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1 Introduction
Several decades ago Ringel, Kotzig and Rosa (see [27, 29]) discovered a
simple, very interesting and purely combinatorial classification of all finite
trees which can be labeled in a way they called graceful. That they could not
prove their discovery was a great pity for them but an immense stroke of luck
for graph theory because a new topic was born; in the period immediately
after the publication of the conjecture, most graph theorists dealing with
graphs and integers wanted to prove or disprove the Ringel-Kotzig conjecture
(see [7]). Since the conjecture resisted all the attempts at a solution, many
new interesting labelings of graphs were introduced and dealt with, labelings
which are quite different from the graceful labeling. Unfortunately, it turned
out that it was not any easier to determine or characterize the set of all
graphs labeled in the new ways than it was to settle the Ringel-Kotzig
conjecture. In the intervening 32 years, well over 250 papers on this topic
have appeared. Summarizing and describing the contemporary situation in
the theory of labeling graphs, we can state that for about 32 years it has
been an interesting and important central problem to find new classes of
finite (or infinite) graphs labeled in certain ways or to construct new types
of labelings, knowing that it would be impossible to develop a closed theory
giving a complete characterization of the set of graphs permitting a new
labeling (see [10, 16]).

Labeled graphs serve as useful models for a broad range of applications
such as: coding theory, x-ray crystallography, radar, astronomy, circuit de-
sign and communication networks (see [8]).

In this article, we survey what is known about certain graph labeling
methods. In particular we discuss antimagic labelings, edge-magic total
labelings and vertex-magic total labelings.

Many other researchers have investigated different forms of magic gra-
phs. For examples, see Borowiecki and Quintas [13], Jeurissen [18], Jezný
and Trenkler [19], Sedláček [30], Stewart [31].

All graphs considered in this paper are finite, simple, and undirected.
The graph G has vertex-set V (G) and edge-set E(G) and we let |V | = v
and |E| = e. A general reference for graph-theoretic notions is [34].

2 (a, d)-Antimagic Labelings
The concept of an antimagic labeling was introduced by Hartsfield and Rin-
gel [17]. An antimagic graph is a graph whose edges can be labeled with the
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integers 1, 2, ..., e so that the sum of the labels at any given vertex is different
from the sum of the labels at any other vertex, that is, no two vertices have
the same sum. Hartsfield and Ringel conjecture that every tree other than
K2 is antimagic and, more strongly, that every connected graph other than
K2 is antimagic.

The weight w(x) of a vertex x ∈ V (G) under an edge labeling f : E →
{1, 2, ..., e} is the sum of values f(xy) assigned to all edges incident to a
given vertex x. Bodendiek and Walther [9] defined the concept of an (a, d)-
antimagic graph as a special case of an antimagic graph as follows.

A connected graph G = (V, E) is said to be (a, d)-antimagic if there
exist positive integers a, d and a bijection f : E → {1, 2, ..., e} such that the
induced mapping gf : V (G) → W is also a bijection, where W = {w(x) :
x ∈ V (G)} = {a, a + d, a + 2d, ..., a + (v − 1)d} is the set of the weights of
vertices.

Bodendiek and Walther [10] showed that the theory of Diophantine
equations and other concepts of number theory can be applied to determine
the set of all connected (a, d)-antimagic graphs. For special graphs called
parachutes, (a, d)-antimagic labelings are described in [11, 12].

The prism Dn, n ≥ 3, is a trivalent graph which can be defined as
the Cartesian product P2 × Cn of a path on two vertices with a cycle on n
vertices. The prism can also be defined as the Cayley graph of the dihedral
group of order 2n (using a rotation and a reflection as generators, see [15]).

Bodendiek and Walther [10] conjecture that Dn, n ≡ 0 (mod 2), is
(7n+4

2 , 1)-antimagic and Dn, n ≡ 1 (mod 2), is (5n+5
2 , 2)-antimagic. The

necessary conditions for (a, d)-antimagic labeling of the prism Dn are given
in [1], namely, if Dn is (a, d)-antimagic then
• for n even: either d = 1 and a = 7n+4

2 or d = 3 and a = 3n+6
2 ; and

• for n odd: either d = 2 and a = 5n+5
2 or d = 4 and a = n+7

2 .
Proofs of the conjectures of Bodendiek and Walther are given in [1] where
it is also shown that Dn, n ≡ 0 (mod 2), is (3n+6

2 , 3)-antimagic and it is
conjectured that if n is odd, n ≥ 7, then the prism Dn is (n+7

2 , 4)-antimagic.
The antiprism An, n ≥ 3, is the plane regular graph of degree 4 (an

Archimedean convex polytope). In particular, A3 is the octahedron. Bača
[2] showed that (a, d)-antimagic labelings of antiprisms do not exist for all
values of (a, d) other than (6n + 3, 2), (4n + 4, 4), and (2n + 5, 6). In the
same paper, he also gave the following labelings of An:
• (6n + 3, 2)-antimagic labeling for n ≥ 3, n 6≡ 2 (mod 4); and
• (4n + 4, 4)-antimagic labeling for n ≥ 3, n 6≡ 2 (mod 4).
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In [25] are given a (6n+3, 2)-antimagic labeling and a (4n+4, 4)-antimagic
labeling of An for every even n, thereby proving two of Bača’s three conjec-
tures listed in [2]. To characterize (a, d)-antimagic antiprisms, it remains to
prove the following conjecture:

• for n ≥ 4 the antiprism An has an (2n + 5, 6)-antimagic labeling.

A generalized Petersen graph P (n,m), 1 ≤ m < n
2 , consists of an outer

n-cycle y1, y2, ..., yn, a set of n spokes yixi, 1 ≤ i ≤ n, and n inner edges
xixi+m, 1 ≤ i ≤ n, with indices taken modulo n. The standard Petersen
graph is the instance P (5, 2).

Generalized Petersen graphs were first defined by Watkins [33]. We
note that the prism Dn is the generalized Petersen graph P (n, 1). The
necessary conditions for (a, d)-antimagicness of P (n,m) are the same as for
the prism Dn.

In [5] it is proved that the generalized Petersen graph P (n,m) is (a, 1)-
antimagic if and only if n is even, n ≥ 4, m ≤ n

2−1 and a = 7n+4
2 . Miller and

Bača [24] showed that if n ≡ 0 (mod 4) then P (n, 2) is (3n+6
2 , 3)-antimagic.

We conjecture that the generalized Petersen graph P (n,m) is (a, d)-
antimagic for all feasible values of a and d. More specifically, we put forward
the following three conjectures:

• If n is even, n ≥ 6 and 2 ≤ m ≤ n
2 − 1, then P (n,m) is (3n

2 + 3, 3)-
antimagic.

• If n is odd, n ≥ 5 and 2 ≤ m ≤ n−1
2 , then P (n,m) is (5n+5

2 , 2)-
antimagic.

• If n is odd, n ≥ 7 and 1 ≤ m ≤ n−1
2 , then P (n,m) is (n+7

2 , 4)-antimagic.

3 (a, d)-Face Antimagic Labelings

A graph is said to be plane if it is drawn on the Euclidean plane in such
a way that edges do not cross each other except at vertices of the graph.
Assume that all plane graphs considered in this paper possess no vertices of
degree one. For a plane graph G = (V, E, F ), it makes sense to consider its
faces, including the unique face of infinite area. Let F (G) be the face set
and |F (G)| be the number of the faces of G.

Now let us define the weight of a face and (a, d)-face antimagic labeling
of the plane graph G = (V, E, F ). The weight w∗(f) of a face f ∈ F (G)
under an edge labeling g : E(G) → {1, 2, ..., |E(G)|} is the sum of the labels
of edges surrounding that face.
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A connected plane graph G = (V, E, F ) is said to be (a, d)-face antimagic if
there exist positive integers a, d and a bijection g : E(G) → {1, 2, ..., |E(G)|}
such that the induced mapping w∗g : F (G) → W is also a bijection, where
W = {w∗(f) : f ∈ F (G)} = {a, a + d, ..., a + (|F (G)| − 1)d} is the set of
weights of faces. If G = (V, E, F ) is (a, d)-face antimagic and g : E(G) →
{1, 2, ..., |E(G)|} is a corresponding bijective mapping of G then g is said to
be an (a, d)-face antimagic labeling of G.

Clearly, an (a, d)-face antimagic labeling of the graph G of a convex
polytope is equivalent to (a, d)-antimagic labeling a dual graph G∗. The
plane dual graph D∗

n of prism Dn is the graph of a bipyramid. This implies
the following lemmas.

Lemma 1. If n is even, n ≥ 4, then the bipyramid D∗
n has a (7n+4

2 , 1)-face
antimagic labeling and (3n+6

2 , 3)-face antimagic labeling.

Lemma 2. If n is odd, n ≥ 3, then the bipyramid D∗
n has a (5n+5

2 , 2)-face
antimagic labeling.

Since the plane dual graph A∗n of the antiprism An is the graph of a quasi-
bipyramid, then we have

Lemma 3. For n ≥ 3, the quasibipyramid A∗n is (6n + 3, 2)-face antimagic
and (4n + 4, 4)-face antimagic.

Let I = {1, 2, ..., n} be an index set. Let us denote the vertex set of the
prism Dn by V (Dn) = {xj,i : i ∈ I and j = 1, 2} and edge set by E(Dn) =
{xj,ixj,i+1 : j = 1, 2 and i ∈ I} ∪ {x1,ix2,i : i ∈ I} with indices taken
modulo n. We insert exactly one vertex y (respectively z) into the internal
(respectively external) n-sided face of Dn. Suppose that n is even, n ≥ 4,
and consider the graph Dn with the vertex set V (Dn) = V (Dn)∪{y, z} and
the edge set E(Dn) = E(Dn) ∪ {x1,2m−1y : m = 1, 2, ..., n

2 } ∪ {x2,2mz : k =
1, 2, ..., n

2 }.
The Dn, n ≥ 4, is the plane graph consisting of |F (Dn)| = 2n 4-sided

faces. If Dn, n ≥ 4, n ≡ 0 (mod 2), is (a, d)-face antimagic [3] then the
feasible values of (a, d) are (6n + 3, 2) or (4n + 4, 4) or (2n + 5, 6) and no
other. In [3] it is proved that if n is even, n ≥ 4, then plane graph Dn is
(6n + 3, 2)-face antimagic and (4n + 4, 4)-face antimagic. A conjecture that
Dn is (2n + 5, 6)-face antimagic is proposed at the end of the paper [3].

The biprism Bn, n ≥ 3, is defined as the Cartesian product P3 × Cn of
a path on three vertices with a cycle on n vertices, embedded in the plane.
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Let us denote the vertex set of Bn by V (Bn) = {xj,i : i ∈ I and j =
1, 2, 3} and edge set by E(Bn) = {xj,ixj,i+1 : i ∈ I and j = 1, 2, 3} ∪
{x1,ix2,i : i ∈ I} ∪ {x2,ix3,i : i ∈ I} with indices taken modulo n. We
insert exactly one vertex y (z) into the internal (external) n-sided face of Bn.
Suppose that n is even, n ≥ 4, and consider the graph Bn with the vertex
set V (Bn) = V (Bn)∪ {y, z} and the edge set E(Bn) = E(Bn)∪ {x1,2m−1y :
m = 1, 2, ..., n

2 } ∪ {x3,2m−1z : m = 1, 2, ..., n
2 }. Then Bn, n ≥ 4, is the plane

graph consisting of |F (Bn)| = 3n 4-sided faces.
Bača and Miller [6] showed that (a, d)-face antimagic labeling of Bn do

not exist for any values of (a, d) other than (9n + 3, 2), (6n + 4, 4), and
(3n + 5, 6). They proved that for n even, n ≥ 4, the plane graph Bn has
(9n + 3, 2)-face antimagic labeling and (6n + 4, 4)-face antimagic labeling.

For n ≥ 3 we denote by Hn the plane graph of a convex polytope,
which is obtained as a combination of two antiprisms An. Let us denote the
vertex set of Hn by V (Hn) = {xj,i : i ∈ I and j = 1, 2, 3} and edge set by
E(Hn) = {xj,ixj,i+1 : i ∈ I and j = 1, 2, 3} ∪ {xj,ixj+1,i : i ∈ I and j =
1, 2} ∪ {x1,i+1x2,i : i ∈ I} ∪ {x2,ix3,i+1 : i ∈ I} with indices taken modulo n.
We insert exactly one vertex y(z) into the internal (external) n-sided face of
Hn and connect the vertex y(z) with the vertices x1,i(x3,i), i ∈ I. Thus we
obtain the plane graph Hn consisting of |F (Hn)| = 6n 3-sided faces.

Necessary conditions are given in [4] for (a, d)-face antimagic labeling
of Hn: if Hn is (a, d)-face antimagic then
• for n even: either d = 1 and a = 21n+4

2 or d = 3 and a = 9n+6
2 ; and

• for n odd: either d = 2 and a = 15n+5
2 or d = 4 and a = 3n+7

2 .
The paper [4] describes a (21n+4

2 , 1)-face antimagic labeling of Hn, n ≡ 0
(mod 2), n ≥ 4, and poses two conjectures for other feasible values of a
and d.

4 Edge-Magic Total Labelings

Edge-magic total labelings were introduced by Kotzig and Rosa [20] as fol-
lows. An edge-magic total labeling on G will mean a one-to-one map λ from
V (G) ∪ E(G) onto the integers 1, 2, ..., v + e with the property that, given
any edge (x, y),

λ(x) + λ(x, y) + λ(y) = k

for some constant k. It will be convenient to call λ(x) + λ(x, y) + λ(y) the
edge sum of (x, y), and k the (constant) magic sum of G. A graph is called
edge-magic total if it admits any edge-magic total labeling.
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Ringel and Llado [28] proved that if G has e even and v+e ≡ 2 (mod 4), and
every vertex of G has odd degree, then G is not edge-magic total. Kotzig
and Rosa [21] showed that no complete graph Kn with n > 6 is edge-magic
total and neither is K4, and edge-magic total labelings for K3, K5 and K6,
for all feasible values of k, are described in [32].

The cycle Cn is regular of degree 2 and has n edges and the path Pn

can be considered as a cycle Cn with an edge deleted. An n-sun is a cycle
Cn with an additional edge terminating in a vertex of degree 1 attached to
each vertex. A caterpillar is a graph derived from a path by hanging any
number of pendant vertices from vertices of the path. In [20] it is proved
that all cycles Cn and caterpillars are edge-magic total. Wallis et al [32]
showed that:
• All paths Pn are edge-magic total.
• All suns are edge-magic total.
• The complete bipartite graph Km,n is edge-magic total for any m and n.

It is conjectured that:

• All trees are edge-magic total [20].
• Wheels Wn are edge-magic total whenever n 6≡ 3 (mod 4) [14].

Enomoto et al [14] checked that :

• All trees with less than 16 vertices are edge-magic total.
• Wheels Wn up to n = 29, n 6≡ 3 (mod 4) are edge-magic total.

5 Vertex-Magic Total Labelings

A one-to-one map λ from E ∪ V onto the integers {1, 2, · · · , e + v} is a
vertex-magic total labeling if there is a constant k so that for every vertex x,

λ(x) +
∑

λ(xy) = k

where the sum is over all vertices y adjacent to x. Let us call the sum
of labels at vertex x the weight of the vertex; we require wt(x) = k for
all x. The constant k is called the magic constant for λ. Vertex-magic total
labelings were introduced by MacDougall et al [22]. The edge labels are all
distinct (as are all the vertex labels).

In a vertex-magic total labeling, the edges could conceivably receive the
e smallest labels or, at the other extreme, the e largest labels, or anything
in between. Consequently we have
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(v+e+1
2

)
+

(e+1
2

) ≤ vk ≤ 2
(v+e+1

2

)− (v+1
2

)

which will give the range of feasible values for the magic constant k. For
cycles (and only for cycles) a vertex-magic total labeling is equivalent to an
edge-magic total labeling and from previous section it follows

• The n-cycle Cn has a vertex-magic total labeling for any n ≥ 3.
• The path Pn with n vertices, has a vertex-magic total labeling for any

n ≥ 3.

Complete bipartite graphs provide us with interesting and surprising results.
It was shown in [22] that

• If n > m + 1 then Km,n has no vertex-magic total labeling.
• There is a vertex-magic total labeling for Km,m for every m > 1.

Curiously enough, the proof of this used a magic square construction.
Let G be any graph of order n and size e. We define a G-sun to be a graph
G∗ of order 2n formed from G by adjoining n new vertices of degree one to
the vertices of G. We have v∗ = |V (G∗)| = 2n and e∗ = |E(G∗)| = e + n.
The following result [22] shows that for a vertex-magic total labeling to exist,
the number of edges in G must be bounded above by a function of n which
is essentially linear:

• Let G be any graph of order n. If G has e edges, then a G-sun G∗ has
no vertex-magic total labeling whenever

e >
−1 +

√
1 + 8n2

2
.

It was shown in [22] that there is a vertex-magic total labeling for complete
graphs Kn for all odd n. A vertex-magic total labeling of K2n, n odd, is
given in [23] using a vertex-magic total labeling of Kn and two mutually
orthogonal latin squares of order n. For n ≡ 0 (mod 4) there is stated the
following conjecture:

• There is a vertex-magic total labeling for Kn for n ≡ 0 (mod 4).

Next we will turn our attention to the generalized Petersen graph P (n,m)
1 ≤ m < n

2 . It was shown in [5] that for n even, n ≥ 4 and 1 ≤ m ≤ n
2−1, the

generalized Petersen graph P (n,m) has edge labeling f : E → {1, 2, ..., e}
which is (a, 1)-antimagic.
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There trivially exists a vertex labeling with values in the set {e + 1, e +
2, ..., e + v} and the resulting labeling is vertex-magic total.

The plane graph of a convex polytope Hn was defined in Section 3.
A (21n+4

2 , 1)-face antimagic labeling of Hn, n even, n ≥ 4, is described in
[4]. Clearly, (21n+4

2 , 1)-face antimagic labeling of Hn, n even, n ≥ 4, is
equivalent to (21n+4

2 , 1)-antimagic labeling of the dual graph of H∗
n. There

trivially exists a vertex labeling of H∗
n, n ≥ 4, n ≡ 0 (mod 2), with values

in the set {e + 1, e + 2, ..., e + v}. This proves that

• For n even, n ≥ 4, the plane graph H∗
n has a vertex-magic total labeling.

Vertex-magic total labelings for the antiprism An, n ≥ 4, n even, with magic
constants k = 15n + 2 and k = 15n + 3 are given in [26].
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[19] S. Jezný and M. Trenkler, Characterization of magic graphs, Czechoslovak
Math. J. 33 (1983) 435–438.

[20] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull.
13 (1970) 451–461.

[21] A. Kotzig and A. Rosa, Magic valuations of complete graphs, Publ. CRM 175
(1972).

[22] J.A. MacDougall, Mirka Miller, Slamin and W.D. Wallis, Vertex-magic total
labellings of graphs, submitted.

[23] Mirka Miller, J.A. MacDougall, Slamin and W.D. Wallis, Problems in magic
total graph labellings, in: Proceedings of the tenth AWOCA (1999) 19–25.
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