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Abstract

The aim of the paper is to give an effective formula for the calcu-
lation of the probability that a random subset of an affine geometry
AG(r−1, q) has rank r. Tables for the probabilities are given for small
ranks. The expected time to the first moment at which a random
subset of an affine geometry achieves the rank r is derived.
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1 Introduction

Random subsets of finite projective geometries are most interested and
extensively investigated objects from the wide class of random matroids.
Already several papers have been published in this area. On the other
hand, random subsets of finite affine geometries — very similar to projective
geometries — have only a few references. Voigt [7] considers mainly the case
in which the rank of the geometry tends to infinity. In this paper we are
concerned with the finite case, i.e., when the rank is fixed.

The main aim of this paper is to provide a formula, which enables a
simple calculation of the probability that a random subset of an affine finite
geometry AG(r − 1, q) of rank r has the same rank. To derive this formula
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we use a more general result published in [3] and [4]. To make the paper self-
contained in Section 2 we give some indispensible tools from those papers.
Next, in Section 3 we derive the result stated in Theorem 1. This result is
the basis of calculating these probabilities, using routines written in Turbo
Pascal and Mathematica. The probabilities are given in tables 1 – 8. In
Section 4 we consider a hitting time, a moment at which the random subset
has the same rank as the geometry.

2 Preliminaries
One can find the following basic definitions from the theory of matroids in
the books of Oxley [6] and Welsh [8].

Let M = (E,F) be a matroid of flats on the ground set E. The rank of
A is denoted by ρ(A) and the span of A is denoted by σ(A). Suppose A, B
and C are flats. Denote AlB, if A ⊆ C ⊆ B implies that either C = A or
C = B. Assume that σ(∅) = ∅.

Let Λ be a measure on E, λe = Λ(E) and

Λ(A) =
∑

e∈E

λe .

We define the continuous random-M -process {ω(M, Λ, t), t ∈ [0,∞)} as the
process which starts from the empty set at t = 0 such element e arises before
t with probability 1 − e−λet independently of each other elements. The set
of elements arising before the moment t, forms the random set R. If t is
fixed then ω(M, Λ, t) is a random matroid ω(M) with pe = 1− e−λet for all
e ∈ E, (see Kordecki [3]).

Let us consider a random process ω(M, Λ, t) with values in the family of
flats F . The process ω(M, Λ, t) will be in state A ∈ F if σ(R) = A. Assume
that our process starts at the moment t = 0 from the state ∅. Therefore,
ω(M, Λ, t) is a Markov process. The transitional rates are given by

µAB =

{
Λ(B \A), if B mA,
0, otherwise,

where A,B ∈ F and A 6= B. Let µA = Λ (E \A).
Let PA(t) denote the probability that ω(M, Λ, t) is in state A at time t.

Then Kolmogorov’s equations are of the form

d

dt
PB(t) = −PB(t)

∑

CmB

µBC +
∑

AlB

µABPA(t) ,(1)
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if B 6= ∅ and B 6= E, and

d

dt
PE(t) =

∑

AlE

µAPA(t),(2)

d

dt
P∅(t) = −P∅(t)Λ(E).(3)

From the last equation and the initial condition we have

P∅(t) = e−Λ(E)t.

In [5] the following lemma was proved, (see [3] for simplified proof).

Lemma 1. Let Fi (t) are exponential distribution functions, Fi (t) = 1 −
e−λit for i = 1, 2, . . . , n, t > 0 and λ1 > λ2 > . . . > λn. Then

F (t) =
n∑

k=1

(
1− e−λkt

) ∏

j 6=k

λj

λj − λk
.(4)

3 Rank of Random Subsets

Let GF (q) be a Galois field, where q is a prime power and let V (r, q) be an
r-dimensional vector space on GF (q). Let L be the lattice of subspaces of V .
Atoms of L are points and 2-dimensional subspaces, (2-flats) are lines in a
projective geometry PG(r−1, q) of dimension r−1. Projective geometries can
be defined in an axiomatic way (see [8], p. 193), but every (finite) projective
geometry of dimension n > 2 is isomorphic to the geometry defined above.
A hyperplane of PG(r− 1, q) is subspace of rank r− 1. The affine geometry
AG(r − 1, q) is obtained from PG(r − 1, q) by deleting from the latter all
the points contained in fixed hyperplane. One can find concise, but detailed
information about affine geometries in the chapter Classical Geometries in
[1], written by Beutelspacher, p. 694.

Let q 6= 1, k be natural numbers and n ≥ 0. Define some q-analogs in
the following way, where q is assumed to be fixed: q-numbers

[n] =
qn − 1
q − 1

= 1 + q + q2 + . . . + qn−1

and q-factorials

[k]! =
k∏

j=1

[x− j + 1] , [0]! = 1 .
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Gaussian coefficients are defined as follows:
[
n

k

]
=

[n]!
[k]![n− k]!

=
k∏

j=1

qn−j+1 − 1
qj − 1

for 0 ≤ k ≤ n .

It is well-known that PG(r − 1, q) has [r] elements and has
[r
k

]
rank-k sub-

spaces. Similarly, AG(r − 1, q) has qr−1 elements and qr−k
[r−1
k−1

]
rank-k

subspaces.
Let P (r) denote the probability that the random subset of AG(r− 1, q)

has rank r. First we derive the recurrence formula P (r). Assuming P (0) = 1
and using the easily obtained formula

(1− p)qr−1
+

r∑

k=1

qr−k

[
r − 1
k − 1

]
(1− p)qr−1−qk−1

P (k) = 1 ,

we have

P (r) = 1− (1− p)qr−1 −
r−1∑

k=1

qr−k

[
r − 1
k − 1

]
(1− p)qr−1−qk−1

P (k) .(5)

Recall that subspaces of PG(r − 1, q) and AG(r − 1, q) form a modular
geometric lattice. Hence if A,B ∈ J then ρ(A∪B) = ρ(A)+ρ(B)−ρ(A∩B),
(see Welsh [8], p. 195). Let Mr be a matroid of flats AG(r − 1, q).

The process ω(M, Λ, t) is now denoted by ω(t) and ω(M,λ, t) by ω(t).

Theorem 1. Let P (r, t) be the probability that the rank of the random subset
of Mr is equal to r, where p = 1− e−t. Then

P (r, t) = (−1)r−1(q − 1)r−1[r − 1]!
(
1− e−tqr−1

)

+
r−1∑

j=1

(−1)r−j−1q(
r−j+1

2 )
[
r − 1
j − 1

] (
1− e−t(qr−1−qj−1)

)
.

(6)

Proof. Let us consider the process ωr (t) defined as ω (Mr, t). Denote

l (r, k) =
∏

i 6=k

[r]− [i]
[k]− [i]

.(7)

Using Lemma 1, and denoting mi = µ(A), where ρ(A) = i, we have

mi =

{
qr−1 − qi−1 for i ≥ 1,
qr−1 for i = 0.
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Hence

mi −mj =





−qi−1 for i 6= 0, j = 0,
qj−1 for i = 0, j 6= 0,
qj−1 − qi−1 for i 6= 0, j 6= 0.

For l(r, j) defined by (7), we have two separate cases.

l(r, 0) =
r−1∏

i=1

qi−1
(
qr−i − 1

)

−qi−1
= (−1)r−1(q − 1)r−1[r − 1]!

and for j ≥ 1

l(r, j) = qr−j
∏

1≤i≤r−1
i6=j

qi−1
(
qr−i − 1

)

qi−1 (qj−i − 1)

= qr−j

∏j−1
i=1

(
qr−i − 1

) ∏r−1
i=j+1

(
qr−i − 1

)
∏j−1

i=1 (qj−i − 1)
∏r−1

i=j+1 (qj−i − 1)

= (−1)r−j−1qr−j
r−j−1∏

i=1

qi

∏j−1
i=1

(
qr−i − 1

) ∏r−j−1
i=1

(
qr−j−i − 1

)
∏j−1

i=1 (qj−i − 1)
∏r−j−1

i=1 (qi − 1)

= (−1)r−j−1q(
r−j
2 )qr−j

∏j−1
i=1

(
qr−i − 1

) ∏r−j−1
i=1

(
qr−j−i − 1

)
∏j−1

i=1 (qi − 1)
∏r−j−1

i=1 (qi − 1)

= (−1)r−j−1q(
r−j+1

2 )
[
r − 1
j − 1

]
.

Therefore we have obtained the assertion for AG(r − 1, q − 1, q).

If r = 3 (the affine plane), we obtain for q = 2

PE(t) = 1− 6e−2t + 8e−3t − 3e−4t

and for q = 3

PE(t) = 1− 12e−6t + 27e−8t − 15e9t .

Tables 1 to 5 give values of PE(t) for q = 2, q = 3, q = 4 and q = 5,
r = 2, 3, . . . , 6 and t = 0.1, . . . , t = 0.5.
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Table 1. Values of PE(t) for AG(r − 1, 2)

r t = 0.1 0.2 0.3 0.4 0.5
2 0.009056 0.032859 0.067175 0.108689 0.154818
3 0.003201 0.020586 0.056105 0.107890 0.171759
4 0.003420 0.033892 0.107884 0.217816 0.345378
5 0.009306 0.108335 0.316592 0.546366 0.729862
6 0.048213 0.405054 0.767941 0.932362 0.983301

Table 2. Values of PE(t) for AG(r − 1, 3)

r t = 0.1 0.2 0.3 0.4 0.5
2 0.025444 0.086663 0.166704 0.254402 0.342622
3 0.041028 0.192093 0.390510 0.574785 0.719333
4 0.207400 0.680338 0.913480 0.980957 0.996266
5 0.837605 0.998192 0.999990 1.000000
6 0.999971 1.000000

Table 3. Values of PE(t) for AG(r − 1, 4)

r t = 0.1 0.2 0.3 0.4 0.5
2 0.047687 0.152740 0.277304 0.400913 0.513485
3 0.171103 0.537714 0.794163 0.919275 0.970727
4 0.829155 0.996584 0.999961 1.000000
5 0.999999 1.000000

Table 4. Values of PE(t) for AG(r − 1, 5)

r t = 0.1 0.2 0.3 0.4 0.5
2 0.074522 0.224873 0.386550 0.531859 0.651664
3 0.399526 0.832406 0.965865 0.994044 0.999048
4 0.996781 1.000000

Table 5. Values of PE(t) for AG(r − 1, 7)

r t = 0.1 0.2 0.3 0.4 0.5
2 0.137830 0.371222 0.577646 0.729835 0.832675
3 0.838435 0.994668 0.999883 0.999998 1.000000

Tables 6 to 8 give values of PE(t) for q = 7, q = 8 and q = 9, r = 2, 3, . . . , 4
and t = 0.01, . . . , t = 0.05
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Table 6. Values of PE(t) for AG(r − 1, 8)

r t = 0.01 0.02 0.03 0.04 0.05
2 0.002664 0.010141 0.021721 0.036773 0.054736
3 0.023991 0.124267 0.276170 0.438916 0.585832
4 0.723917 0.988288 0.999734 0.999995 1.000000

Table 7. Values of PE(t) for AG(r − 1, 9)

r t = 0.01 0.02 0.03 0.04 0.05
2 0.003402 0.012868 0.027385 0.046069 0.068145
3 0.043949 0.203896 0.410554 0.598625 0.742646
4 0.920386 0.999547 0.999999 1.000000

Table 8. Values of PE(t) for AG(r − 1, 11)

r t = 0.01 0.02 0.03 0.04 0.05
2 0.005130 0.019150 0.040237 0.066844 0.097661
3 0.113778 0.413638 0.679875 0.844720 0.930331
4 0.998898 1.000000

4 Hitting Time

Let τ denotes the hitting time, i.e., the first moment at which ρ(ω(t)) = r.
Therefore

τ = min{t : ρ(ω(t) = r}
and

Pr(τ < t) = P (r, t) .

The considerations below are based on similar ones, given in Kordecki [2]
for the case of PG(r − 1, q), (see also [3]).

The Laplace transform of τ is of the form

P (r, s) =
∞∫

0

e−stdP (r, t) = Ee−sτ .

Formula (2) is of the form

dP (r, t)
dt

= qr−1[r − 1]qr−2(q − 1)P (r − 1, t)e−t(q−1)qr−2
,(8)
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where qr−1[r − 1] is the number of hyperplanes, qr−2(q − 1) is the number
of elements outside some fixed hyperplane and P (r − 1, t)e−t(q−1)qr−2

is the
probability that ρ(H) = r − 1 for some fixed hyperplane.

Lemma 2. For r ≥ 1 we have

P (r, t) = q(
r
2)(q − 1)r−1[r − 1]!

∏

k=1

r(s + qr−k[k − 1])−1 .(9)

Proof. Taking the Laplace transforms of both sides of equation 8 we obtain

sP (r, s) = qr−1qr−2(qr−1 − 1)P
(
s + (q − 1)qr−2

)
.

If r = 1, then P (r, s) = 1/ (1 + s) and (9) is satisfied. If r ≥ 2, we assume
that (9) is true for some r and prove (9) for r +1, which is an easy task and
we obtain the assertion.

Now we give the formulae for Eτ and D2τ .

Theorem 2.

Eτ = q−r(q − 1)r−1
r∑

k=1

qk

[k − 1]
,(10)

D2τ = q−2r(q − 1)r−1
r∑

k=1

q2k

[k − 1]2
.(11)

Proof. Using Lemma 2 we calculate the two first derivatives of P (r, s).
First we calculate

d

ds

∏

k=1

r
(
s + qr−k[k − 1]

)
=

r∑

k=1

∏

k 6=j

(
s + qr−j [j − 1]

)
.

Hence

dP (r, s)
ds

= −q(
r
2)(q − 1)r−1[r − 1]!

∑r
k=1

(
s + qr−k[k − 1]

)−1

∏r
k=1 (s + qr−k[k − 1])

.(12)

Substituting s = 0 into (12) we obtain (10). In a similar manner we can
calculate the second derivative of P (r, s) and (11). Then we obtain the
assertion.

The following theorem states the asymptotic behaviour of Eτ(r) and D2τ(r)
where p and q are fixed but r →∞.
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Theorem 3.
Eτ = r

(
q − 1

q

)r

(1 + o(1)) ,(13)

D2τ = r

(
q − 1

q

)2r

(1 + o(1)) .(14)

Proof. Since

r∑

k=1

qk

qk − 1
=

r∑

k=1

(
1 +

1
qk − 1

)
= r(1 + o(1)),

then from (10) we obtain Formula (13). In the same manner, from (11) we
obtain (14).
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