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Abstract

The paper solves one problem by E. Prisner concerning the 2-
distance operator T2. This is an operator on the class Cf of all finite
undirected graphs. If G is a graph from Cf , then T2(G) is the graph
with the same vertex set as G in which two vertices are adjacent if and
only if their distance in G is 2. E. Prisner asks whether the periodicity
≥ 3 is possible for T2. In this paper an affirmative answer is given.
A result concerning the periodicity 2 is added.
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In this paper we consider finite undirected graphs without loops and multiple
edges. The vertex set of a graph G is denoted by V (G), its edge set by E(G).
The symbol G denotes the complement of G, i.e., the graph with the same
vertex set as G in which two distinct vertices are adjacent if and only if they
are not adjacent in G.

Let φ be a graph operator defined on the class Cf of all finite undirected
graphs. For every positive integer r we define the power φr so that φ1 = φ
and for r ≥ 2 the operator φr is such that φr(G) = φ(φr−1(G)) for each
G ∈ Cf . A graph G ∈ Cf is called φ-periodic, if there exists a positive
integer r such that φr(G) ∼= G. The minimum number r with this property
is the periodicity of the graph G in the operator φ.

For an integer k ≥ 2 the operator Tk on Cf is defined in such a way
that for any graph G ∈ Cf the graph Tk(G) has the same vertex set as G
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and two distinct vertices are adjacent in Tk(G) if and only if their distance
in G is k. The operator Tk is called the k-distance operator.

In [2], page 170, E. Prisner asks the following problem:
Is period ≥ 3 possible for T2 ?
An affirmative answer is given by the following theorem.

Theorem. Let r be an even positive integer. Then there exists a graph Gr

whose periodicity in the operator T2 is r.

Proof. Let q = 2r + 1. Let V0, V1, . . . , Vq−1 be pairwise disjoint sets of
vertices. Let t be an integer, t ≥ 2 and let |Vi| = ti for i = 0, 1, . . . , q − 1.
The vertex set of Gr is V (Gr) =

⋃q−1
i=0 Vi. All sets V0, V1, . . . , Vq−1 are

independent in Gr. Let x ∈ Vi, y ∈ Vj for some i and j from {0, 1, . . . , q−1}.
These vertices are adjacent in Gr if and only if j ≡ i + 1 (mod q) or j ≡
i − 1 (mod q). This implies that all sets V0, V1, . . . , Vq−1 induce complete
subgraphs in the graph T2(Gr). If x ∈ Vi, y ∈ Vj , then x, y are adjacent in
T2(Gr) if and only if j ≡ i+2(mod q) or j ≡ i− 2(mod q). From these facts
by induction we obtain that Tm

2 (G) for m ≥ 2 has the following structure.
If m is even, then all sets V0, V1, . . . , Vq−1 are independent; if m is odd, then
they induce complete subgraphs; if x ∈ Vi, y ∈ Vj , then x, y are adjacent
if and only if j ≡ i + 2m(mod q) or j ≡ i − 2m(mod q) in both the cases.
This implies that T r

2 (Gr) ∼= Gr. Now it remains to show that Tm
2 (G) is not

isomorphic to Gr for 1 ≤ m < r. We do it using the independence number

α(G). The greatest independent set in Gr is
⋃ 1

2
(q−1)

i=1 V2i and thus α(Gr) =
∑ 1

2
(q−1)

i=1 t2i = t2(tq−1 − l)/(t2 − 1). If m is odd, then α(Tm
2 (G)) = 1

2(q − 1).
If m is even, 2 ≤ m ≤ r − 2, then the set V0 ∪ Vq−2 ∪ Vq−1 is independent
in Tm

2 (Gr) and thus α(Tm
2 (Gr)) ≥ |V0 ∪ Vq−2 ∪ Vq−1| = 1 + tq−2 + tq−1 >

t2(tq−1− 1)/(t2− 1)/(t2− 1) = α(Gr); this inequality may be easily proved.
Therefore no graph Tm

2 (Gr) for 1 ≤ m ≤ r− 1 is isomorphic to Gr and thus
the periodicity of Gr in T2 is r.

We shall remark also the periodicity 2. In [1] F. Harary, C. Hoede and
D. Kadlacek have proved that if a graph G is self-complementary, i.e.,
G ∼= G, then T2(G) ∼= G and thus the periodicity of G in T2 is 1. A slight
generalization of the result is the following proposition. The diameter of G
is denoted by diam G.

Proposition 1. Let G be a graph such that diam G = diam G = 2 and G
is not isomorphic to G. Then G is T2-periodic with the periodicity 2.
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Proof. If two vertices x, y are adjacent in G, then their distance in G
is 1 and they are not adjacent in T2(G). If they are not adjacent in G,
then their distance in G is 2 and realizes diam G. Moreover, x and y
are adjacent in T2(G). Hence T2(G) = G. As also diam G = 2, we have
T 2

2 (G) = T2(T2(G)) = T2(G) = G.

We shall create a class of graph which have the property that diam G =
diam G = 2.

Let H1,H2, H3,H4,H5 be pairwise disjoint graphs. The graph G(H1,H2,
H3,H4,H5) contains mentioned graphs as subgraphs and has new edges xy
created in the following way. If x ∈ V (Hi), y ∈ V (Hj), then x and y are
adjacent in G if and only if j ≡ i + 1(mod 5) or j ≡ i + 4(mod 5). The
simplest is the graph G(K1,K1,K1,K1,K1) = C5.

Proposition 2. For any five graphs H1,H2,H3,H4,H5 the graph G(H1,H2,
H3,H4,H5) has the diameter 2 and so has its complement.

Proof. Let x, y be two vertices of G(H1,H2,H3,H4,H5). Let i, j be such
numbers from {1, 2, 3, 4, 5} that x ∈ V (Hi), y ∈ V (Hj).

If i = j, then both x, y are in the graph Hi. If they are adjacent in G,
then their distance is 1. If they are not adjacent, then there exists a path
of length 2 connecting them; its inner vertex is in V (Hj+1) ∪ V (Hi+4), the
subscripts being taken modulo 5. If j ≡ i + 1(mod 5) or j ≡ i + 4(mod 5),
then x, y are adjacent in G and their distance is 1.

If j ≡ i + 2(mod 5) or j ≡ i + 3(mod 5) then x, y are not adja-
cent, but there exists a path of length 2 connecting them; its inner ver-
tex is in V (Hi+1) ∪ V (Hi+4). Therefore diam G = 2. The complement
of G(H1, H2,H3,H4,H5) is isomorphic to G(H1, H2, H3, H4, H5) and thus
also diam G = 2.
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