DICHROMATIC NUMBER, CIRCULANT TOURNAMENTS AND ZYKOV SUMS OF DIGRAPHS

Víctor Neumann-Lara
Instituto de Matemáticas, UNAM
Circuito Exterior, C.U.
México 04510 D.F., MÉXICO

e-mail: neumann@matem.unam.mx

Abstract

The dichromatic number $d c(D)$ of a digraph D is the smallest number of colours needed to colour the vertices of D so that no monochromatic directed cycle is created. In this paper the problem of computing the dichromatic number of a Zykov-sum of digraphs over a digraph D is reduced to that of computing a multicovering number of an hypergraph $H_{1}(D)$ associated to D in a natural way. This result allows us to construct an infinite family of pairwise non isomorphic vertex-critical k-dichromatic circulant tournaments for every $k \geq 3, k \neq 7$.

Keywords: digraphs, dichromatic number, vertex-critical, Zykov sums, tournaments, circulant, covering numbers in hypergraphs.
2000 Mathematics Subject Classification: 05C20, 05C15, 05C65.

1 Introduction

The dichromatic number $d c(D)$ of a digraph D is the least number of colours needed to colour the vertices of D in such a way that each chromatic class is acyclic $([3,9,10])$. It is apparent that this invariant measures in some way the complexity of the cyclic structure of digraphs. The importance of studying this invariant, introduced in [10], comes from the following fact: If G is a graph and G^{*} denotes the digraph obtained from G by orienting each one of the edges in both directions, then $\chi(G)=d c\left(G^{*}\right)$; so the dichromatic number is a natural extension of the chromatic number to the class of all digraphs.

The structure of arc-critical k-dichromatic digraphs was investigated in [10] and consequently new remarkable properties of k-chromatic graphs were obtained there.

We continue here the study of vertex-critical k-dichromatic tournaments initiated in [15]. Related topics have been considered in [4, 5, 11].

Let H be an hypergraph without isolated vertices and suppose a positive integer ξ_{u} has been assigned to each vertex u of H; the covering number of H corresponding to that assignment of weights is defined to be the minimum cardinality of a family of not necessarily different edges of H such that each vertex u belongs to at least ξ_{u} edges of the family.

Let D be a digraph and let $H_{1}(D)$ be the hypergraph whose vertex set is $V(D)$ and has the maximal acyclic subsets of $V(D)$ as hyperedges. In this paper the problem of computing the dichromatic number of a Zykov-sum of digraphs over a digraph D is reduced to that of computing the covering number of $H_{1}(D)$ with respect to an adequate assignment of weights (Theorem 4.2). We apply this result to construct an infinite family of pairwise non isomorphic vertex-critical k-dichromatic circulant tournaments for every $k \geq 3, k \neq 7$. This improves previous results included in [15]. Other related results are also presented.

2 Preliminary Results and Terminology

For general concepts we refer the reader to [2].
Let D be a digraph; $V(D)$ and $A(D)$ will denote the sets of vertices and arcs of D respectively, $o(D)=|V(D)|$ is the order of $D ; D$ is acyclic provided no directed cycle is contained in D. The subdigraph of D induced by a subset S of $V(D)$ will be denoted by $D[S] ; S$ is said to be acyclic iff $D[S]$ is acyclic. The maximal cardinality of an acyclic set of vertices of D will be denoted by $\beta \rightarrow(D)$. A colouring of $V(D)$ is acyclic if all the chromatic classes are acyclic. So the dichromatic number $d c(D)$ of a digraph D is the minimum number of colours in an acyclic colouring of $V(D)$. Clearly $d c\left(D^{\mathrm{op}}\right)=d c(D)$ where D^{op} is obtained from D by reversing each one of its arcs.
D is called r-dichromatic if $d c(D)=r$ and vertex-critical r-dichromatic if $d c(D)=r$ and $d c(D-u)<r$ for every $u \in V(D)$.
\mathbb{N} will denote the set of nonnegative integers, $I_{n}=\{1, \ldots, n\}$ and Z_{n} is the set of integers mod n. For any nonempty subset J of $Z_{n}-\{0\}$, the circulant digraph $\vec{C}_{n}(J)$ is defined by $V\left(\vec{C}_{n}(J)\right)=Z_{n}$ and $A\left(\vec{C}_{n}(J)\right)=$ $\left\{(i, j): i, j \in Z_{n}\right.$ and $\left.j-i \in J\right\}$. In particular, $\vec{C}_{n}(\{1\})$ is the directed cycle
$\vec{C}_{n} ; \vec{C}_{2 m+1}(J)$ is a circulant tournament whenever $|\{j,-j\} \cap J|=1$ for every $j \in Z_{2 m+1}-\{0\}$. If $i, j \in V\left(\vec{C}_{n}\right), A_{i, j}$ will denote the directed $i j$-path in \vec{C}_{n}. For $j \in I_{m}, I_{m, j}$ will denote the set $I_{m} \cup\{2 m+1-j\}-\{j\}$ considered as a subset of $Z_{2 m+1}$.

In [12] it was proved that there is only one 4-dichromatic oriented graph of order at most 11 , namely $\vec{C}_{11}\left(I_{5,2}\right)$; this tournament is not only vertexcritical but also arc-critical. In [13] it was proved that $\vec{C}_{6 m+1}\left(I_{3 m, 2 m}\right)$ is a vertex-critical 4 -dichromatic circulant tournament for $m \geq 2$. In a previous paper [15] an infinite family of vertex-critical r-dichromatic regular tournaments was constructed for each $r \geq 3, r \neq 4$. However these tournaments were circulants only for $r=3,5,8$.

We will need the following
Lemma 2.1 [13]. For any two integers r, s such that $1 \leq s<r$ holds $\beta \rightarrow\left(H_{r, s}\right)=r$ where $H_{r, s}$ is the tournament defined by $V\left(H_{r, s}\right)=\{1,2, \ldots$, $r+s\}$ and $A\left(H_{r, s}\right)=\{(i, j):(i<j$ and $j-i \neq r)\} \cup\{(i+r, i): i \leq s\}$.

3 Multicoverings of Hypergraphs

If $H=(V(H), E(H))$ is an hypergraph, the rank $\rho(H)$ of H is defined to be the maximum cardinality of an edge of $H ; H$ is an r-graph if each one of its edges has cardinality r.

Let H be a finite hypergraph without isolated points. A function ξ : $V(H) \rightarrow \mathbb{N}$ will be called a weight function (w.f.) on $H ; \xi$ will be said to be degenerate if $\xi^{-1}(0) \neq \emptyset$. We define $\|\xi\|=\sum_{w \in V(H)} \xi(w)$ and denote by \mathbf{k} the w.f. on H, which has constant value k. Let $\left(\alpha_{j}\right)_{j \in J}$ be a family of edges of H and $u \in V(H)$; define $J_{u}=\left\{j \in J: u \in \alpha_{j}\right\}$. We will say that $\left(\alpha_{j}\right)_{j \in J}$ is a ξ-covering of H whenever $\left|J_{u}\right| \geq \xi(u)$ for every $u \in V(H)$. Finally, we define the ξ-covering number $\tilde{n}(H, \xi)$ of H by $\tilde{n}(H, \xi)=\min \left\{|J|:\left(\alpha_{j}\right)_{j \in J}\right.$ is a ξ-covering of $H\}$. So the \mathbf{k}-covering number of H is the usual (multi)covering number which has been studied in many articles (see [1]).

Remark 31. Note that if H^{\prime} is the spanning subhypergraph of H whose edges are the maximal edges of H, then $\tilde{n}(H, \xi)=\tilde{n}\left(H^{\prime}, \xi\right)$.

Proposition 32.

(i) $\tilde{n}\left(H, \xi+\xi^{\prime}\right) \leq \tilde{n}(H, \xi)+\tilde{n}\left(H, \xi^{\prime}\right)$ and $\tilde{n}(H, k \xi) \leq k \tilde{n}(H, \xi)$ for every positive integer k.
(ii) $\tilde{n}(H, \xi) \leq \tilde{n}\left(H, \xi^{\prime}\right)$ whenever $\xi \leq \xi^{\prime}$.
(iii) $\tilde{n}(H, \xi) \geq\lceil\|\xi\| / \rho(H)\rceil$.
(iv) If H_{0} is a spanning subhypergraph of H then $\tilde{n}(H, \xi) \leq \tilde{n}\left(H_{0}, \xi\right)$.

Proof. Properties (i), (ii) and (iv) are obvious, Property (iii) follows from the inequality $\rho(H) \tilde{n}(H, \xi) \geq\|\xi\|$.
An hypergraph H is called circulant if it has an automorphism which is a cyclic permutation of $V(H)$. If $r \leq m$, the circulant r-graph $\Lambda_{m, r}$ is defined by $V\left(\Lambda_{m, r}\right)=\mathbb{Z}_{m}$ and $E\left(\Lambda_{m, r}\right)=\left\{\alpha_{j}: j \in \mathbb{Z}_{m}\right\}$ where $\alpha_{j}=\{j, j+1, \ldots, j+$ $r-1\}$ for $j \in \mathbb{Z}_{m}$. For every positive integer s, we define the w.f. $\xi^{(s)}$ on $\Lambda_{m, r}$ as follows: If $s r=q m+t$ where t is the residue of $s r \bmod m$, then $\xi^{(s)}(j)=q$ or $q+1$ depending on whether j belongs or not to $A_{t, m-1}$. In particular, $\xi^{(s)}=\mathbf{q}$ when $t=0$. Notice that $\left\|\xi^{(s)}\right\|=s r$.

Proposition 33. If H contains $\Lambda_{m, r}$ as a spanning subhypergraph and $\rho(H)=r$ then $\tilde{n}\left(H, \xi^{(s)}\right)=s$ and $\tilde{n}\left(H, \xi^{\prime}\right)>s$ whenever $\left\|\xi^{\prime}\right\|>\left\|\xi^{(s)}\right\|$.

Proof. The family $\left\{\alpha_{j}: j=r j^{\prime}, j^{\prime}=0,1, \ldots, s\right\}$ is a $\xi^{(s)}$-covering of H and so $\tilde{n}\left(H, \xi^{(s)}\right) \leq s$. The equality and the second inequality follow from Proposition 3.2 (iii) and the fact that $\left\|\xi^{\prime}\right\|>\left\|\xi^{(s)}\right\|=s r$.

Proposition 34. Let k be a positive integer. If $\rho(H)=r$ and H contains an isomorphic copy of $\Lambda_{m, r}$ as a spanning subhypergraph, then $\tilde{n}(H, \mathbf{k})=$ $\tilde{n}\left(\Lambda_{m, r}, \mathbf{k}\right)=\lceil k m / r\rceil$.

Proof. We may assume that $\Lambda_{m, r}$ is a spanning subhypergraph of H. The inequality $\tilde{n}(H, \mathbf{k}) \geq\lceil k m / r\rceil$ follows from Proposition 3.2 (iii). Since $\xi^{(s)} \geq$ \mathbf{k} for $s=\lceil k m / r\rceil$, the equality is obtained by applying Propositions 3.2 and 3.3.
Proposition 3.4 applies in particular to $K_{m}^{(r)}$, the complete r-graph of order m.

4 Zykov Sums and Dichromatic Number

Let D be a digraph and $\alpha=\left(\alpha_{i}\right)_{i \in V(D)}$ a family of nonempty mutually disjoint digraphs. The Zykov sum $\sigma(\alpha, D)$ of α over D is defined by $V(\sigma(\alpha, D))=\bigcup_{i \in V(D)} V\left(\alpha_{i}\right) ; A(\sigma(\alpha, D))=\bigcup_{i \in V(D)} A\left(\alpha_{i}\right) \cup\left\{u w: u \in V\left(\alpha_{i}\right)\right.$, $\left.w \in V\left(\alpha_{j}\right), i j \in A(D)\right\}$.

If the members of the family α are not mutually disjoint we replace each of them by one isomorphic copy so that the new family α^{\prime} becomes one of mutually disjoint digraphs; nevertheless $\sigma(\alpha, D)$ will still denote the resulting digraph $\sigma\left(\alpha^{\prime}, D\right)$ which is defined up to isomorphism. The function $p: \sigma(\alpha, D) \rightarrow D$ whose value is constant in each α_{u} and equal to u, is a reflexive epimorphism which will be called the natural projection from $\sigma(\alpha, D)$ onto D. If $\alpha_{i} \cong W$ for every $i \in V(D)$ we will write $D[W]$ instead of $\sigma(\alpha, D)$.

In [10] it was proved that $d c(D[W]) \geq d c(D)+d c(W)-1$. In [15], $t\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ denoted the same as $\sigma(\alpha, D)$ for $D=\vec{C}_{3}$ and $\alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)$.

Now, if D is a digraph, the hypergraph $H_{1}(D)$ is defined by $V\left(H_{1}(D)\right)=$ $V(D), E\left(H_{1}(D)\right)=\{S \subseteq V(D): S$ is a maximal acyclic set $\}$.

Proposition 41.

(i) $H_{1}\left(\vec{C}_{2 m+1}\left(I_{m}\right)\right) \supseteq \Lambda_{2 m+1, m+1}$,

$$
\beta \rightarrow\left(\vec{C}_{2 m+1}\left(I_{m}\right)\right)=m+1 .
$$

(ii) $H_{1}\left(\vec{C}_{2 m+1}\left(I_{m, m}\right)\right) \supseteq \Lambda_{2 m+1, m}$,

$$
\beta \rightarrow\left(\vec{C}_{2 m+1}\left(I_{m, m}\right)\right)=m
$$

(iii) $H_{1}\left(\vec{C}_{6 m+1}\left(I_{3 m, 2 m}\right)\right) \supseteq \Lambda_{6 m+1,2 m}$,
$\beta \rightarrow\left(\vec{C}_{6 m+1}\left(I_{3 m, 2 m}\right)\right)=2 m$.
(iv) $H_{1}\left(\vec{C}_{17}\left(I_{8,5}\right)\right) \supseteq \Lambda_{17,5}$,

$$
\beta \rightarrow\left(\vec{C}_{17}\left(I_{8,5}\right)\right)=5 .
$$

(v) $H_{1}\left(\vec{C}_{17}\left(I_{8,7}\right)\right) \supseteq \Lambda_{17,7}$,
$\beta \rightarrow\left(\vec{C}_{17}\left(I_{8,7}\right)\right)=7$ and
(vi) $\quad H_{1}\left(\vec{C}_{17}\left(I_{8,6}\right)\right) \supseteq \Lambda_{17,6}$,
$\beta \rightarrow\left(\vec{C}_{17}\left(I_{8,6}\right)\right)=6$.
Proof. (i) is trivial, (ii) and (iii) were proved in [15] and [13] respectively. The inclusions of (iv), (v) and (vi) are obvious. Let $T^{j}=\vec{C}_{17}\left(I_{8, j}\right), j=$ $5,6,7$ and notice that $A_{i(i+j-1)}$ is an acyclic set of cardinality j. Let S_{j} be an acyclic set of T^{j}. We will prove that $\left|S_{j}\right| \leq j$. We may assume that 0 is the source of $T^{j}\left[S_{j}\right]$. Let N_{j} be the out neighbourhood of 0 in T^{j}. So $S_{j}-\{0\} \subseteq N_{j}$. Notice that $T^{j}\left[N_{j}-\{17-j\}\right] \cong H_{j-1,8-j}$ (the correspondence $i \rightarrow i$ for $0<i \leq j-1$ and $i \rightarrow i+1$ for $j \leq i \leq 7$ is an isomorphism from $H_{j-1,8-j}$ onto $\left.T^{j}\left[N_{j}-\{17-j\}\right]\right)$ and $j-1>8-j$. So by Lemma 2.1, $\left|S_{j}\right| \leq j$ whenever $17-j \notin S_{j}$. We assume that $17-j \in S_{j}$.

Case $j=5$. We have $12 \in S_{5}$. If $4 \in S_{5}$ then $S_{5} \cap\{1,2,3\}=\emptyset$ and since $\left|S_{5} \cap\{7,8\}\right| \leq 1$ we obtain $\left|S_{5}\right| \leq 5$. If $4 \notin S_{5}$ and $8 \in S_{5}$ then $S_{5} \cap\{1,2,7\}=\emptyset$ and so $\left|S_{5}\right| \leq 5$. Finally if $S_{5} \cap\{4,8\}=\emptyset$, then since $T^{5}\left[N_{5}\right]-\{0,4,8,12\} \cong H_{3,2}$, we conclude by Lemma 2.1 that $\left|S_{5}\right| \leq 5$. So the proof of (iv) is complete.

Case $j=7$. We have $10 \in S_{7}$. If $\{1,3\} \cap S_{7} \neq \emptyset$ then $\{4,5,6\} \cap S_{7}=\emptyset$ and again by Lemma 2.1, $\left|S_{7}\right| \leq 5$. In the remaining case $\left|S_{7}\right| \leq 7$. So (v) holds.

Case $j=6$. Since $11 \in S_{6}$, either $\{1,2\} \cap S_{6}=\emptyset$ or $\{3,4\} \cap S_{6}=\emptyset$. Moreover $\left|S_{6} \cap\{5,7\}\right| \leq 1$, therefore $\left|S_{6}\right| \leq 6$ and the proof of (vi) ends.

Let D be a digraph and $Q=\left(Q_{u}\right)_{u \in V(D)}$ a family of digraphs. Define the w.f. $\xi_{Q}: V(D) \rightarrow \mathbb{N}$ by $\xi_{Q}(u)=d c\left(Q_{u}\right)$.

Theorem 42. $d c(\sigma(D, Q))=\tilde{n}\left(H_{1}(D), \xi_{Q}\right)$.
Proof. We may assume that Q is formed with mutually disjoint digraphs and so $Q_{u} \subseteq \sigma(D, Q)$. Let $p: \sigma(D, Q) \rightarrow D$ be the natural projection, so $p\left(Q_{u}\right)=u$ for every $u \in V(D)$. Let $\left(\alpha_{j}\right)_{j \in J}$ be an optimal ξ_{Q}-covering of $H_{1}(D)$; then $|J|=\tilde{n}\left(H_{1}(D), \xi_{Q}\right)$. Define a colouring f of $\sigma(D, Q)$ with J as set of colours, as follows: For each $u \in V(D)$, take an acyclic colouring of Q_{u} with colours in J_{u} (this is possible because Q_{u} is $\xi_{Q}(u)$-dichromatic and $\left|J_{u}\right| \geq \xi_{Q}(u)$). Let C be a directed cycle of $\sigma(D, Q)$. If $C \subseteq Q_{u}$ for some u, C is not monochromatic. Otherwise, $p(C)$ contains a directed cycle C_{0}. If C were monochromatic of colour $j, \alpha_{j} \supseteq V(p(C)) \supseteq V\left(C_{0}\right)$ which is impossible since α_{j} is acyclic. Then C is not monochromatic and f is an acyclic colouring. Therefore $d c(\sigma(D, Q)) \leq \tilde{n}\left(H_{1}(D), \xi_{Q}\right)$. Let J be a set of cardinality $d c(\sigma(D, Q))$ and $f: \sigma(D, Q) \rightarrow J$ an optimal acyclic colouring of $\sigma(D, Q)$. Denote by R_{j} the chromatic class of colour j. Then $\alpha_{j}=p\left(R_{j}\right)$ is an acyclic subset of $V(D)$ since R_{j} is acyclic and so $\alpha_{j} \in E\left(H_{1}(D)\right)$. Since $J_{u}=\left\{j: u \in \alpha_{j}\right\}, j \in J_{u}$ if and only if $R_{j} \cap V\left(Q_{u}\right)$ is nonempty, then $\left|J_{u}\right| \geq d c\left(Q_{u}\right)=\xi_{Q}(u)$ and $\left(\alpha_{j}\right)_{j \in J}$ is a ξ_{Q}-covering of $H_{1}(D)$. Therefore $\tilde{n}\left(H_{1}(D), \xi_{Q}\right) \leq d c(\sigma(D, Q))$ and the proof is complete.
From here on, we will write $\tilde{n}_{1}(D, \xi)$ instead of $\tilde{n}\left(H_{1}(D), \xi\right)$. Note that $\tilde{n}_{1}(D, \mathbf{1})=d c(D)$.

Corollary 43. If $d c(\alpha)=k$ then $d c(D[\alpha]))=\tilde{n}_{1}(D, \mathbf{k})$.
Let ξ be a w.f. on \vec{C}_{3} such that $\xi_{0} \geq \xi_{1} \geq \xi_{2}$ where $\xi(j)=\xi_{j}$. In [15], the following result was proved.

Proposition 44. $\tilde{n}_{1}\left(\vec{C}_{3}, \xi\right)=\left\lceil\left(\xi_{0}+\xi_{1}+\xi_{2}\right) / 2\right\rceil$ or ξ_{0} depending on whether $\xi_{0} \leq \xi_{1}+\xi_{2}$ or $\xi_{1}+\xi_{2} \leq \xi_{0}$. In particular $\tilde{n}_{1}\left(\vec{C}_{3}, \mathbf{k}\right)=\lceil 3 k / 2\rceil$.

Proposition 45.

(i) $\tilde{n}_{1}\left(\vec{C}_{2 m+1}\left(I_{m}\right), \mathbf{k}\right)=\lceil k(2 m+1) /(m+1)\rceil$ for $m \geq 2$.
(ii) $\tilde{n}_{1}\left(\vec{C}_{2 m+1}\left(I_{m, m}\right), \mathbf{k}\right)=\lceil k(2 m+1) / m\rceil$ for $m \geq 3$.
(iii) $\tilde{n}_{1}\left(\vec{C}_{6 m+1}\left(I_{3 m, 2 m}\right), \mathbf{k}\right)=\lceil k(6 m+1) / 2 m\rceil$ for $m \geq 2$.
(iv) $\tilde{n}_{1}\left(\vec{C}_{17}\left(I_{8,5}\right), \mathbf{k}\right)=\lceil 17 k / 5\rceil, \tilde{n}_{1}\left(\vec{C}_{17}\left(I_{8,7}\right), \mathbf{k}\right)=\lceil 17 k / 7\rceil$ and $\tilde{n}_{1}\left(\vec{C}_{17}\left(I_{8,6}\right), \mathbf{k}\right)=\lceil 17 k / 6\rceil$.

Proof. The equalities follow directly from Proposition 4.1 and Proposition 3.4.
4.6. An application. If $\xi: Z_{7} \rightarrow \mathbb{N}$ is defined by $\xi(j)=2$ for $j \neq 0$ and $\xi(0)=1$, then for $T=\vec{C}_{7}(1,2,4), \tilde{n}_{1}(T, \xi) \geq\lceil 13 / 3\rceil=5$ by Proposition 3.2 (iii) since $\beta \rightarrow\left(\vec{C}_{7}(1,2,4)\right)=3$. By Proposition 3.3, $\tilde{n}_{1}\left(T, \xi^{(5)}\right)=5$ and since $\xi \leq \xi^{(5)}$ it follows from Proposition 3.2 that $\tilde{n}_{1}(T, \xi)=5$. Define $Q_{0}=$ T_{1} and $Q_{j}=\vec{C}_{3}$ for $j \in Z_{7}-\{0\}$. Because of Theorem 4.2, $\sigma\left(T,\left(Q_{u}\right)_{u \in V(T)}\right)$ is a 5 -dichromatic tournament of order 19. The minimum order of a 5 dichromatic tournament is not known, this example shows that it is not bigger than 19. It can be proved that it is at least 17 .

Let G^{*} be the digraph obtained from a graph G by orienting each one of the edges in both directions. Some properties and the behaviour of the function $\tilde{n}_{1}\left(G^{*}, \mathbf{k}\right)$ have been studied in several papers $[6,7,8,17]$.

5 Subcritical and Upcritical Weight Functions

A weight function ξ on H is said to be H-subcritical if for every w.f. ξ^{\prime} such that $\xi^{\prime} \leq \xi$ and $\left\|\xi^{\prime}\right\|=\|\xi\|-1$, we have $\tilde{n}\left(H, \xi^{\prime}\right)<\tilde{n}(H, \xi)$ (and therefore $\left.\tilde{n}\left(H, \xi^{\prime}\right)=\tilde{n}(H, \xi)-1\right)$. For brevity we will write D-subcritical instead of $H_{1}(D)$-subcritical.

Notice that the w.f. ξ considered in Proposition 4.4 is \vec{C}_{3}-subcritical iff $\xi_{0} \leq \xi_{1}+\xi_{2}$ and $\xi_{0}+\xi_{1}+\xi_{2}$ is odd [15].

Theorem 51. If for every $u \in V(D), Q_{u}$ is a vertex-critical $\xi_{Q}(u)$-dichromatic digraph and ξ_{Q} is D-subcritical, then $\sigma(D, Q)$ is vertex-critical $\tilde{n}_{1}(D, Q)$-dichromatic.

Proof. This follows directly from Theorem 4.2.
It is not difficult to prove that the w.f. ξ defined in 4.6 is $\vec{C}_{7}(1,2,4)$ subcritical. Therefore the tournament $\sigma\left(T,\left(Q_{u}\right)_{u \in V(T)}\right)$ constructed there is vertex-critical.

Theorem 52.

(i) \mathbf{k} is $\vec{C}_{2 m+1}\left(I_{m}\right)$-subcritical iff $k \equiv m \bmod (m+1)$ and $m \geq 2$.
(ii) \mathbf{k} is $\vec{C}_{2 m+1}\left(I_{m, m}\right)$-subcritical iff $k \equiv 1 \bmod m$ and $m \geq 3$.
(iii) \mathbf{k} is $\vec{C}_{6 m+1}\left(I_{3 m, 2 m}\right)$-subcritical iff $k \equiv 1 \bmod 2 m$ and $m \geq 2$.
(iv) \mathbf{k} is
\vec{C}_{3}-subcritical iff k is odd,
$\vec{C}_{17}\left(I_{8,5}\right)$-subcritical iff $k \equiv 3 \bmod 5$,
$\vec{C}_{17}\left(I_{8,7}\right)$-subcritical iff $k \equiv 5 \bmod 7$,
$\vec{C}_{17}\left(I_{8,6}\right)$-subcritical iff $k \equiv 5 \bmod 6$.
Proof. It follows from Proposition 4.4 that \mathbf{k} is \vec{C}_{3}-subcritical iff k is odd. Let T any of the tournaments of (i), (ii) or (iii) and let ξ be a w.f. such that $\xi \leq \mathbf{k},\|\xi\|=\|\mathbf{k}\|-1$. From Proposition 4.5 it follows immediately that $\tilde{n}(T, \xi)=\tilde{n}(T, \mathbf{k})$ unless $k \equiv m \bmod (2 m+1)$ in case $(\mathrm{i}), k \equiv 1 \bmod (2 m+1)$ in case (ii) or $k \equiv 1 \bmod 2 m$ in case (iii). In these last cases $r=\beta \rightarrow(T)$ divides $\|\xi\|$. Since $\operatorname{Aut}(T)$ is vertex transitive, we may assume that $\xi=\xi^{(s)}$ for $s=\|\xi\| / r$ and the assertion follows from Proposition 3.3. The remaining cases can be proved in a similar way.
5.3. Another application. Let $\xi: Z_{7}-\{0\} \rightarrow \mathbb{N}$ be defined by $\xi(j)=1$ for $j \in\{1,2,3,4,5\}$ and $\xi(6)=2$. It is easy to see that ξ is $S T_{6}$-subcritical where $S T_{6}=\vec{C}_{7}(1,2,4)-\{0\}$ and $\tilde{n}_{1}\left(S T_{6}, \xi\right)=3$. Proceeding as in the example of 4.6 , a vertex-critical 3 -dichromatic tournament $T^{(3)}$ of order 8 is obtained. Let $T^{(m)}$ (resp: $W^{(m)}$) denote a generic vertex-critical m-dichromatic tournament of even (resp: odd) order. Recall that $t\left(T^{(m)}, W^{(m)}, T_{1}\right)$ is a vertex-critical $(m+1)$-dichromatic tournament of even order and that there are infinitely many pairwise non isomorphic tournaments $W^{(3)}$ [15]. Using induction, it follows that an infinite family of pairwise non isomorphic vertex-critical r-dichromatic tournaments of even order can be constructed for every integer $r \geq 4$. This solves a question of [15].

After considering subcritical w.f., we define in a similar way a w.f. ξ on H to be H-upcritical if for every w.f. ξ^{\prime} such that $\xi \leq \xi^{\prime}$ and $\left\|\xi^{\prime}\right\|=\|\xi\|+1$, we have $\tilde{n}(H, \xi)<\tilde{n}\left(H, \xi^{\prime}\right)$ (and therefore $\tilde{n}\left(H, \xi^{\prime}\right)=\tilde{n}(H, \xi)+1$). For brevity we will write D-upcritical instead of $H_{1}(D)$-upcritical.

As an example, Proposition 3.3 asserts that the w.f. $\xi^{(s)}$ is H-upcritical. Notice that the w.f. ξ considered in Proposition 4.4, is \vec{C}_{3}-upcritical iff $\xi_{0} \leq \xi_{1}+\xi_{2}$ and $\xi_{0}+\xi_{1}+\xi_{2}$ is even [16, Lemma 2]. Lemma 3 in [16] can be easily generalized as follows.

Theorem 53. If ξ_{Q} is D-upcritical then every acyclic $\tilde{n}_{1}(D, Q)$-colouring of $\sigma(D, Q)$ induces in each Q_{u} an optimal acyclic colouring.

6 Vertex-Critical r-Dichromatic Circulant Tournaments

In this section we will prove the existence of vertex-critical k-dichromatic circulant tournaments for every $k \geq 3, k \neq 7$. We will use the fact that the composition of two circulant tournaments is a circulant tournament [14, Proposition 3.3].
Let $f_{0}, f_{0}^{\prime}, f_{1}$ and f_{1}^{\prime} be the functions with codomain \mathbb{N}^{2} defined by:
(1) $\quad f_{0}(r, m)=r(2 m+1)-1, \quad f_{0}^{\prime}(r, m)=r(m+1)-1$ for $r \geq 1, m \geq 2$.
(2) $\quad f_{1}(r, m)=r(2 m+1)+3, \quad f_{1}^{\prime}(r, m)=r m+1$ for $r \geq 1, m \geq 3$.

Lemma 61. If x is an integer then $x \in \operatorname{Image}\left(f_{0}\right) \cup \operatorname{Image}\left(f_{1}\right)$ iff $x \geq 4$ and $x \notin\{5,7,11,15,23\}$.

Proof. Take $X=\operatorname{Image}\left(f_{0}\right) \cup \operatorname{Image}\left(f_{1}\right)$. Clearly $x \in X$ implies $x \geq 4$. If x is an even number, $x \geq 4$, then $x \in \operatorname{Image}\left(f_{0}\right)$. Let $x=2 x_{1}+1$ with $x_{1} \geq 2$ and $x \notin X$. Then $2 x_{1}+2$ has no odd divisor bigger than 3 and $2 x_{1}-2$ has no odd divisor bigger than 5 . So, $x_{1}+1=2^{t} . i_{1}$ and $x_{1}-1=2^{s} . i_{2}$ where $i_{1} \in\{1,3\}$ and $i_{2} \in\{1,3,5\}$. It follows that either $t \leq 1$ or $s \leq 1$. In the first case $x \in\{5,11\}$, in the second, $x \in\{5,9,13,7,15,23\}$. However $\{9,13\} \subseteq$ Image $\left(f_{1}\right)$ and therefore $x \in\{5,7,11,15,23\}$. It can be easily verified that in fact these values do not belong to X.

Let D_{j} be the (acyclic) digraph whose vertices are the integers bigger than 2 and whose arcs are the pairs of the form $\left(f_{j}^{\prime}(r, m), f_{j}(r, m)\right), j=0,1$ and take $D=D_{0} \cup D_{1}$. It is easy to prove that D_{0} and D_{1} are arc disjoint. We assign to each arc $\tau=\left(f_{j}^{\prime}(r, m), f_{j}(r, m)\right)$ the weight $\omega(\tau)=2 m+1$ and a digraph operator $\hat{\tau}$ so that $\hat{\tau}(\alpha)=\vec{C}_{2 m+1}\left(I_{m}\right)[\alpha]$ if $j=0$ and $\hat{\tau}(\alpha)=\vec{C}_{2 m+1}\left(I_{m, m}\right)[\alpha]$ if $j=1$. If $\pi=\left(u_{0}, \tau_{1}, u_{1}, \tau_{1}, u_{2}, \ldots, u_{n-1}, \tau_{n}, u_{n}\right)$ is a directed path in D we define $\hat{\pi}=\hat{\tau}_{n} \circ \cdots \circ \hat{\tau}_{2} \circ \hat{\tau}_{1}$ and $\omega(\pi)=\omega\left(\tau_{n}\right) \ldots \omega\left(\tau_{1}\right)$.

Using Corollary 4.3, Proposition 4.5 and Theorems 5.1 and 5.2 we obtain the following

Lemma 62. If α is a vertex-critical u_{0}-dichromatic circulant tournament then $\hat{\pi}(\alpha)$ is a vertex-critical u_{n}-dichromatic circulant tournament such that $o(\hat{\pi}(\alpha))=o(\alpha) \omega(\pi)$.

Remark 63. Using Lemma 6.1 it follows immediately that the set of vertices of D with indegree 0 is $\{3,4,5,7,11,15,23\}$.

Lemma 64. For each integer $n \geq 3, n \neq 7$ there is a directed path in D from a vertex in $\{3,4,5,11,13,15,23\}$ to n.

Proof. Let $B=\{3,4,5,11,13,15,23\}$ and $W=\{w \in V(D)$: there is a directed $B w$-path in $D\}$. Since $(3,6),(4,8),(5,9),(5,10),(6,12),(8,14),(8,16)$, $(9,17),(9,18),(10,20),(11,19),(11,20),(11,21),(11,22),(12,24) \in A\left(D_{1}\right)$ then $I_{24}-\{1,2,7\} \subseteq W$. We will prove that $K=\mathbb{N}-\{1,2,7\}=W$. The proof is by induction. Let $n \geq 25$ such that $s \in W$ whenever $s \leq n-1$, $s \in K$. Because of Remark 6.3 there exists a k such that $(k, n) \in A(D)$. Now $k<n$ and $k \notin\{1,2,7\}$ since the only $\{1,2,7\} w$-arcs of D are $(2,4),(7,13)$ and $(7,14)$. Therefore $k \in K$ and so $n \in K$.

Proposition 65. For every integer $k \in\{3,4,5,11,13,15,23\}$ there exists an infinite family \mathcal{F}_{k} of vertex-critical k-dichromatic circulant tournaments no two of them having the same order.

Proof. The families \mathcal{F}_{j} for $j=3,4$ and 5 are the following:
$\mathcal{F}_{3}=\left\{\vec{C}_{2 m+1}\left(I_{m, m}\right): m \geq 3\right\}, \mathcal{F}_{5}=\left\{\vec{C}_{3}\left[\vec{C}_{2 m+1}\left(I_{m, m}\right)\right]: m \geq 3\right\}[15] ; \mathcal{F}_{4}=$ $\left\{\vec{C}_{6 m+1}\left(I_{3 m, 2 m}\right): m \geq 2\right\}$ [13]. Define now $\mathcal{F}_{11}=\left\{\vec{C}_{17}\left(I_{8,5}\right)[\alpha]: \alpha \in \mathcal{F}_{3}\right\}$; $\mathcal{F}_{13}=\left\{\vec{C}_{17}\left(I_{8,7}\right)[\alpha]: \alpha \in \mathcal{F}_{5}\right\} ; \mathcal{F}_{15}=\left\{\vec{C}_{17}\left(I_{8,6}\right)[\alpha]: \alpha \in \mathcal{F}_{5}\right\}$. That these last 3 families satisfy the required conditions is a direct consequence of Corollary 4.3, Proposition 4.5 and Theorems 5.1 and 5.2 and the fact that for each $j \in\{11,13,15\}$, all the members of \mathcal{F}_{j} have different orders. Finally define the family $\mathcal{F}_{23}=\left\{\vec{C}_{3}[\alpha]: \alpha \in \mathcal{F}_{15}\right\}$ which satisfies the required conditions because of Proposition 4.4 and Theorems 4.2, 5.1 and 5.2.

Theorem 66. For every integer $k \geq 3, k \neq 7$ there exists an infinite family \mathcal{F}_{k} of pairwise non isomorphic vertex-critical k-dichromatic circulant tournaments.

Proof. In fact, we will construct for each $k \geq 3, k \neq 7$ an infinite family \mathcal{F}_{k} of vertex-critical k-dichromatic circulant tournaments such that all its members have different orders. By Lemma 6.4 there is in D a directed $u k$ path π with $u \in\{3,4,5,11,13,15,23\}$. Define $\mathcal{F}_{k}=\left\{\hat{\pi}(\alpha): \alpha \in \mathcal{F}_{u}\right\}$. By Lemmas 6.2 and $6.5, \mathcal{F}_{k}$ has the required properties.

References

[1] C. Berge, Graphs and Hypergraphs (Amsterdam, North Holland Publ. Co., 1973).
[2] J.A. Bondy, U.S.R Murty, Graph Theory with Applications (American Elsevier Pub. Co., 1976).
[3] P. Erdös, Problems and results in number theory and graph theory, in: Proc. Ninth Manitoba Conf. Numer. Math. and Computing (1979) 3-21.
[4] P. Erdös, J. Gimbel and D. Kratsch, Some extremal results in cochromatic and dichromatic theory, J. Graph Theory 15 (1991) 579-585.
[5] P. Erdös and V. Neumann-Lara, On the dichromatic number of a graph, in preparation.
[6] D.C. Fisher, Fractional Colorings with large denominators, J. Graph Theory, 20 (1995) 403-409.
[7] D. Geller and S. Stahl, The chromatic number and other parameters of the lexicographical product, J. Combin. Theory (B) 19 (1975) 87-95.
[8] A.J.W. Hilton, R. Rado, and S.H. Scott, Multicolouring graphs and hypergraphs, Nanta Mathematica 9 (1975) 152-155.
[9] H. Jacob and H. Meyniel, Extension of Turan's and Brooks theorems and new notions of stability and colorings in digraphs, Ann. Discrete Math. 17 (1983) 365-370.
[10] V. Neumann-Lara, The dichromatic number of a digraph, J. Combin. Theory (B) 33 (1982) 265-270.
[11] V. Neumann-Lara, The generalized dichromatic number of a digraph, in: Colloquia Math. Soc. Jânos Bolyai, Finite and Infinite Sets 37 (1981) 601-606.
[12] V. Neumann-Lara, The 3 and 4-dichromatic tournaments of minimum order, Discrete Math. 135 (1994) 233-243.
[13] V. Neumann-Lara, Vertex-critical 4-dichromatic circulant tournaments, Discrete Math. 170 (1997) 289-291.
[14] V. Neumann-Lara, The acyclic disconnection of a digraph, Discrete Math. 197/198 (1999) 617-632.
[15] V. Neumann-Lara and J. Urrutia, Vertex-critical r-dichromatic tournaments, Discrete Math. 40 (1984) 83-87.
[16] V. Neumann-Lara and J. Urrutia, Uniquely colourable r-dichromatic tournaments, Discrete Math. 62 (1986) 65-70.
[17] S. Stahl, n-tuple colourings and associated graphs, J. Combin. Theory (B) 20 (1976) 185-203.

Revised 30 October 2000

