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Abstract

For the Traveling Salesman Problem (TSP) on Halin graphs with
three types of cost functions: sum, bottleneck and balanced and with
arbitrary real edge costs we compute in polynomial time the persis-
tency partition EAll, ESome, ENone of the edge set E, where:
EAll = {e ∈ E, e belongs to all optimum solutions},
ENone = {e ∈ E, e does not belong to any optimum solution} and
ESome = {e ∈ E, e belongs to some but not to all optimum solutions}.
Keywords: persistency, traveling salesman problem, Halin graph,
polynomial algorithm.
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1 Introduction

It is a common case that the minimum solution of an optimization problem
is not unique. If this occurs there is often a need for some additional con-
straints that further reduce the number of optimum solutions of the given
problem. But before applying those new constraints and solving the new
(and possibly harder) problem, we try to describe in some fashion the cur-
rent set of optimum solutions. Since listing all of them may not be efficient
(e.g., in case of exponential number of optimum solutions), the following
approach can be utilized: characterize all the decision variables according
to their behaviour with respect to optimum solutions. Hence for problems
where feasible sets are sets of edges of a graph we define the folowing
persistency partition of the set of edges E:
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EAll = {e ∈ E, e belongs to all optimum solutions} (1-persistent edges),
ENone = {e ∈ E, e does not belong to any optimum solution} (0-persistent

edges) and
ESome = {e ∈ E, e belongs to some but not to all optimum solutions}

(w-persistent edges).

In this paper we study the persistency for Traveling Salesman Problem
(TSP). The Traveling Salesman Problem is NP-complete in general case.
Thus, we direct our attention to a special type of graphs — so called Halin
graphs, where TSP can be solved in polynomial time.

A Halin graph H = T ∪ C is obtained by embedding a tree T without
nodes of degree 2 in the plane and adding a cycle C (outer cycle) joining
the leaves of T in such a way, that the resulting graph is planar. Given a
Halin graph H = T ∪ C and arbitrary real edge costs the (sum) TSP calls
for finding a Hamilton circuit O having minimum sum of edge weights.

A polynomial algorithm for finding one optimum solution of TSP on
Halin graphs was given in [4].

The notion of persistency was introduced in [5] for the maximum car-
dinality problem in bipartite graphs. Further results concerning persistency
in the assignment and transportation problem, bases of matroids, matroid
intersection problem, flows in networks, matchings in general and bipartite
graphs and spanning forests in graphs can be found in [1], [2], [3] and [6].
The persistency in matroid product problem was treated in [7].

2 TSP on Halin Graphs

Let H = T ∪C be a Halin graph and c(e) for e ∈ E(H) be the real costs of
its edges. We denote the cost of a set E0 ⊆ E(H) by c(E0) =

∑
e∈E0

c(e). If
T is a star then H is called a wheel. Otherwise T has at least two nonleaves.
Let w be a nonleaf which is adjacent to only one other nonleaf of T . We
denote the set of leaves of T adjacent to w by T (w) and call the subgraph
of H induced by {w} ∪ T (w) a fan with centre w. (See Figure 1.)

The following three lemmas can be found in [4]:

Lemma 21. A Halin graph which is not a wheel has at least two fans.

Let G = (V, E) be a graph and let S ⊆ V . We denote by G × S the graph
obtained from G by shrinking S to form a new pseudonode S̃. That is, the
nodes of G × S are V − S plus node S̃; the edges are all edges of G which
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do not have both ends in S and those incident with one node in S have
now that end taken to be the pseudonode S̃. If G′ is a subgraph of G, we
abbreviate G× V (G′) by G×G′, otherwise if G′ is not a subgraph of G we
write G×G′ instead of G× (V (G′) ∩ V (G)).

Lemma 22. If F is a fan in a Halin graph H, then H×F is a Halin graph.

A simple but useful property is the following:

Lemma 23. Let G = (V,E) be a connected graph. Every Hamilton cycle
contains exactly two edges of every 3-edge cutset of G.

Now we describe the polynomial algorithm for the TSP on a Halin graph
H = T ∪ C which was proposed in [4]. The algorithm creates a sequence of
fans {Fi}q−1

i=1 and a sequence of Halin graphs {Hi}q
i=1 obtained by shrinking

corresponding fans Fi, i.e. Hi = Hi−1 × Fi. After shrinking, costs are
updated to get sequence of cost functions {ci}q

i=1. Initially H1 = H and
c1 = c.

Suppose, that the algorithm has already created a sequence {H1,H2, . . . ,
Hi} of Halin graphs. For Halin graph Hi there are two possibilities:

Case 1. Hi is a wheel. The number of different Hamilton cycles in Hi

is equal to the degree of the star T . So it is easy to obtain an optimum
solution.

Case 2. Hi is not a wheel. By Lemma 21, Hi has at least two fans;
let Fi be any fan of Hi. Let v be the centre of Fi and let u1, u2 . . . , ur for
r ≥ 2 be the nodes of Fi that belong to C (in that order). There are exactly
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three edges j, k and l of Hi joining nodes of Fi to nodes of V − V (Fi). (See
Figure 2) In what follows we will call the edges j and l (incident with u1

and ur respectively) the side edges and the edge k (incident with v) the
middle edge.

By Lemma 23 any optimum Hamilton cycle O of Hi uses exactly two edges
of {j, k, l}. If O uses exactly one side edge, then there is only one possibility
to traverse the nodes of Fi. If O uses both side edges, then it must traverse
the nodes of Fi in the order u1, u2, . . . , ui, v, ui+1, . . . , ur for some i ∈ I ⊆
{1, 2, . . . , r− 1}. Let ∆i = c(v, ui) + c(v, ui+1)− c(ui, ui+1). Then index set
I consists of those indices, for which ∆i attains its maximum in Fi.

Let K be the sum of the costs of the edges in Fi belonging to the outer
cycle C of H. Then
• if Hamilton cycle O uses j and k, the edges in Fi contribute C̃jk =

K + c(v, ur) to its cost
• if Hamilton cycle O uses k and l, the edges in Fi contribute C̃kl =

K + c(v, u1) to its cost
• if Hamilton cycle O uses j and l, the edges in Fi contribute C̃jl =

K + c(ui, v) + c(v, ui+1)− c(ui, ui+1) for i ∈ I to its cost
The following lemma summarizes the results stated in [4]:

Lemma 24. Let Hi be a Halin graph with real costs of edges denoted by ci

and Fi its fan. Let Hi+1 = Hi × Fi. If O is an optimum Hamilton cycle
in (Hi, c

i) then O′ = O × Fi is an optimum Hamilton cycle in Halin graph
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Hi+1 with cost function ci+1 defined by

ci+1(e) =





ci(e) for e ∈ E(Hi+1)− {j, k, l},
ci(j) + 1

2

(
C̃jl + C̃jk − C̃kl

)
if e = j,

ci(k) + 1
2

(
C̃kl + C̃jk − C̃jl

)
if e = k,

ci(l) + 1
2

(
C̃jl + C̃kl − C̃jk

)
if e = l.

(1)

If O′ is an optimum Hamilton cycle in Halin graph (Hi+1, c
i+1), then there

exists an optimum Hamilton cycle O in (Hi, c
i) such that O′ = O × Fi.

The algorithm consists of recursively applying Case 2 until the graph is
reduced to a wheel Hq, when Case 1 is applied. Then the shrunk fans are
expanded in the reverse order and the Hamilton cycle is extended through
them. The total time needed for this algorithm is O(|V |).

3 Persistency Partition

We show in this section how to compute the persistency partition for the
sum TSP on a given Halin graph H.

As the first step we recursively apply Case 2 of the previously described
algorithm of Cornuéjols et al. until the initial Halin graph H is reduced to
a wheel Hq.

The idea is now first to compute the persistency partition of the wheel
Hq. Since Hq is very simple, this is an easy task. In the next step the
pseudonode of Hq created by restriction Hq−1 × Fq−1 is replaced with fan
Fq−1 and the persistency partition for all the edges of the restored fan Fq−1

is computed. In this way we obtain the persistency partition for Halin graph
Hq−1. We repeat this step until we get persistency partition of the original
Halin graph H.

Suppose that in the p-th step of computing persistency partition we have
a Halin graph Hi (i = q − p + 1) which is not equal to the original Halin
graph H (otherwise the proofs is complete) with cost function ci. Then
there exists a Halin graph Hi−1 with fan Fi−1 such that Hi = Hi−1 × Fi−1.
Lemma 24 describes the connection between optimum TSP solutions in Hi

and Hi−1. Here again we can replace the corresponding pseudonode in Hi

with fan Fi−1 and we need to compute the persistency partition only for
edges of fan Fi−1, since from Lemma 24 persistency of edges not in fan Fi−1

is the same in Hi−1 as in Hi.
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It is left to describe how to compute the persistency partition of edges of
the restored fan Fi−1 in Halin graph Hi−1 with cost function ci−1. The
pseudonodes have always degree 3 (all nodes lying on the outer cycle of a
Halin graph have this degree). Suppose, that every edge e ∈ E(Hi−1) is
labelled with one of 0, 1 or w meaning that it is 0–, 1– or w-persistent in
TSP on Hi. For the given pseudonode v there are three possibilities (see
Figure 3) how edges i, j and k can be labelled:

1. (1, 1, 0), (1, 0, 1), (0, 1, 1) configurations = there is only one possibility
for any optimum Hamilton cycle to traverse node v.

2. (1, w, w), (w, 1, w), (w,w, 1) configurations = there are two possibilities,
one edge is used by all optimum Hamilton cycles.

3. (w, w,w) configuration = for each of the three possible pairs of edges
{j, k, l} there is an optimum Hamilton cycle using that pair.

The remaining configurations of types (1, 1, 1), (0, 0, 0), (w, 1, 1), (1, 0, 0),
(w, 0, 0), (0, w, w) and (0, 1, w) are clearly impossible.

We will describe in detail how to deal with only one type of configuration
(namely 2). The other two types can be treated similarly.

In type 2 configuration we distinguish two cases (see Figure 3b):

Case a. The middle edge k is 1-persistent (configuration (w, 1, w)).
In this case, we have a unique j − k path through fan Fi−1 (using nodes
u1, u2, . . . , ur, v) and also unique k − l path (using nodes v, u1, u2, . . . , ur)
which are parts of some optimum Hamilton cycle in Hi−1. Therefore we
may assign persistency to all edges of fan Fi−1 (except for {j, k, l} for which
we have already computed persistency) as follows:

edges (ui, ui+1) for i = 1, 2, . . . , r − 1 : 1-persistent
edges (v, u1), (v, ur) : w-persistent
edges (v, ui), 1 < i < r : 0-persistent
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Case b. One of the side edges j or l is 1-persistent (configuration
(1, w, w) or (w,w, 1)).
Suppose that edge j is 1-persistent. This case is a little more complicated
since here we must deal with j − l paths through fan Fi−1, which may not
be unique. Suppose, that the optimum j − l paths through Fi−1 use nodes
{(u1, . . . , up, v, up+1, . . . , ur); p ∈ I ⊆ {1, . . . , r − 1}} for some index set I.
The set of optimum j− l paths can be computed along with fan shrinking at
the first step of the algorithm. Here for each p ∈ I the relation between costs
in Hi−1 and Hi is ci−1({u1, . . . , up, v, up+1, . . . , ur}) = ci(j) + ci(l). Now we
may assign the persistency in the following way:

edges (up, up+1) :

{
w-persistent, if p ∈ I,
1-persistent, otherwise.

edges (v, up), p < r :

{
w-persistent, if p ∈ I,
0-persistent, otherwise.

edges (v, ur) :

{
1-persistent, if I = {r − 1},
w-persistent, otherwise.

For the first step of computing persistency partition we need O(|V |) time
(see Section 2). Note that each time a fan is restored in a Halin graph, the
number of nonleaf nodes of the tree is increased by one. Therefore the total
number of times a fan will be restored is O(|V (T )|).

If a fan Fi contains ti nodes, then the time for computing persistency of
its edges is clearly at most O(ti). Restoring a fan Fi increases the number
of nodes of the graph by ti and since

∑
ti = |V |, the total complexity of

persistency computation is O(|V |) which is also the total time bound for
this algorithm.

As an easy observation from the previous results we have that in the un-
weighted version (all edge weights are equal) of the TSP on Halin graphs all
edges are w-persistent: it is a known fact that Halin graphs are 1-hamiltonian
(i.e., after removal of any edge they remain hamiltonian) and by looking
closer to the fan reduction and restoration process we can see that every
edge can belong to some Hamilton cycle (compare [4]).

4 Bottleneck Version of TSP

In the previous section we explored the TSP on Halin graphs with the cost
function c(O) =

∑
e∈O c(e). The bottleneck version of this problem uses the
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cost function in the form:

ca(O) = max
e∈O

c(e), where O is a Hamilton cycle,

and finds a Hamilton cycle which has minimum value of ca.
A trivial aproach to the bottleneck case consists of two steps.

Step 1. Find the optimum value cOpt
a of cost function ca(O).

For the given cost c(ẽ) of edge ẽ ∈ E we can decide whether there exists
a Hamilton cycle O such that ca(O) ≤ c(ẽ) easily: we assign new costs c′ to
edges of Halin graph H:

c′(e) :=

{
0, if c(e) ≤ c(ẽ),
1, otherwise.

Then we use the algorithm for finding sum-optimum solution of TSP on
Halin graph (see [4]) which in O(|V |) time gives us an optimum solution O∗

with the following property:

c′(O∗) = 0 if and only if H contains a Hamilton cycle O with ca(O) ≤ c(ẽ).

Now the optimum value cOpt
a can be found using binary search for costs c(ẽ).

Step 2. For each edge e ∈ E with weight c(e) ≤ cOpt
a decide, whether there

exist optimum Hamilton cycles O1 and O2 having e ∈ E(O1) and e /∈ E(O2).
Again we assign new costs to edges:

c′′(e) :=





0, e = ẽ,
1, e 6= ẽ and c(e) ≤ cOpt,
2, otherwise,

and

c′′′(e) :=

{
0, e 6= ẽ and c(e) ≤ cOpt,
1, otherwise.

Then we solve two TSPs with cost functions c′′ and c′′′ and find sum-
optimum solutions O′′ and O′′′ respectively. Now c′′(O′′) = |V | − 1 is equiv-
alent to the existence of O1 and c′′′(O′′′) = 0 is equivalent to the existence
of O2. The persistency partition is straightforward from that point.

In Step 1 log |V | iterations of binary search are enough for finding
the optimum value of the cost function. It sums up to the complexity
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O(|V | log |V |). In Step 2 we have to test at most O(|V |) edges with O(|V |)
time for one test. It gives the total complexity O(|V |2) for the trivial
approach.

However, we show here how it is possible to decide about the persistency
in bottleneck case in O(|V |) time using a similar algorithm as for the sum
case. The key step of determining persistency in the sum case was fan
shrinking. For each shrunk fan F a new costs were assigned to the side
edges j, l and to the middle edge k to assure that sums c(j) + c(k), c(j) +
c(l), c(k) + c(l) will be the same as the costs of minimum j − k, j − l, k − l
paths respectively. In the bottleneck case we are not always able to make
a similar assignment of new costs. (See e.g., Figure 4: newly assigned costs
of edges j, k and l have to satisfy max{c(j), c(k)} = max{c(j), c(l)} = 2 and
max{c(k), c(l)} = 3, which is impossible.)

Therefore we must utilize a different approach: we assign to each pseudo-
node ui a list of numbers ci

jk, c
i
kl and ci

jl denoting costs of minimum
j − k, k − l and j − l paths through the corresponding shrunk fan. With
the costs assigned that way we can continue with fan shrinking in a
similar fashion. See for example the situation depicted in Figure 5.
Here are two pseudonodes u1, u3 with assigned lists of costs c1

jk, c
1
kl, c

1
jl

and c3
jk, c

3
kl, c

3
jl. There are three possible paths between side edges j

and l with costs max{0, c1
jk, 0, b, 0, c3

jl, 0, d},max{0, c1
jl, 0, b, 0, c3

kl, 0, d} and
max{0, c1

jl, 0, 0, c3
jk, 0, c, d}.

In general, the cost of a path passing through vertices u1, . . . , ui, v,
ui+1, . . . , ur is equal to the maximum number of the following union of sets:
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{c(uq, uq+1); q 6= i} ∪ {cq
jl;uq is pseudonode, q 6= i, q 6= i + 1} ∪

{ci
jk; ui is pseudonode} ∪ {ci+1

kl ;ui+1 is pseudonode} ∪
{c(ui, v), c(v, ui+1)}.

The case of paths between the middle edge k and one of the side edges is
even easier because of their uniqueness.

By such a modification of persistency algorithm described in the previous
chapter we are able to solve the persistency partition of the bottleneck TSP
in O(|V |) time, which is clearly an optimum algorithm.

5 Balanced Version of TSP

The balanced version of this problem deals with the cost function in the
form:

cb(O) = max
e∈O

c(e)−min
e∈O

c(e), where O is a Hamilton cycle,

and finds a Hamilton cycle which has minimum value of cb.
In the balanced case a trivial approach would consist of testing all pos-

sible cost intervals 〈ci, cj〉 whether there is a feasible solution of a TSP
consisting only of edges with costs from the tested interval. The complexity
of feasibility test is O(|V |) as it was shown in bottleneck case which gives
an overall complexity O(|V |3).
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However, using the results of the bottleneck case it is possible to decide
about persistency in the balanced case in O(|V |2) time. We employ the
following approach:

Step 1. For each different cost c(h) look for the optimum solution Oh of
TSP with the bottleneck cost function ca and with lower bound c(h), i.e.,
where only edges with weight greater or equal to c(h) are allowed. Denote
the set of such optimum solutions SolOpt. Now it is easy to see that the
optimum value of balanced cost function is copt = minOh∈SolOpt

cb(Oh).

Step 2. Let CostOpt = {c(h);Oh ∈ SolOpt and cb(Oh) = copt} be the set
of those lower bounds c(h), for which the corresponding Hamilton cycle
Oh is optimal in balanced case. There can be more than one optimum
corresponding to given lower bound c(h), but optimum sets for different
lower bounds are clearly disjoint.

Step 3. Compute persistency partitions Eh
All, E

h
Some, E

h
None for each lower

bound c(h) ∈ CostOpt and then merge them to compute the final persistency
partition according to the rule:

EAll =
⋂

c(h)∈CostOpt

Eh
All; ENone =

⋂

c(h)∈CostOpt

Eh
None; ESome = E−EAll−ENone

It is left to show how to find an optimum solution of TSP with cost function
ca and with lower bound c(h). We assign a large constant K to all edges
e ∈ E with weights less than c(h) (K should be greater than maxe∈E c(e)).
We then find the optimum solution O∗ of TSP with cost function ca using
new costs. If ca(O∗) = K, then there is no optimum of TSP with lower
bound c(h) and we continue with testing next lower bound, otherwise O∗ is
the optimum we are looking for.

The complexity of the above approach is O(|V |2): there are at most
O(|V |) lower bounds c(h) and for each one we need to employ one search
for optimum solution, which takes O(|V |) time. Then we need to com-
pute persistency partition for each c(h) ∈ CostOpt which takes at most
|CostOpt|.O(|V |) = O(|V |2) time. The final merging of persistency parti-
tions takes only O(|V |) time.
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