Da+b+1 for every positive integer t. Fur-
ther, by Lemma 54, every (Da,Db+1)-decomposition E1, E2 of Ka+b+1,t has
Kb+1,b+1 ⊆ Ka+b+1,t[E2] for t large enough. Since a (Da,Db)-decomposition
is also a (Da,Db+1)-decomposition, Ka+b+1,t 6∈ Da ⊕Db.

If b = 1 we can demonstrate the sharpness of the inclusion in Theorem 53
in a stronger sense.

Theorem 56. Let a be a positive integer. If D1 6⊆ P then Da+1 6⊆ Da⊕P.

Proof. If D1 6⊆ P, then there is a tree T with T ∈ D1 and T 6∈ P; suppose
T is of size m. We construct a sequence G0, G1, . . . , Gm of graphs in Da+1

as follows: G0 = K1 and Gi+1 is obtained from a copies of Gi by adding,
for every set V consisting of one vertex from each copy of Gi, a copies of T
together with all edges between V and these copies of T .
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We now prove by induction on i that for every (Da,P)-decomposition E1, E2

of Gi the graph Gi[E2] contains every tree of size i. It then follows that
Gm 6∈ Da ⊕P.

For i = 0 this is trivial. Suppose therefore the statement is true for i−1
and consider any (Da,P)-decomposition E1, E2 of E(Gi) and any tree T ′ of
size i. Let v be a leaf of T ′ and let u be the neighbour of v. Every copy of
Gi−1 contains a copy of T ′−v that is in E2. Let U = {u1, u2, . . . , ua} be the
set of vertices corresponding to u in each copy of Gi−1. Now consider the
subgraph of Gi isomorphic to aK1 + aT consisting of U together with the
corresponding a copies of T added in the construction of Gi. Since T 6∈ P,
every copy of T has an edge in E1. The end-vertices of these a edges together
with U induce a subgraph H isomorphic to aK2+aK1 6∈ Da. Therefore some
edge of H incident with an element of U must be in E2, hence T ′ ⊆ Gi[E2].

Corollary 57. If P ⊂ D1 then Da+1 6⊆ Da ⊕ P.

The next bound is also due to Borowiecki and HaÃluszczak — see [1].

Theorem 58. Let n1, . . . , nk be positive integers. Then Dn1 ⊕ · · · ⊕Dnk
⊆

D
2
∑k

1
ni−1

.

The sharpness of the inclusion of Theorem 58 is demonstrated in The-
orem 510.

Lemma 59. Suppose P and Q are properties, G ∈ P and H ∈ Q are
graphs and a, b, c, d, k and n are positive integers such that the following
holds:
(1) G and H both have order n,
(2) G has k independent vertices of degree a and the other n − k vertices

have degree c,
(3) H has n − k independent vertices of degree b and the other k vertices

have degree d.

Then P ⊕Q 6⊆ Dm where m = min{a + d, b + c} − 1.

Proof. Let Gi be a copy of G and Hi be a copy of H and suppose Ui is
the set of k vertices of degree a in Gi, Vi is the set of k vertices of degree
d in Hi, Wi = V (Gi) − Ui and Xi = V (Hi) − Vi, i = 1, 2. Let F be the
graph obtained from these four graphs by identifying the vertices of U1 one
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by one with the vertices of V2, those of W2 with X2, those of V1 with U2 and
those of X1 with W1. Then F ∈ P ⊕ Q and, since U1, U2, X1 and X2 are
independent, every vertex in F has degree a + d or b + c so that F 6∈ Dm.

If G is a graph with vertex set {v1, . . . , vn} then we denote by G[k1, . . . , kn]
the graph with vertex set ∪n

i=1{(vi, j) : j = 1, . . . , ki} and edge set
{(vi, j)(vm, j) : vivm ∈ E(G)}. If k1 = · · · = kn = k we write G[k] for
G[k1, . . . , kn].

Theorem 510. For all positive integers a and b we have that Da ⊕ Db 6⊆
D2a+2b−2.

Proof. Let Gp have vertex set {v0, v1, . . . , vp+1, u1, u2, . . . , up} and edge
set {vivi+1 : i = 0, 1, . . . , p} ∪ {uivi : i = 1, 2, . . . , p}. Let Gp[k, m] =
Gp[k, k, . . . , k, m,m, . . . , m] (with p + 2 k’s and p m’s). Note that Gp[k,m]
has pk vertices of degree 2k +m and 2k +mp independent vertices of degree
k. Now take x = 2(a2 + b2 − a) − (a + b − 2) > 0, y = 2(a2 + b2 − b) −
(a + b − 2) > 0 and let G = Gx[a, b − 1] ∪ (a + b − 2)G1[a, b − 1] ∈ Da and
H = Gy[b, a− 1] ∪ (a + b− 2)G1[b, a− 1] ∈ Db.

G has a(x+a+ b−2) = 2a(a2 + b2−a) vertices of degree 2a+ b−1 and
2a(1+a+b−2)+(b−1)(x+a+b−2) = 2b(a2 +b2−b) independent vertices
of degree a. By symmetry, H has 2b(a2 + b2− b) vertices of degree 2b+a−1
and 2a(a2 + b2 − a) independent vertices of degree b. Therefore G and H
satisfy the conditions of Lemma 59, with c = 2a + b − 1, d = 2b + a − 1,
k = 2b(a2 +b2−b) and n = 2(a2 +b2)(a+b−1), hence Da⊕Db 6⊆ Dm where
m = 2a + 2b− 2.

Theorem 511. For every positive integer k the property Dk is indecompo-
sable in La

⊆.

Proof. Suppose that Dk = P ⊕ Q with P and Q non-trivial. Note that
if G ∈ P and H ∈ Q then G ×H ∈ P ⊕ Q and δ(G ×H) = δ(G) + δ(H).
Therefore there exist positive integers a and b with a + b = k such that
δ(G) ≤ a and δ(H) ≤ b for all G ∈ P and H ∈ Q. It follows that P ⊆ Da

and Q ⊆ Db.
Let Pn[l, m] be the graph Pn[l, m, m, . . . , m] where we take V (Pn) to

be {v1, v2, . . . , vn} and E(Pn) to be {vivi+1 : i = 1, 2, . . . , n − 1}. We now
show that Pn[a + b, a] ∈ P and Pn[a + b, b] ∈ Q for every n: We do this
by finding a graph Gn ∈ Dk such that for every (Da,Db)-partition E1, E2 of
E(Gn), Pn[a + b, a] ⊆ Gn[E1] and Pn[a + b, b] ⊆ Gn[E2]. For n = 2 we can
take G2 = Ka+b,t with t large enough, by Lemma 54. Assume therefore that
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Gn has been found and consider a (Da,Db)-partition E1, E2 of E(Gn+1),
where Gn+1 is obtained from Gn by adding, for every subset of a+b vertices
of V (Gn), t vertices together with all edges connecting the new vertices
with these a + b vertices. We know that Pn[a + b, a] ⊆ Gn[E1]. By applying
Lemma 54 to the appropriate set of a+b independent vertices and the t new
vertices adjacent to them it now follows that Pn+1[a + b, a] ⊆ E1. Similarly,
Pn+1[a + b, b] ⊆ E2.

In particular, P4[a] ∈ P and P4[b] ∈ Q. Then G = bP4[a] and H = aP4[b]
satisfy the conditions of Lemma 59 with c = 2a, d = 2b, n = 4ab and
k = 2ab. Therefore P ⊕Q 6⊆ Dm where m = min{a+2b, b+2a}− 1 ≥ a+ b,
a contradiction.

6 The Decomposability of Pk

Corollary 61. If P 6= O is a property of graphs and k ≥ 2 then Pk is
decomposable.

Proof. It follows easily from Lemma 21 that Pk = P ⊕Ok.

In the rest of this section we consider the decomposability of the property
Ok. First we define two parameters for a property P: Let χ(P) denote
the least k such that P ⊆ Ok and let χ∗(P) denote the largest k such that
Ok ⊆ P. The next lemma is useful in the proof of the main result of this
section.

Lemma 62. Let P and Q be properties of graphs. Then χ∗(P ⊕ Q) ≤
χ∗(P)χ(Q) ≤ χ(P ⊕Q).

Proof. Note that the result holds if χ(Q) is infinite. We may therefore
suppose that a = χ∗(P) and b = χ(Q) are finite. For the first inequality, let
t be such that Ka+1[t] 6∈ P. In order to show that χ∗(P ⊕Q) ≤ χ∗(P)χ(Q),
it is sufficient to show that G = Kab+1[bt] 6∈ P ⊕ Q. Suppose, to the
contrary, that E1, E2 is a (P,Q)-decomposition of E(G). Let U1, . . . , Uab+1

be the partite sets of G, let V1, . . . , Vb be a b-colouring of G[E2] and set
Vi,j = Vi ∩ Uj . For every j there must be an i such that |Vi,j | ≥ t since
|Uj | = bt and Uj is a union of only b of the Vi,j ’s. Therefore there are at
least ab + 1 Vi,j ’s with |Vi,j | ≥ t. On the other hand, for every i there
are at most a j’s such that |Vi,j | ≥ t since every edge of G[Vi] is in E1

and Ka+1[t] 6∈ P. Therefore there are at most ab Vi,j ’s with |Vi,j | ≥ t, a
contradiction.
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For the second inequality, suppose G ∈ Q has chromatic number b. Then
the graph H = G + G + · · ·+ G (a G’s) has chromatic number ab and is in
P ⊕Q.

We are now ready to discuss the decomposability of Op.

Theorem 63. Op is indecomposable in La
⊆ if and only if p is prime.

Proof. If p is not prime, say p = ab, then it is easy to see from Lemma 21
that Op = Oa ⊕Ob.

Conversely, suppose that Op = P ⊕Q with P and Q non-trivial proper-
ties of graphs. Then χ(P), χ(Q), p ≥ 2 and, since χ(Op) = χ∗(Op) = p, it
follows from Lemma 62 that p = χ∗(P)χ(Q) = χ(P)χ∗(Q). If χ∗(P) > 1 or
χ∗(Q) > 1 we are done. Suppose therefore that χ∗(P) = χ∗(Q) = 1. Then
χ(P) = χ(Q) = p, hence there exist graphs F ∈ P and H ∈ Q which both
have chromatic number p. Since F + K1 6∈ Op and F + K1 ∈ P ⊕ SF it
follows that SF 6⊆ Q. Similarly, SF 6⊆ P. But then SF 6⊆ P ⊕ Q = Op, a
contradiction, since p ≥ 2.
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