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Abstract

The domination subdivision number sdγ(G) of a graph is the
minimum number of edges that must be subdivided (where an edge
can be subdivided at most once) in order to increase the domination
number. Arumugam showed that this number is at most three for
any tree, and conjectured that the upper bound of three holds for any
graph. Although we do not prove this interesting conjecture, we give
an upper bound for the domination subdivision number for any graph
G in terms of the minimum degrees of adjacent vertices in G. We then
define the independence subdivision number sdβ(G) to equal the mini-
mum number of edges that must be subdivided (where an edge can be
subdivided at most once) in order to increase the independence num-
ber. We show that for any graph G of order n ≥ 2, either G = K1,m

and sdβ(G) = m, or 1 ≤ sdβ(G) ≤ 2. We also characterize the graphs
G for which sdβ(G) = 2.

Keywords: domination, independence, subdivision numbers.

2000 Mathematics Subject Classification: 05C69.



272 T.W. Haynes, S.M. Hedetniemi and S.T. Hedetniemi

1 Introduction

Let G = (V, E) be a graph of order |V | = n. A set of vertices S ⊆ V is said
to be independent if no two vertices in S are adjacent. The independence
number β(G) is the maximum cardinality of an independent set in G. We
call an independent set S of cardinality β(G) a β(G)-set. The independence
number of a graph has been well studied; discussions of this invariant can
be found in any textbook on graph theory (eg. [2, 3, 4, 5, 9]).

In this paper we consider the effect that subdividing an edge has on the
independence number of a graph. We say that an edge uv ∈ E is subdivided
if the edge uv is deleted, but a new vertex x (called a subdivision vertex)
is added, along with two new edges: ux and xv. We only permit an edge
to be subdivided once, that is, no edge incident to a subdivision vertex can
be subdivided. We define the independence subdivision number sdβ(G) to
equal the minimum number of edges that must be subdivided in order to
create a graph G′ for which β(G′) > β(G).

The problem of studying this new invariant sdβ(G) was suggested to us
by a recent result of Arumugam [1], which considers the effect that subdi-
viding an edge has on the domination number of a graph. A set S ⊆ V of
vertices is a dominating set if every vertex not in S is adjacent to at least one
vertex in S. The domination number γ(G) of a graph G equals the minimum
cardinality of a dominating set in G, and a dominating set S of cardinality
γ(G) is called a γ(G)-set. A thorough study of the concept of domination
in graphs can be found in the two books by Haynes, Hedetniemi, and Slater
[6] and [7].

The domination subdivision number of a graph G, denoted sdγ(G), equ-
als the minimum number of edges that must be subdivided in order to create
a graph G′ for which γ(G′) > γ(G). We must assume here that the graph
G is of order n ≥ 3, since the domination number of the graph K2 does not
change when its only edge is subdivided.

In a result that follows, we will need the concept of a private neighbor.
The closed neighborhood of a vertex u ∈ V is the set N [u] = {u}∪{v|uv ∈ E}.
Given a set S ⊆ V of vertices and a vertex u ∈ S, the private neighbor set
of u, with respect to S, is the set pn[u, S] = N [u] − N [S − {u}]. We say
that every vertex v ∈ pn[u, S] is a private neighbor of u (with respect to S).
Such a vertex v is adjacent to u but is not adjacent to any other vertex of S.
Note that if a vertex u ∈ S is not adjacent to any other vertex of S, then
it is an isolated vertex in the subgraph G[S] induced by S. In this case,
u ∈ pn[u, S], and we say that u is its own private neighbor. We note that if
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a set S is a γ(G)-set, then for every vertex u ∈ S, pn[u, S] 6= ∅, i.e., every
vertex of S has at least one private neighbor. It can be seen that if S is a
γ(G)-set, and two vertices u, v ∈ S are adjacent, then each of u and v must
have a private neighbor other than itself.

We will also use the following terminology. Let v ∈ V be a vertex of
degree one; v is called a leaf. The only vertex adjacent to a leaf, say u, is
called a support vertex, and the edge uv is called a pendant edge.

Results on domination and independence subdivision numbers are given
in Sections 2 and 3, respectively.

2 Domination Subdivision Numbers

Arumugam [1] has shown the following.

Theorem 1 [1]. For any tree T of order n ≥ 3,

1 ≤ sdγ(T ) ≤ 3.

Although Arumugam [1] states that he has not been able to classify the trees
for which sdγ(T ) = 1, sdγ(T ) = 2, or sdγ(T ) = 3, he has made the following
intriguing conjecture:

Conjecture 2 [1]. For any connected graph G of order n ≥ 3,

1 ≤ sdγ(G) ≤ 3.

It appears that this conjecture may be difficult to settle, either to show that
it is true, or to find a counterexample, since the conjecture is a statement
about the totality of all γ(G)-sets in a graph G and the effects that edge
subdivisions must have on every γ(G)-set.

Although we have not been able to settle Arumugam’s Conjecture, we
can provide an upper bound for the domination subdivision number of any
graph G.

Theorem 3. For any connected graph G of order n ≥ 3, and for any two
adjacent vertices u and v, where deg(u) ≥ 2 and deg(v) ≥ 2,

sdγ(G) ≤ deg(u) + deg(v)− 1.
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Proof. Let uv be an edge in G, and let G′ be the graph which results from
subdividing all edges incident to either u or v. Thus, deg(u) + deg(v) − 1
edges will be subdivided. We assume that both deg(v) ≥ 2 and deg(u) ≥ 2.
We will show that γ(G′) > γ(G) by showing that (I) no γ(G)-set is also a
dominating set of G′, and (II) there is no dominating set of G′ of cardinality
γ(G) that contains a subdivision vertex.

(I) Let S be an arbitrary γ(G)-set. We will show that S is not a dominating
set of G′.

Case 1. u, v ∈ S. In this case, both u and v must have private neighbors
other than themselves. But then neither u nor v dominate these private
neighbors in G′.

Case 2. either u /∈ S or v /∈ S. In this case, S no longer dominates
{u, v} ∩ (V − S) in G′.

(II) Let S be a subset of G′ of cardinality γ(G) which contains at least one
subdivision vertex. We will show that S is not a dominating set of G′.

Assume to the contrary that G′ contains a dominating set of cardinality
γ(G) which contains at least one subdivision vertex. Among all such domi-
nating sets, let S∗ be one which contains a minimum number of subdivision
vertices. Assume, without loss of generality, that S∗ contains a subdivision
vertex adjacent to v, call it v′, which subdivides the edge vw (w 6= u).

It follows that v /∈ S∗, since if v ∈ S∗, then S = S∗ − {v′} ∪ {w}
is a dominating set of G′ of cardinality γ(G) containing fewer subdivision
vertices than S∗, contradicting the minimality of S∗.

Clearly, v′ can only be used to dominate vertices v, v′ and w. It fol-
lows that no other subdivision vertex adjacent to v is in S∗, since any such
vertices could be exchanged with their neighbors not equal to v, to create a
dominating set of the same cardinality with fewer subdivision vertices, again
contradicting the minimality of S∗. It follows, therefore, that u ∈ S∗ since
S∗ is a dominating set and u is the only vertex available to dominate the
subdivision vertex, say x, between u and v, and x /∈ S∗. Then no subdivi-
sion vertex adjacent to u is in S∗, since x /∈ S∗ and any other such vertex
can be exchanged with its neighbor, not equal to u, to create a dominating
set of the same cardinality with fewer subdivision vertices than S∗, again
contradicting the minimality of S∗.

At this point we have established that (i) v /∈ S∗, (ii) u, v′ ∈ S∗, and
(iii) every neighbor of v in G other than w is in S∗, since the subdivision
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vertices adjacent to v are not in S∗ and must be dominated. In fact, S∗

contains only one subdivision vertex, namely v′.
But if S∗ is a dominating set of G′ of cardinality γ(G), then it follows

that S = S∗ − {u, v′} ∪ {v} is a dominating set of G of cardinality less
than γ(G), a contradiction. (This follows from the observation that v′ is
only needed to dominate vertices v, v′ and w in G′, and u is only needed to
dominate itself and the subdivision vertices adjacent to it in G′.)

Earlier in the proof, we assumed that S∗ contains a subdivision vertex
adjacent to v, call it v′, which subdivides the edge vw (u 6= w). It remains
to consider the final case that S∗ contains the subdivision vertex x between
vertices u and v.

In this case we can assume that S∗ contains no other subdivision vertex;
otherwise, they could be exchanged, as before, with their neighbors not equal
to either u or v, to produce a dominating set of the same cardinality but
with fewer subdivision vertices, contradicting the minimality of S∗.

But vertex x can only be used to dominate vertices u, x and v, which
means that S∗ cannot contain both u and v (else vertex x is not needed).
Therefore there are only three remaining cases to consider:

Case 1. u ∈ S∗ and v /∈ S∗.

Case 2. u /∈ S∗ and v ∈ S∗.

Case 3. u /∈ S∗ and v /∈ S∗.

But in each of the first two cases, it can be seen that the set S∗ − {x} is
a dominating set of G of cardinality less than γ(G), a contradiction. In
Case 3, since deg(u) ≥ 2 and deg(v) ≥ 2, then S∗ − {x} is a dominating set
of G of cardinality less than γ(G), since every neighbor of u or v in G, other
than u and v, is in S∗, a contradiction.

Although the upper bound in Theorem 3 for the subdivision number of an
arbitrary graph is not a constant, it provides, perhaps, an incentive to obtain
even better upper bounds for sdγ(G), either in special cases where a graph
has some structural property, or for certain classes of graphs. Theorem 3 can
also be used to obtain constant upper bounds for the domination subdivision
numbers of various classes of graphs, such as the following.

Corollary 4. For any r × s grid graph Gr,s, where 2 ≤ r ≤ s,

1 ≤ sdγ(Gr,s) ≤ 4.
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Corollary 4 follows from the simple observation that every such grid graph
contains a corner vertex of degree two which is adjacent to a vertex of degree
three.

Corollary 5. For any k-regular graph G where k ≥ 2,

1 ≤ sdγ(G) ≤ 2k − 1.

3 Independence Subdivision Numbers

In this section we will show that except for one class of graphs (the stars
K1,m, for m ≥ 3), the independence subdivision number of any graph is
either one or two. We then characterize the class of graphs having indepen-
dence subdivision number two.

If sdβ(G) = 1, for some graph G = (V,E), then, by definition, there
must exist an edge uv ∈ E, which when subdivided into edges ux and xv
results in a graph G′ for which β(G′) = β(G) + 1. This can happen in only
one of two ways: either G has a β(G)-set which does not contain either u
or v; or uv is a pendant edge and G has a β(G)-set S which contains the
support vertex u but not the leaf v; in which case S ∪ {v} becomes a larger
independent set when the edge uv is subdivided into ux and xv.

The following results are all straightforward; their proofs are therefore
omitted.

Proposition 6. For every graph G having a β(G)-set S, where the subgraph
G[V − S] induced by V − S has at least one edge, sdβ(G) = 1.

Corollary 7. For every graph G having an odd cycle, sdβ(G) = 1.

Proposition 8. For every graph G having a β(G)-set S and a pendant edge
uv, where S contains the support vertex u (and not the leaf v), sdβ(G) = 1.

Proposition 9. For every graph G having a β(G)-set S and a vertex u ∈ S
which is adjacent to at least two vertices in V − S, sdβ(G) ≤ 2.

Corollary 10. For every graph G having an even cycle, sdβ(G) ≤ 2.

Proposition 11. For any star K1,m, sdβ(K1,m) = m.

Theorem 12. For any connected graph G of order n ≥ 3, either
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(i) G = K1,m and sdβ(G) = m, or
(ii) 1 ≤ sdβ(G) ≤ 2.

Proof. Assume first that G is connected and contains a cycle. By Corollary
7, if G contains an odd cycle, then sdβ(G) = 1.

If G has no odd cycle, then it must have a even cycle. By Corollary 10,
we can conclude that sdβ(G) ≤ 2.

Assume therefore that G is connected and contains no cycles, i.e., G
is a tree T . If T = K1,m, then by Proposition 11, sdβ(T ) = m, and, in
particular, if T = K1,2, then sdβ(T ) = 2.

Assume therefore that T 6= K1,m, for m ≥ 3, and hence that the diame-
ter of T is at least three.

Case 1. If T has a β(T )-set S, for which G[V −S] has an edge, then by
Proposition 6, sdβ(G) = 1.

Case 2. For every β(T )-set S, V − S is an independent set. Let S be
any β(T )-set. Since T is connected, and has diameter at least three, there
must be at least one vertex in S which is adjacent to two or more vertices
in V − S. By Proposition 9 it then follows that sdβ(G) ≤ 2.

It follows from the previous theorem that every connected graph of order
n ≥ 3 can be placed into one of three classes, according to their independence
subdivision number:

Class I: Graphs G for which sdβ(G) = 1.
Class II: Graphs G for which sdβ(G) = 2.
Class III: Graphs G = K1,m for m ≥ 3.

It follows from Corollary 7 that Class I contains all graphs which are not
bipartite. Class I also contains some bipartite graphs G, i.e., those having a
β(G)-set S, for which the induced subgraph G[V − S] contains at least one
edge (cf. Proposition 6), or those having a β(G)-set which includes at least
one support vertex (cf. Proposition 8).

Class II, which consists of all graphs G for which sdβ(G) = 2, contains
only bipartite graphs, eg., C4, for every β(G)-set S of which, V − S is an
independent set. This class includes, for example, all even cycles C2k, all
odd paths P2k+1, and all complete bipartite graphs Kr,s, 2 ≤ r ≤ s.

We next characterize the graphs in Class II.

Theorem 13. A connected graph G is in Class II if and only if either
G = K1,2 or G is bipartite with partite sets V1 and V2 such that either
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(a) 2 ≤ |V1| = |V2| = β(G), and V1 and V2 are the only β(G)-sets, or
(b) 2 ≤ |V1| < |V2| = β(G) and V2 is the unique β(G)-set.

Proof. If G = K1,2, then the theorem holds. First assume that G 6= K1,2 is
bipartite with partite sets V1 and V2 such that either (a) or (b) holds. Since G
is connected and not a star, it follows from Theorem 12 that 1 ≤ sdβ(G) ≤ 2.
We show that sdβ(G) 6= 1. Assume to the contrary that subdividing the edge
v1v2 yielding v1vv2 for some v1 ∈ V1 and v2 ∈ V2 increases the independence
number, and let G′ be the graph obtained from G by subdividing edge v1v2.
If condition (a) holds, then 2 ≤ |V1| = |V2| = β(G) and V1 and V2 are
the unique β(G)-sets. If x1 ∈ V1 is an endvertex with support y2 ∈ V2,
then V2 − {y2} ∪ {x1} is another β(G)-set, contradicting our assumption
that V1 and V2 are the unique β(G)-sets. Similarly, V2 has no endvertices.
Thus, δ(G) ≥ 2. But since v1 (respectively, v2) has at least two neighbors
in V2 (respectively, V1), it follows that β(G′) = β(G), contradicting our
assumption. If condition (b) holds, then 2 ≤ |V1| < |V2| = β(G) and V2 is
the unique β(G)-set. Hence, for every vertex u ∈ V1, deg(u) ≥ 2, and the
result follows as before. Thus, G ∈ Class II.

For the converse, assume that connected graph G 6= K1,2 ∈ Class II,
i.e. sdβ(G) = 2. Let S be a β(G)-set. Proposition 6 implies that V − S is
independent and hence, G is bipartite. Since G is connected and not a star,
2 ≤ |V − S| ≤ |S| = β(G). If any vertex, say v, in V − S has exactly one
neighbor, say u, in S, then subdividing the edge uv forming uxv increases
the independence number since S ∪{v} is an independent set, contradicting
that G ∈ Class II. Thus, every vertex in V −S has at least two neighbors in
S. Note that if |S| = |V −S|, then both S and V −S are β(G)-sets implying
that δ(G) ≥ 2. Suppose S′ is a β(G)-set that is not a partite set of G, that is,
S′∩S = A 6= ∅ and S′∩(V −S) = B 6= ∅. Let C = S−A and D = V −S−B.
Note that S′ = A ∪B and V − S′ = (S −A) ∪ (V − S −B) = C ∪D.

If C∪D contains an edge, then by Proposition 6, sdβ(G) = 1. But since
G ∈ Class II, C ∪ D must be an independent set. But in this case there
are no edges between A∪D and C ∪B, implying that G is not a connected
graph, a contradiction. Hence, either condition (a) or (b) holds.

A graph is a strong unique independence graph if G is bipartite and has
a unique β(G)-set. Hopkins and Staton [8] characterized strong unique
independence graphs as follows:

Theorem 14 [8]. A tree is a strong unique independence tree if and only
if the distance between any pair of its leaves is even.
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Theorem 15 [8]. A connected graph G is a strong unique independence
graph if and only if G is bipartite and has a spanning tree which is a strong
unique independence tree.

We can now restate Theorem 13.

Theorem 16. A connected graph G ∈ Class II if and only if G is bipartite
and either
(a) G has equal partite sets, i.e., |V1| = |V2|, and δ(G) ≥ 2, or
(b) G 6= K1,m, m ≥ 3, has a spanning tree T such that the distance between

any pair of leaves in T is even.

At this point it remains an interesting open question whether there exists
a polynomial algorithm for deciding whether a graph G 6= K1,m belongs to
either Class I or Class II.

INDEPENDENCE SUBDIVISION NUMBER
INSTANCE: Graph G = (V, E) 6= K1,m.
QUESTION: Is sdβ(G) = 1 or sdβ(G) = 2?

Denote the class of graphs satisfying condition (a) of Theorem 16 as Class
IIa and those satisfying condition (b) as Class IIb. Certainly one can tell
whether a graph is bipartite in polynomial time. Therefore, one can de-
termine if a graph is in Class IIa in polynomial time. However, it is not
immediately obvious whether one can determine in polynomial time whe-
ther V2 is the unique β(G)-set, that is, whether G has a spanning tree T
such that the distance between any pair of leaves in T is even.
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