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Abstract

Let D be a digraph with V (D) and A(D) the sets of vertices and
arcs of D, respectively. A kernel of D is a set I ⊂ V (D) such that
no arc of D joins two vertices of I and for each x ∈ V (D) \ I there is
a vertex y ∈ I such that (x, y) ∈ A(D). A digraph is kernel-perfect
if every non-empty induced subdigraph of D has a kernel. If D is
edge coloured, we define the closure ξ(D) of D the multidigraph with
V (ξ(D)) = V (D) and A (ξ(D)) =

⋃
i{(u, v) with colour i : there exists

a monochromatic path of colour i from the vertex u to the vertex v
contained in D}.

Let T3 and C3 denote the transitive tournament of order 3 and the
3-cycle, respectively, both of whose arcs are coloured with 3 different
colours. In this paper, we survey sufficient conditions for the existence
of kernels in the closure of edge coloured digraphs, also we prove that
if D is obtained from an edge coloured tournament by deleting one arc
and D does not contain T3 or C3, then ξ(D) is a kernel-perfect digraph.
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1 Introduction

Let D be a digraph; V (D) and A(D) will denote the sets of vertices and
arcs of D, respectively. An arc (u, v) ∈ A(D) is called asymmetrical in
D if (v, u) 6∈ A(D). An arc (v, u) ∈ A(D) is called symmetrical in D if
(u, v) ∈ A(D). The asymmetrical part of D, denoted by Asym(D), is the
sapanning subdigraph of D whose arcs are the asymmetrical arcs of D. The
symmetrical part of D, denoted by Sym(D), is the spanning subdigraph
of D whose arcs are the symmetrical arcs of D. A digraph D is called
asymmetrical if D = Asym(D).

If S is a nonempty subset of V (D), then the subdigraph D[S] induced
by S is the digraph having vertex set S and whose arcs are all those arcs of
D joining vertices of S.

A set I ⊆ V (D) is independent in D if A(D[I]) = ∅. The set of
all the independent sets in D is denoted by ind(D), i.e., ind(D) = {I ⊆
V (D): I is independent in D}.

A set I ⊆ V (D) is absorbent in D if for each vertex x ∈ V (D)\I,
there exists a vertex y ∈ I such that (x, y) ∈ A(D). The set of all the
absorbent sets in D is denoted by abs(D), i.e., abs(D) = {I ⊆ V (D): I
is absorbent in D}.

A set I ⊆ V (D) is a kernel of D if I is an independent and absorbent
set of vertices in D. The set of all the kernels of D is denoted by ker(D),
i.e., ker(D) = ind(D) ∩ abs(D).

A digraph is called a kernel-perfect digraph or KP -digraph when every
induced subdigraph of D has a kernel; i.e., for every nonempty set of vertices
N ⊆ V (D), ker(D[N ]) 6= ∅.

A digraph D is called complete if for every two differents vertices
u, v ∈ V (D), (u, v) ∈ A(D) or (v, u) ∈ A(D). A tournament is a complete
asymmetrical digraph.

If γ is a directed cycle and x, y ∈ V (γ), we denote by (x, γ, y) the
directed path from x to y contained in γ.

We call the digraph D an m-coloured digraph if the arcs of D are
coloured with m distinct colours. A directed path or a directed cycle is
called monochromatic if all of its arcs are of the same colour. A directed
cycle is quasi-monochromatic if, with at most one exception, all of its arcs
are coloured alike.

The closure of D, denoted by ζ(D), is the m-coloured digraph defined
as follows:



Kernels in the Closure of Coloured Digraphs 245

V (ζ(D)) = V (D), and A(ζ(D)) = ∪i{(u, v) with colour i: there exists a
monochromatic path of colour i from the vertex u to the vertex v contained
in D}.

Notice that for any digraph D, ζ(D) = ζ(ζ(D)) and A(D) ⊆ A(ζ(D)).
Let T3 and C3 denote the transitive tournament of order 3 and the

3-cycle, respectively, both of whose arcs are coloured with three different
colours.

2 Antecedentes

In [6], Sands et al., have proved that for any 2-coloured digraph D, ζ(D) is
a KP -digraph. Particularly they proved that every 2-coloured tournament
T has a vertex v ∈ V (T ) such that {v} ∈ ker(ζ(D)).

In [5] Shen Minggang proved that if T is an m-coloured tournament
which does not contain C3 or T3, then ζ(T ) has a kernel. He also proved
that this situation is best possible for m ≥ 5. In fact, he proved that for
m ≥ 5 there exists an m-coloured tournament T which does not contain
C3 and ζ(T ) has no kernel. Also for m ≥ 5 there exists an m-coloured
tournament T ′ which does not contain T3 and ζ(D) has no kernel.

The question for m = 3 (If T is a 3-coloured tournament which does not
contain C3 then ζ(T ) has a kernel) and the respective question for m = 4
are still open.

Let D be a digraph, an m-coloration of D is called {C3, C4}-free m-col-
oration of D if it is an m-coloration of D such that every directed cycle of
length at most 4 is quasi-monochromatic. Denote by F the class of digraphs
such that the closure of every {C3, C4}-free m-coloration has a kernel; in [2]
it is proved that every tournament belongs to F and in [3] it is proved
that the digraph obtained from a tournament by the deletion of a single arc
belongs to F .

Let D be a digraph, an m-coloration of D is named a {C3, T3}-free m-
coloration of D if it is an m-coloration of D such that every tournament
of order 3 is quasi-monochromatic. Denote by E the class of digraphs such
that the closure of every {C3, T3}-free coloration has a kernel. In [5] it is
proved that any tournament belongs to E . In [4] it is proved that if D is a
digraph of the class E such that its underlying graph is hamiltonian, then the
complement of its underlying graph has at most one nontrivial connected
component and this component is K3 or a star.
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In this paper, we prove that the digraph obtained from a tournament by
the deletion of a single arc belongs to E . In fact, it is proved that the closure
of any {C3, T3}-free m-coloration of a digraph obtained from a tournament
by the deletion of a single arc is kernel-perfect.

Theorem 21 (Minggang [5]). If T is an m-coloured tournament without
C3 or T3, then there is a vertex v ∈ V (T ) such that {v} ∈ ker(ζ(T )).

Theorem 22 (Berge and Duchet [1]). A complete digraph is a KP -digraph
if and only if every directed cycle has a symmetrical arc.

3 Kernels in the Closure of m-Coloured
Digraphs

The main result of this section is Theorem 3.3. To prove it we need Theo-
rem 3.1 which has been proved in [3] (Lemma l and point (2) of the proof of
Theorem 2).

Theorem 3.1 [3]. Let D be an m-coloured digraph resulting from the dele-
tion of the single arc (x, y) from some m-coloured tournament. If for every
complete subdigraph H of D ker(ζ(H)) 6= ∅, then at least one of the two
following assertions holds:
(i) ζ(D) has a kernel.
(ii) There exists a directed cycle γ ⊆ Asym(ζ(D)) such that {x, y} ⊆ V (γ),

and for every two non consecutive vertices u, v with {u, v} 6= {x, y} we
have {(u, v), (v, u)} ⊆ A(ζ(D)).

Theorem 3.2. Let D be an m-coloured digraph resulting from the deletion
of the single arc (x, y) from some m-coloured tournament. If D does not
contain C3 or T3, then ζ(D) does not contain any asymmetrical cycle γ such
that x, y ∈ V (γ) and that between any two nonconsecutive vertices different
from {x, y} of γ there are symmetrical arcs.

Proof. We proceed by contradiction. Assume there is an asymmetrical cy-
cle γ in ζ(D) such that x, y ∈ V (γ) and that between any two nonconsecutive
vertices of γ there are symmetrical arcs.

We prove several propositions in order to reach the contradiction.
For z ∈ V (γ), denote by z− and z+ its predecessor and its successor

in γ, respectively. Notice that, as γ is asymmetrical and between any two
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nonconsecutive vertices of γ there are symmetrical arcs, z− is the only vertex
of γ such that (z, z−) 6∈ A(ζ(D)) and z+ is the only vertex of γ such that
(z+, z) 6∈ A(ζ(D)).

(1) If z ∈ V (γ), then (z+, z−) ∈ A(ζ(D)).

Since z is the only vertex in γ which is not absorbed by z− in ζ(D). For
z ∈ V (γ), denote by P (z) the shortest monochromatic path from z+ to z−
in D.

(2) If z ∈ V (γ) is adjacent in D to every vertex of P (z) then (z−, z) ∈ A(D)
and (z, z+) ∈ A(D) are of the same colour.

(z−, z) ∈ A(D) because z is adjacent to z− in D, but (z, z−) 6∈ A(D), as
A(D) ⊆ A(ζ(D)) and (z, z−) 6∈ A(ζ(D)). Also (z, z+) ∈ A(D) because z is
adjacent to z+ in D, but (z+, z) 6∈ A(D), as A(D) ⊆ A(ζ(D)) and (z+, z) 6∈
A(ζ(D)). Now, to show that the arcs (z−, z) ∈ A(D) and (z, z+) ∈ A(D)
are of the same colour we proceed by assuming (without loss of generality)
that (z, z+) ∈ A(D) is blue and concluding that (z−, z) ∈ A(D) is also blue.

(2a) P (z) is not blue.

It is not blue, because that would give a monochromatic blue path from z
to z− in D, namely the one that begins with the blue arc (z, z+) ∈ A(D)
and continues along the monochromatic path P (z) to reach z−.

Without loss of generality, assume P (z) is green, and let P (z) = (v0 =
z+, v1, v2, . . . , vt = z−).

(2b) For 1 ≤ i ≤ t, (z+, vi) ∈ A(ζ(D)) is green and (vi, z−) ∈ A(ζ(D)) is
green.

We just split the monochromatic green path P in D at the vertex vi.

(2c) For 1 ≤ i ≤ t, the arc between z and vi in D in not green.

Recall that z is adjacent to every vertex of P . If (z, vi) ∈ A(D) is green, then
there would be a monochromatic green path from z to z− in D, namely the
one that begins with the arc (z, vi) and continues along the monochromatic
green path obtained in (2b) from vi to z−. If (vi, z) ∈ A(D) is green, then
there would be a monochromatic green path from z+ to z in D, namely the
one that begins with the monochromatic green path obtained in (2b) from
z+ to vi and continues with the arc (vi, z).

(2d) For 1 ≤ i ≤ t, if the arc between z and vi−1 in D is blue, then the arc
between z and vi in D is also blue.
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By hypothesis, D does not have C3 or T3. As (vi−1, vi) ∈ A(D) is green (it
is an arc of the monochromatic green path P (z)), and we are assuming that
the arc between z and vi−1 in D is blue, the arc between z and vi in D must
be blue or green. But it is not green, by (2c).

(2e) (z−, z) ∈ A(D) is blue.

The arc between z and v0 in D is blue, as v0 = z+ and we assumed that
(z, z+) ∈ A(D) is blue. It follows from (2d) that the arc between z and vt

in D is blue. Now recall that vt = z − .

We conclude the proof of (2).

(3) If s ∈ V (γ)\{x, y} then (s−, s) ∈ A(D) and (s, s+) ∈ A(D) are of the
same colour.

As s 6= x and s 6= y, we have that s is adjacent in D to every vertex of P (s),
and the conclusion follows from (2).

(4) The paths (x, γ, y) and (y, γ, x) are monochromatic in D.

This follows from (3).

(5) x and y are not consecutive in γ.

Suppose x and y are consecutive in γ. As the paths (x, γ, y) and (y, γ, x) are
monochromatic in D, (x, y) ∈ A(ζ(D)) and (y, x) ∈ A(ζ(D)), (x, y) would
be a symmetrical arc of γ. A contradiction.

(6) The monochromatic paths (x, γ, y) and (y, γ, x) are not of the same
colour.

Otherwise, γ would be monochromatic in D, there would be monochromatic
paths between any two vertices of γ, and γ would not be asymmetrical in
ζ(D).

Without loss of generality, assume (x, γ, y) is red in D and (y, γ, x) is
blue in D.

(7) P (x) is not red and is not blue. (Recall that P (x) is the shortest
monochromatic path from x+ to x− in D).

If P (x) was red, then there would be a monochromatic red path from x to
x− in D, namely the one that begins with the red arc (x, x+) ∈ A(x, γ, y)
and continues along P (x) to reach x−. If P (x) was blue, then there would
be a monochromatic blue path from x+ to x in D, namely the one that
begins with P (x) and continues with the blue arc (x−, x) ∈ A(y, γ, x).

(8) y ∈ V (P (x)).



Kernels in the Closure of Coloured Digraphs 249

Otherwise, x would be adjacent to every vertex of P (x) in D, and by (2) we
conclude that (x−, x) ∈ A(D) and (x, x+) ∈ A(D) are of the same colour,
contradicting that (x−, x) ∈ A(y, γ, x) is blue and (x, x+) ∈ A(x, γ, y) is
red.

Let P (x) = (x+ = a0, a1, a2, . . . , ar, y = ar+1, . . . , x−).

(9) P (y) is not red and is not blue. (Recall that P (y) is the shortest mono-
chromatic path from y+ to y− in D).
If P (y) was blue, then there would be a monochromatic red path from y to
y− in D, namely the one that begins with the blue arc (y, y+) ∈ A(y, γ, x)
and continues along P (y) to reach y−. If P (y) was red, then there would be
a monochromatic red path from y+ to y in D, namely the one that begins
with P (y) and continues with the red arc (y−, y) ∈ A(x, γ, y).

(10) x ∈ V (P (y)).
Otherwise, y would be adjacent to every vertex of P (y) in D, and by (2) we
conclude that (y−, y) ∈ A(D) and (y, y+) ∈ A(D) are of the same colour,
contradinting that (y−, y) ∈ A(x, γ, y) is red and (y, y+) ∈ A(y, γ, x) is blue.

Let P (y) = (y+ = b0, b1, b2, . . . , bs, x = bs+1, . . . , y−).
We consider the two possible cases and we will reach a contradiction in
each one.

Case A. P (x) and P (y) are of the same colour. Assume (without loss
of generality) they are green (see Figure 1). The contradiction, in this case,
will arise at the colour of the arc between x+ and y+ in D.
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(A1) The arc between y+ and x+ in D is blue.
For 0 ≤ i ≤ r, the arc between y+ and ai in D is not green, otherwise, if
(y+, ai) ∈ A(D) was green, then there would be a monochromatic green path
from y+ to y in D, namely (y+, ai, ai+1, . . . , y = ar+1), (y+, y) ∈ A (ζ(D))
(a contradiction); and if (ai, y+) ∈ A(D) was green, then there would
be a monochromatic green path from x+ to x in D, namely (x+ =
a0, a1, a2, . . . , ai, y+ = b0, b1, b2, . . . , x = bs+1), (x+, x) ∈ A (ζ(D)) (another
contradiction).

For 0 ≤ i ≤ r, if the arc between y+ and ai+1 in D is blue, then the arc
between y+ and ai is also blue, because it is not green, (ai, ai+1) ∈ A(D) is
green, and D does not have C3 or T3.

The arc between y+ and ar+1 in D is blue, as ar+1 = y and (y, y+) ∈
A(y, γ, x) is blue. Finally, the arc between y+ and a0 in D is blue. Now,
recall that a0 = x+.

(A2) The arc between x+ and y+ in D is red.
For 0 ≤ i ≤ s, the arc between x+ and bi in D is not green, otherwise, if
(x+, bi) ∈ A(D) was green, then there would be a monochromatic green path
from x+ to x in D, namely (x+, bi, bi+1, . . . , x = bs+1), (x+, x) ∈ A (ζ(D))
(a contradicition), and if (bi, x+) ∈ A(D) was green, then there would
be a monochromatic green path from y+ to y in D, namely (y+ =
b0, b1, b2, . . . , bi, x+ = ao, a1, a2, . . . , y = ar+1), (y+, y) ∈ A (ζ(D)) (another
contradiction).

For 0 ≤ i ≤ s, if the arc between x+ and bi+1 in D is red, then the arc
between x+ and bi is also red, because it is not green, (bi, bi+1) ∈ A(D) is
green, and D does not have C3 or T3.
The arc between x+ and bs+1 in D is red, as bs+1 = x and (x, x+) ∈ (x, γ, y)
is red. Finally, the arc between x+ and b0 in D is red. Now, recall that
b0 = y+.

We get a contradiction between the propositions (A1) and (A2).

Case B. P (x) and P (y) are of different colours. Assume (without loss of
generality) P (x) is green and P (y) is yellow (see Figure 2). The contradiction
will arise, in this case, at the colour of the arc between ar and bs in D.

(B1) The arc between x and ar in D is red.
For 1 ≤ i ≤ r, the arc between x and ai is not green, otherwise, if (x, ai) ∈
A(D) was green, then there would be a monochromatic green path from x to
x− in D, namely (x, ai, ai+1, . . . , x−), (x, x−) ∈ A (ζ(D)) (a contradiction),
and if (ai, x) ∈ A(D) was green, then there would be a monochromatic
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green path from x+ to x in D, namely (x+ = a0, a1, a2, . . . , ai, x), (x+, x) ∈
A (ζ(D)) (another contradiction).

For 1 ≤ i ≤ r, if the arc between x and ai−1 in D is red then the arc
between x and ai in D is also red, because is not green, (ai−1, ai) ∈ A(D) is
green, and D does not have C3 or T3.

The arc between x and a0 in D is red, as a0 = x+ and (x, x+) ∈
A(x, γ, y) is red. Finally, the arc between x and ar in D is red.

Figure 2

(B2) The arc between ar and bs in D is red or yellow.
Since (bs, x) ∈ A (P (y)) is yellow (recall that x = bs+1), the arc between x
and ar in D is red (B1) and D does not have C3 or T3.

(B3) The arc between y and bs in D is blue.
For 1 ≤ i ≤ s, the arc between y and bi is not yellow, otherwise, if
(y, bi) ∈ A(D) was yellow, then there would be a monochromatic yellow
path from y to y− in D, namely (y, bi, bi+1, . . . , y−), (y, y−) ∈ A (ζ(D))
(a contradiction), and if (bi, y) ∈ A(D) was yellow, then there would
be a monochromatic yellow path from y+ to y in D, namely (y+ =
b0, b1, b2, . . . , bi, y), (y+, y) ∈ A(ζ(D)).

For 1 ≤ i ≤ s, if the arc between y and bi−1 in D is blue, then the arc
between y and bi in D is also blue, because it is not yellow, (bi−1, bi) ∈ A(D)
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is yellow, and D does not have C3 or T3. The arc between y and b0 in D
is blue, as b0 = y+ and (y, y+) ∈ A(y, γ, x) is blue. Finally, the arc between
y and bs in D is blue.

(B4) The arc between ar and bs in D is green or blue.
Since (ar, y) ∈ A(P (x)) is green (recall that y = ar+1), the arc between y
and bs in D is blue (B3) and D does not have C3 or T3.

We get a contradiction between proposition (B2) and (B4).
The proof of Theorem 3.2 is complete.

Theorem 3.3. Let D be an m-coloured digraph resulting from the deletion
of the single arc (x, y) from some m-coloured tournament. If D does not
have C3 or T3, then ker(ζ(D)) 6= ∅.

Proof. Clearly, no subdigraph of D has C3 or T3. By Theorem 2.1, for
every complete subdigraph H of D we have that ker(ζ(H)) 6= ∅. So, by
Theorems 3.1 and 3.2, we have that ker(ζ(D)) 6= ∅.

Remark 31. If, in Theorem 3.3, we only require D not to have T3 and
allow it to have C3, the result does not hold, as is shown by the following
example (see Figure 3).
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Figure 3

Remark 32. If, in Theorem 3.3, we only require D not to have C3 and
allow to have T3, the result does not hold, as is shown by the following
example (see Figure 4).

Theorem 3.4. Let D be an m-coloured digraph resulting from the deletion
of the single arc (x, y) from some m-coloured tournament. If D does not
have C3 or T3, then ζ(D) is a KP -digraph.

Proof. We consider two possibles cases:
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Case A. {x, y} ∈ ind(ζ(D)).
Let C ⊆ V (D) be a nonempty set of vertices. We have to prove that
ker(ζ(D)[C]) 6= ∅.

As D[C] is complete or is missing the single arc (x, y), by Theorems 21
and 3.3 we have that ker(ζ(D[C])) 6= ∅.

Let B ∈ ker(ζ(D[C])). We will show that B ∈ ker(ζ(D)[C]).
B ∈ abs(ζ(D)[C]), because B ∈ abs(ζ(D[C])), and, as the monochro-
matic paths in D[C] are also monochromatic paths in D, A(ζ(D[C])) ⊆
A(ζ(D)[C]).

B has exactly one or two vertices, as the empty set is not absorbent,
and in this digraph there can be no independent sets with more than two
vertices.

We proceed by considering two subcases:

Subcase AA. B has one vertex.
Then ker(ζ(D)[C]) 6= ∅, because, as singular sets are independent, B ∈
ker(ζ(D)[C]). With this we conclude this subcase.

Subcase AB. B has two vertices.
Then B = {x, y}, as there cannot be other sets with two vertices indepen-
dent in ζ(D[C]). B ∈ ind(ζ(D)), by assumption (A). B ∈ ind(ζ(D)[C]),
because ζ(D)[C][B] = ζ(D)[B]. (that means the subdigraph of ζ(D)[C]
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induced by B is the subdigraph of ζ(D) induced by B) Finally, ker(ζ(D)[C])
6= ∅, because B ∈ ker(ζ(D)[C]). With this we conclude this subcase.
Case A is now complete.

Case B. {x, y} 6∈ ind(ζ(D)).
We proceed by contradiction. Assume ζ(D) is not a KP -digraph.

As every pair of vertices are adjacent in ζ(D), ζ(D) is a complete di-
graph, and by Theorem 2.2, ζ(D) has an asymmetrical cycle.

Let γ be the shortest asymmetrical cycle contained in ζ(D).
For every two nonconsecutive vertices of γ, there are symmetrical arcs

in ζ(D), otherwise, as ζ(D) is complete, we could get a shorter asymmetrical
cycle in ζ(D).

x, y ∈ V (γ), otherwise, D[V (γ)] would be a complete digraph without
C3 or T3, and by Theorem 2.1, there would be a vertex v ∈ V (γ) such that
{v} ∈ ker(ζ(D[V (γ)])), and clearly {v} ∈ ker(ζ(D)[V (γ)]).

We get a contradiction to Theorem 3.2 as γ is an asymmetrical cycle
in ζ(D), for every pair of nonconsecutive vertices of γ different from {x, y}
there are symmetrical arcs in ζ(D), and x, y ∈ V (γ).

We have concluded Case (B).
The proof of Theorem 3.4 is complete.

References

[1] C. Berge and P. Duchet, Recent problems and results about kernels in directed
graphs, Discrete Math. 86 (1990) 27–31.

[2] H. Galeana-Sánchez, On monochromatic paths and monochromatic cycles in
edge coloured tournaments, Discrete Math. 156 (1996) 103–112.

[3] H. Galeana-Sánchez, Kernels in edge coloured digraphs, Discrete Math. 184
(1998) 87–99.

[4] H. Galeana-Sánchez and J.J. Garćıa-Ruvalcaba, On graph all of whose
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