Discussiones Mathematicae Graph Theory 20 (2000) 197–207

DICHROMATIC NUMBER, CIRCULANT TOURNAMENTS AND ZYKOV SUMS OF DIGRAPHS

VÍCTOR NEUMANN-LARA

Instituto de Matemáticas, UNAM Circuito Exterior, C.U. México 04510 D.F., MÉXICO

e-mail: neumann@matem.unam.mx

Abstract

The dichromatic number dc(D) of a digraph D is the smallest number of colours needed to colour the vertices of D so that no monochromatic directed cycle is created. In this paper the problem of computing the dichromatic number of a Zykov-sum of digraphs over a digraph D is reduced to that of computing a multicovering number of an hypergraph $H_1(D)$ associated to D in a natural way. This result allows us to construct an infinite family of pairwise non isomorphic vertex-critical k-dichromatic circulant tournaments for every $k \geq 3, k \neq 7$.

Keywords: digraphs, dichromatic number, vertex-critical, Zykov sums, tournaments, circulant, covering numbers in hypergraphs.

2000 Mathematics Subject Classification: 05C20, 05C15, 05C65.

1 Introduction

The dichromatic number dc(D) of a digraph D is the least number of colours needed to colour the vertices of D in such a way that each chromatic class is acyclic ([3, 9, 10]). It is apparent that this invariant measures in some way the complexity of the cyclic structure of digraphs. The importance of studying this invariant, introduced in [10], comes from the following fact: If G is a graph and G^* denotes the digraph obtained from G by orienting each one of the edges in both directions, then $\chi(G) = dc(G^*)$; so the dichromatic number is a natural extension of the chromatic number to the class of all digraphs. The structure of arc-critical k-dichromatic digraphs was investigated in [10] and consequently new remarkable properties of k-chromatic graphs were obtained there.

We continue here the study of vertex-critical k-dichromatic tournaments initiated in [15]. Related topics have been considered in [4, 5, 11].

Let H be an hypergraph without isolated vertices and suppose a positive integer ξ_u has been assigned to each vertex u of H; the *covering number* of H corresponding to that assignment of weights is defined to be the minimum cardinality of a family of not necessarily different edges of H such that each vertex u belongs to at least ξ_u edges of the family.

Let D be a digraph and let $H_1(D)$ be the hypergraph whose vertex set is V(D) and has the maximal acyclic subsets of V(D) as hyperedges. In this paper the problem of computing the dichromatic number of a Zykov-sum of digraphs over a digraph D is reduced to that of computing the covering number of $H_1(D)$ with respect to an adequate assignment of weights (Theorem 4.2). We apply this result to construct an infinite family of pairwise non isomorphic vertex-critical k-dichromatic circulant tournaments for every $k \geq 3, k \neq 7$. This improves previous results included in [15]. Other related results are also presented.

2 Preliminary Results and Terminology

For general concepts we refer the reader to [2].

Let D be a digraph; V(D) and A(D) will denote the sets of vertices and arcs of D respectively, o(D) = |V(D)| is the order of D; D is acyclic provided no directed cycle is contained in D. The subdigraph of D induced by a subset S of V(D) will be denoted by D[S]; S is said to be acyclic iff D[S] is acyclic. The maximal cardinality of an acyclic set of vertices of D will be denoted by $\beta^{\rightarrow}(D)$. A colouring of V(D) is acyclic if all the chromatic classes are acyclic. So the dichromatic number dc(D) of a digraph D is the minimum number of colours in an acyclic colouring of V(D). Clearly $dc(D^{\text{op}}) = dc(D)$ where D^{op} is obtained from D by reversing each one of its arcs.

D is called *r*-dichromatic if dc(D) = r and vertex-critical *r*-dichromatic if dc(D) = r and dc(D-u) < r for every $u \in V(D)$.

N will denote the set of nonnegative integers, $I_n = \{1, \ldots, n\}$ and Z_n is the set of integers mod n. For any nonempty subset J of $Z_n - \{0\}$, the *circulant digraph* $\vec{C}_n(J)$ is defined by $V(\vec{C}_n(J)) = Z_n$ and $A(\vec{C}_n(J)) =$ $\{(i, j): i, j \in Z_n \text{ and } j - i \in J\}$. In particular, $\vec{C}_n(\{1\})$ is the directed cycle \vec{C}_n ; $\vec{C}_{2m+1}(J)$ is a circulant tournament whenever $|\{j, -j\} \cap J| = 1$ for every $j \in Z_{2m+1} - \{0\}$. If $i, j \in V(\vec{C}_n)$, $A_{i,j}$ will denote the directed *ij*-path in \vec{C}_n . For $j \in I_m, I_{m,j}$ will denote the set $I_m \cup \{2m+1-j\} - \{j\}$ considered as a subset of Z_{2m+1} .

In [12] it was proved that there is only one 4-dichromatic oriented graph of order at most 11, namely $\vec{C}_{11}(I_{5,2})$; this tournament is not only vertexcritical but also arc-critical. In [13] it was proved that $\vec{C}_{6m+1}(I_{3m,2m})$ is a vertex-critical 4-dichromatic circulant tournament for $m \ge 2$. In a previous paper [15] an infinite family of vertex-critical r-dichromatic regular tournaments was constructed for each $r \ge 3$, $r \ne 4$. However these tournaments were circulants only for r = 3, 5, 8.

We will need the following

Lemma 2.1 [13]. For any two integers r, s such that $1 \leq s < r$ holds $\beta^{\rightarrow}(H_{r,s}) = r$ where $H_{r,s}$ is the tournament defined by $V(H_{r,s}) = \{1, 2, \ldots, r+s\}$ and $A(H_{r,s}) = \{(i,j): (i < j \text{ and } j-i \neq r)\} \cup \{(i+r,i): i \leq s\}.$

3 Multicoverings of Hypergraphs

If H = (V(H), E(H)) is an hypergraph, the rank $\rho(H)$ of H is defined to be the maximum cardinality of an edge of H; H is an r-graph if each one of its edges has cardinality r.

Let H be a finite hypergraph without isolated points. A function ξ : $V(H) \to \mathbb{N}$ will be called a *weight function* (w.f.) on H; ξ will be said to be degenerate if $\xi^{-1}(0) \neq \emptyset$. We define $||\xi|| = \sum_{w \in V(H)} \xi(w)$ and denote by **k** the w.f. on H, which has constant value k. Let $(\alpha_j)_{j \in J}$ be a family of edges of H and $u \in V(H)$; define $J_u = \{j \in J : u \in \alpha_j\}$. We will say that $(\alpha_j)_{j \in J}$ is a ξ -covering of H whenever $|J_u| \geq \xi(u)$ for every $u \in V(H)$. Finally, we define the ξ -covering number $\tilde{n}(H,\xi)$ of H by $\tilde{n}(H,\xi) = \min\{|J|: (\alpha_j)_{j \in J} \text{ is a} \xi$ -covering of H}. So the **k**-covering number of H is the usual (multi)covering number which has been studied in many articles (see [1]).

Remark 31. Note that if H' is the spanning subhypergraph of H whose edges are the maximal edges of H, then $\tilde{n}(H,\xi) = \tilde{n}(H',\xi)$.

Proposition 32.

(i) $\tilde{n}(H,\xi+\xi') \leq \tilde{n}(H,\xi) + \tilde{n}(H,\xi')$ and $\tilde{n}(H,k\xi) \leq k\tilde{n}(H,\xi)$ for every positive integer k.

- (ii) $\tilde{n}(H,\xi) \leq \tilde{n}(H,\xi')$ whenever $\xi \leq \xi'$.
- (iii) $\tilde{n}(H,\xi) \ge \lceil \|\xi\|/\rho(H) \rceil$.

(iv) If H_0 is a spanning subhypergraph of H then $\tilde{n}(H,\xi) \leq \tilde{n}(H_0,\xi)$.

Proof. Properties (i), (ii) and (iv) are obvious, Property (iii) follows from the inequality $\rho(H)\tilde{n}(H,\xi) \geq ||\xi||$.

An hypergraph H is called *circulant* if it has an automorphism which is a cyclic permutation of V(H). If $r \leq m$, the circulant r-graph $\Lambda_{m,r}$ is defined by $V(\Lambda_{m,r}) = \mathbb{Z}_m$ and $E(\Lambda_{m,r}) = \{\alpha_j : j \in \mathbb{Z}_m\}$ where $\alpha_j = \{j, j+1, \ldots, j+r-1\}$ for $j \in \mathbb{Z}_m$. For every positive integer s, we define the w.f. $\xi^{(s)}$ on $\Lambda_{m,r}$ as follows: If sr = qm + t where t is the residue of $sr \mod m$, then $\xi^{(s)}(j) = q$ or q + 1 depending on whether j belongs or not to $A_{t,m-1}$. In particular, $\xi^{(s)} = \mathbf{q}$ when t = 0. Notice that $\|\xi^{(s)}\| = sr$.

Proposition 33. If H contains $\Lambda_{m,r}$ as a spanning subhypergraph and $\rho(H) = r$ then $\tilde{n}(H, \xi^{(s)}) = s$ and $\tilde{n}(H, \xi') > s$ whenever $\|\xi'\| > \|\xi^{(s)}\|$.

Proof. The family $\{\alpha_j: j = rj', j' = 0, 1, \dots, s\}$ is a $\xi^{(s)}$ -covering of H and so $\tilde{n}(H, \xi^{(s)}) \leq s$. The equality and the second inequality follow from Proposition 3.2 (iii) and the fact that $\|\xi'\| > \|\xi^{(s)}\| = sr$.

Proposition 34. Let k be a positive integer. If $\rho(H) = r$ and H contains an isomorphic copy of $\Lambda_{m,r}$ as a spanning subhypergraph, then $\tilde{n}(H, \mathbf{k}) = \tilde{n}(\Lambda_{m,r}, \mathbf{k}) = \lceil km/r \rceil$.

Proof. We may assume that $\Lambda_{m,r}$ is a spanning subhypergraph of H. The inequality $\tilde{n}(H, \mathbf{k}) \geq \lceil km/r \rceil$ follows from Proposition 3.2 (iii). Since $\xi^{(s)} \geq \mathbf{k}$ for $s = \lceil km/r \rceil$, the equality is obtained by applying Propositions 3.2 and 3.3.

Proposition 3.4 applies in particular to $K_m^{(r)}$, the complete r-graph of order m.

4 Zykov Sums and Dichromatic Number

Let *D* be a digraph and $\alpha = (\alpha_i)_{i \in V(D)}$ a family of nonempty mutually disjoint digraphs. The Zykov sum $\sigma(\alpha, D)$ of α over *D* is defined by $V(\sigma(\alpha, D)) = \bigcup_{i \in V(D)} V(\alpha_i); A(\sigma(\alpha, D)) = \bigcup_{i \in V(D)} A(\alpha_i) \cup \{uw: u \in V(\alpha_i), w \in V(\alpha_i), ij \in A(D)\}.$ If the members of the family α are not mutually disjoint we replace each of them by one isomorphic copy so that the new family α' becomes one of mutually disjoint digraphs; nevertheless $\sigma(\alpha, D)$ will still denote the resulting digraph $\sigma(\alpha', D)$ which is defined up to isomorphism. The function $p: \sigma(\alpha, D) \to D$ whose value is constant in each α_u and equal to u, is a reflexive epimorphism which will be called the *natural projection* from $\sigma(\alpha, D)$ onto D. If $\alpha_i \cong W$ for every $i \in V(D)$ we will write D[W] instead of $\sigma(\alpha, D)$.

In [10] it was proved that $dc(D[W]) \ge dc(D) + dc(W) - 1$. In [15], $t(\alpha_1, \alpha_2, \alpha_3)$ denoted the same as $\sigma(\alpha, D)$ for $D = \vec{C}_3$ and $\alpha = (\alpha_0, \alpha_1, \alpha_2)$.

Now, if D is a digraph, the hypergraph $H_1(D)$ is defined by $V(H_1(D)) = V(D)$, $E(H_1(D)) = \{S \subseteq V(D): S \text{ is a maximal acyclic set}\}.$

Proposition 41.

(i)	$H_1(\vec{C}_{2m+1}(I_m)) \supseteq \Lambda_{2m+1,m+1},$	$\beta^{\rightarrow}(\vec{C}_{2m+1}(I_m)) = m+1.$
(ii)	$H_1(\vec{C}_{2m+1}(I_{m,m})) \supseteq \Lambda_{2m+1,m},$	$\beta^{\to}(\vec{C}_{2m+1}(I_{m,m})) = m.$
(iii)	$H_1(\vec{C}_{6m+1}(I_{3m,2m})) \supseteq \Lambda_{6m+1,2m},$	$\beta^{\to}(\vec{C}_{6m+1}(I_{3m,2m})) = 2m.$
(iv)	$H_1(\vec{C}_{17}(I_{8,5})) \supseteq \Lambda_{17,5},$	$\beta^{\rightarrow}(\vec{C}_{17}(I_{8,5})) = 5.$
(v)	$H_1(\vec{C}_{17}(I_{8,7})) \supseteq \Lambda_{17,7},$	$\beta^{\to}(\vec{C}_{17}(I_{8,7})) = 7 \ and$
(vi)	$H_1(\vec{C}_{17}(I_{8,6})) \supseteq \Lambda_{17,6},$	$\beta^{\rightarrow}(\vec{C}_{17}(I_{8,6})) = 6.$
Proof. (i) is trivial (ii) and (iii) were proved in [15] and [13] respect		

Proof. (i) is trivial, (ii) and (iii) were proved in [15] and [13] respectively. The inclusions of (iv), (v) and (vi) are obvious. Let $T^j = \vec{C}_{17}(I_{8,j}), j = 5, 6, 7$ and notice that $A_{i(i+j-1)}$ is an acyclic set of cardinality j. Let S_j be an acyclic set of T^j . We will prove that $|S_j| \leq j$. We may assume that 0 is the source of $T^j[S_j]$. Let N_j be the out neighbourhood of 0 in T^j . So $S_j - \{0\} \subseteq N_j$. Notice that $T^j[N_j - \{17-j\}] \cong H_{j-1,8-j}$ (the correspondence $i \to i$ for $0 < i \leq j-1$ and $i \to i+1$ for $j \leq i \leq 7$ is an isomorphism from $H_{j-1,8-j}$ onto $T^j[N_j - \{17-j\}]$) and j-1 > 8-j. So by Lemma 2.1, $|S_j| \leq j$ whenever $17 - j \notin S_j$. We assume that $17 - j \in S_j$.

Case j = 5. We have $12 \in S_5$. If $4 \in S_5$ then $S_5 \cap \{1, 2, 3\} = \emptyset$ and since $|S_5 \cap \{7, 8\}| \leq 1$ we obtain $|S_5| \leq 5$. If $4 \notin S_5$ and $8 \in S_5$ then $S_5 \cap \{1, 2, 7\} = \emptyset$ and so $|S_5| \leq 5$. Finally if $S_5 \cap \{4, 8\} = \emptyset$, then since $T^5[N_5] - \{0, 4, 8, 12\} \cong H_{3,2}$, we conclude by Lemma 2.1 that $|S_5| \leq 5$. So the proof of (iv) is complete.

Case j = 7. We have $10 \in S_7$. If $\{1,3\} \cap S_7 \neq \emptyset$ then $\{4,5,6\} \cap S_7 = \emptyset$ and again by Lemma 2.1, $|S_7| \leq 5$. In the remaining case $|S_7| \leq 7$. So (v) holds.

Case j = 6. Since $11 \in S_6$, either $\{1, 2\} \cap S_6 = \emptyset$ or $\{3, 4\} \cap S_6 = \emptyset$. Moreover $|S_6 \cap \{5, 7\}| \leq 1$, therefore $|S_6| \leq 6$ and the proof of (vi) ends. Let D be a digraph and $Q = (Q_u)_{u \in V(D)}$ a family of digraphs. Define the w.f. $\xi_Q: V(D) \to \mathbb{N}$ by $\xi_Q(u) = dc(Q_u)$.

Theorem 42. $dc(\sigma(D,Q)) = \tilde{n}(H_1(D),\xi_Q).$

Proof. We may assume that Q is formed with mutually disjoint digraphs and so $Q_u \subseteq \sigma(D,Q)$. Let $p: \sigma(D,Q) \to D$ be the natural projection, so $p(Q_u) = u$ for every $u \in V(D)$. Let $(\alpha_i)_{i \in J}$ be an optimal ξ_Q -covering of $H_1(D)$; then $|J| = \tilde{n}(H_1(D), \xi_Q)$. Define a colouring f of $\sigma(D, Q)$ with J as set of colours, as follows: For each $u \in V(D)$, take an acyclic colouring of Q_u with colours in J_u (this is possible because Q_u is $\xi_Q(u)$ -dichromatic and $|J_u| \geq \xi_Q(u)$). Let C be a directed cycle of $\sigma(D,Q)$. If $C \subseteq Q_u$ for some u, C is not monochromatic. Otherwise, p(C) contains a directed cycle C_0 . If C were monochromatic of colour $j, \alpha_j \supseteq V(p(C)) \supseteq V(C_0)$ which is impossible since α_i is acyclic. Then C is not monochromatic and f is an acyclic colouring. Therefore $dc(\sigma(D,Q)) \leq \tilde{n}(H_1(D),\xi_Q)$. Let J be a set of cardinality $dc(\sigma(D,Q))$ and $f: \sigma(D,Q) \to J$ an optimal acyclic colouring of $\sigma(D,Q)$. Denote by R_j the chromatic class of colour j. Then $\alpha_j = p(R_j)$ is an acyclic subset of V(D) since R_j is acyclic and so $\alpha_j \in E(H_1(D))$. Since $J_u = \{j : u \in \alpha_j\}, j \in J_u$ if and only if $R_j \cap V(Q_u)$ is nonempty, then $|J_u| \ge dc(Q_u) = \xi_Q(u)$ and $(\alpha_j)_{j \in J}$ is a ξ_Q -covering of $H_1(D)$. Therefore $\tilde{n}(H_1(D),\xi_Q) \leq dc(\sigma(D,Q))$ and the proof is complete.

From here on, we will write $\tilde{n}_1(D,\xi)$ instead of $\tilde{n}(H_1(D),\xi)$. Note that $\tilde{n}_1(D,\mathbf{1}) = dc(D)$.

Corollary 43. If $dc(\alpha) = k$ then $dc(D[\alpha])) = \tilde{n}_1(D, \mathbf{k})$.

Let ξ be a w.f. on \vec{C}_3 such that $\xi_0 \ge \xi_1 \ge \xi_2$ where $\xi(j) = \xi_j$. In [15], the following result was proved.

Proposition 44. $\tilde{n}_1(\vec{C}_3,\xi) = \lceil (\xi_0 + \xi_1 + \xi_2)/2 \rceil$ or ξ_0 depending on whether $\xi_0 \leq \xi_1 + \xi_2$ or $\xi_1 + \xi_2 \leq \xi_0$. In particular $\tilde{n}_1(\vec{C}_3, \mathbf{k}) = \lceil 3k/2 \rceil$.

Proposition 45.

- (i) $\tilde{n}_1(\vec{C}_{2m+1}(I_m), \mathbf{k}) = \lceil k(2m+1)/(m+1) \rceil$ for $m \ge 2$.
- (ii) $\tilde{n}_1(\vec{C}_{2m+1}(I_{m,m}), \mathbf{k}) = \lceil k(2m+1)/m \rceil$ for $m \ge 3$.
- (iii) $\tilde{n}_1(\vec{C}_{6m+1}(I_{3m,2m}), \mathbf{k}) = \lceil k(6m+1)/2m \rceil$ for $m \ge 2$.

(iv)
$$\tilde{n}_1(\vec{C}_{17}(I_{8,5}), \mathbf{k}) = \lceil 17k/5 \rceil, \ \tilde{n}_1(\vec{C}_{17}(I_{8,7}), \mathbf{k}) = \lceil 17k/7 \rceil$$
 and $\tilde{n}_1(\vec{C}_{17}(I_{8,6}), \mathbf{k}) = \lceil 17k/6 \rceil.$

Proof. The equalities follow directly from Proposition 4.1 and Proposition 3.4.

4.6. An application. If $\xi: Z_7 \to \mathbb{N}$ is defined by $\xi(j) = 2$ for $j \neq 0$ and $\xi(0) = 1$, then for $T = \vec{C}_7(1, 2, 4), \tilde{n}_1(T, \xi) \geq \lceil 13/3 \rceil = 5$ by Proposition 3.2 (iii) since $\beta^{\to}(\vec{C}_7(1, 2, 4)) = 3$. By Proposition 3.3, $\tilde{n}_1(T, \xi^{(5)}) = 5$ and since $\xi \leq \xi^{(5)}$ it follows from Proposition 3.2 that $\tilde{n}_1(T, \xi) = 5$. Define $Q_0 = T_1$ and $Q_j = \vec{C}_3$ for $j \in Z_7 - \{0\}$. Because of Theorem 4.2, $\sigma(T, (Q_u)_{u \in V(T)})$ is a 5-dichromatic tournament of order 19. The minimum order of a 5-dichromatic tournament is not known, this example shows that it is not bigger than 19. It can be proved that it is at least 17.

Let G^* be the digraph obtained from a graph G by orienting each one of the edges in both directions. Some properties and the behaviour of the function $\tilde{n}_1(G^*, \mathbf{k})$ have been studied in several papers [6, 7, 8, 17].

5 Subcritical and Upcritical Weight Functions

A weight function ξ on H is said to be H-subcritical if for every w.f. ξ' such that $\xi' \leq \xi$ and $\|\xi'\| = \|\xi\| - 1$, we have $\tilde{n}(H,\xi') < \tilde{n}(H,\xi)$ (and therefore $\tilde{n}(H,\xi') = \tilde{n}(H,\xi) - 1$). For brevity we will write D-subcritical instead of $H_1(D)$ -subcritical.

Notice that the w.f. ξ considered in Proposition 4.4 is \tilde{C}_3 -subcritical iff $\xi_0 \leq \xi_1 + \xi_2$ and $\xi_0 + \xi_1 + \xi_2$ is odd [15].

Theorem 51. If for every $u \in V(D)$, Q_u is a vertex-critical $\xi_Q(u)$ -dichromatic digraph and ξ_Q is D-subcritical, then $\sigma(D,Q)$ is vertex-critical $\tilde{n}_1(D,Q)$ -dichromatic.

Proof. This follows directly from Theorem 4.2.

It is not difficult to prove that the w.f. ξ defined in 4.6 is $\vec{C}_7(1,2,4)$ -subcritical. Therefore the tournament $\sigma(T, (Q_u)_{u \in V(T)})$ constructed there is vertex-critical.

Theorem 52.

(i) **k** is $\vec{C}_{2m+1}(I_m)$ -subcritical iff $k \equiv m \mod (m+1)$ and $m \geq 2$.

(ii) **k** is $\vec{C}_{2m+1}(I_{m,m})$ -subcritical iff $k \equiv 1 \mod m$ and $m \geq 3$.

(iii) **k** is $\vec{C}_{6m+1}(I_{3m,2m})$ -subcritical iff $k \equiv 1 \mod 2m$ and $m \geq 2$.

(iv) **k** is \vec{C}_3 -subcritical iff k is odd, $\vec{C}_{17}(I_{8,5})$ -subcritical iff $k \equiv 3 \mod 5$, $\vec{C}_{17}(I_{8,7})$ -subcritical iff $k \equiv 5 \mod 7$, $\vec{C}_{17}(I_{8,6})$ -subcritical iff $k \equiv 5 \mod 6$.

Proof. It follows from Proposition 4.4 that \mathbf{k} is \vec{C}_3 -subcritical iff k is odd. Let T any of the tournaments of (i), (ii) or (iii) and let ξ be a w.f. such that $\xi \leq \mathbf{k}$, $\|\xi\| = \|\mathbf{k}\| - 1$. From Proposition 4.5 it follows immediately that $\tilde{n}(T,\xi) = \tilde{n}(T,\mathbf{k})$ unless $k \equiv m \mod (2m+1)$ in case (i), $k \equiv 1 \mod (2m+1)$ in case (ii) or $k \equiv 1 \mod 2m$ in case (iii). In these last cases $r = \beta^{\rightarrow}(T)$ divides $\|\xi\|$. Since Aut(T) is vertex transitive, we may assume that $\xi = \xi^{(s)}$ for $s = \|\xi\|/r$ and the assertion follows from Proposition 3.3. The remaining cases can be proved in a similar way.

5.3. Another application. Let $\xi: Z_7 - \{0\} \to \mathbb{N}$ be defined by $\xi(j) = 1$ for $j \in \{1, 2, 3, 4, 5\}$ and $\xi(6) = 2$. It is easy to see that ξ is ST_6 -subcritical where $ST_6 = \vec{C}_7(1, 2, 4) - \{0\}$ and $\tilde{n}_1(ST_6, \xi) = 3$. Proceeding as in the example of 4.6, a vertex-critical 3-dichromatic tournament $T^{(3)}$ of order 8 is obtained. Let $T^{(m)}$ (resp: $W^{(m)}$) denote a generic vertex-critical *m*-dichromatic tournament of even (resp: odd) order. Recall that $t(T^{(m)}, W^{(m)}, T_1)$ is a vertex-critical (m + 1)-dichromatic tournament of even order and that there are infinitely many pairwise non isomorphic tournaments $W^{(3)}$ [15]. Using induction, it follows that an infinite family of pairwise non isomorphic vertex-critical r- dichromatic tournaments of even order can be constructed for every integer $r \geq 4$. This solves a question of [15].

After considering subcritical w.f., we define in a similar way a w.f. ξ on H to be H-upcritical if for every w.f. ξ' such that $\xi \leq \xi'$ and $\|\xi'\| = \|\xi\| + 1$, we have $\tilde{n}(H,\xi) < \tilde{n}(H,\xi')$ (and therefore $\tilde{n}(H,\xi') = \tilde{n}(H,\xi) + 1$). For brevity we will write D-upcritical instead of $H_1(D)$ -upcritical.

As an example, Proposition 3.3 asserts that the w.f. $\xi^{(s)}$ is *H*-upcritical. Notice that the w.f. ξ considered in Proposition 4.4, is \vec{C}_3 -upcritical iff $\xi_0 \leq \xi_1 + \xi_2$ and $\xi_0 + \xi_1 + \xi_2$ is even [16, Lemma 2]. Lemma 3 in [16] can be easily generalized as follows.

Theorem 53. If ξ_Q is *D*-upcritical then every acyclic $\tilde{n}_1(D,Q)$ -colouring of $\sigma(D,Q)$ induces in each Q_u an optimal acyclic colouring.

6 Vertex-Critical r-Dichromatic Circulant Tournaments

In this section we will prove the existence of vertex-critical k-dichromatic circulant tournaments for every $k \ge 3$, $k \ne 7$. We will use the fact that the composition of two circulant tournaments is a circulant tournament [14, Proposition 3.3].

Let f_0, f'_0, f_1 and f'_1 be the functions with codomain \mathbb{N}^2 defined by:

- (1) $f_0(r,m) = r(2m+1) 1, \quad f'_0(r,m) = r(m+1) 1$ for $r \ge 1, m \ge 2.$
- (2) $f_1(r,m) = r(2m+1) + 3, \quad f'_1(r,m) = rm + 1$ for $r \ge 1, m \ge 3.$

Lemma 61. If x is an integer then $x \in \text{Image}(f_0) \cup \text{Image}(f_1)$ iff $x \ge 4$ and $x \notin \{5, 7, 11, 15, 23\}.$

Proof. Take $X = \text{Image}(f_0) \cup \text{Image}(f_1)$. Clearly $x \in X$ implies $x \ge 4$. If x is an even number, $x \ge 4$, then $x \in \text{Image}(f_0)$. Let $x = 2x_1 + 1$ with $x_1 \ge 2$ and $x \notin X$. Then $2x_1 + 2$ has no odd divisor bigger than 3 and $2x_1 - 2$ has no odd divisor bigger than 5. So, $x_1 + 1 = 2^t \cdot i_1$ and $x_1 - 1 = 2^s \cdot i_2$ where $i_1 \in \{1,3\}$ and $i_2 \in \{1,3,5\}$. It follows that either $t \le 1$ or $s \le 1$. In the first case $x \in \{5,11\}$, in the second, $x \in \{5,9,13,7,15,23\}$. However $\{9,13\} \subseteq \text{Image}(f_1)$ and therefore $x \in \{5,7,11,15,23\}$. It can be easily verified that in fact these values do not belong to X.

Let D_j be the (acyclic) digraph whose vertices are the integers bigger than 2 and whose arcs are the pairs of the form $(f'_j(r,m), f_j(r,m)), j = 0, 1$ and take $D = D_0 \cup D_1$. It is easy to prove that D_0 and D_1 are arc disjoint. We assign to each arc $\tau = (f'_j(r,m), f_j(r,m))$ the weight $\omega(\tau) = 2m + 1$ and a digraph operator $\hat{\tau}$ so that $\hat{\tau}(\alpha) = \vec{C}_{2m+1}(I_m)[\alpha]$ if j = 0 and $\hat{\tau}(\alpha) = \vec{C}_{2m+1}(I_{m,m})[\alpha]$ if j = 1. If $\pi = (u_0, \tau_1, u_1, \tau_1, u_2, \dots, u_{n-1}, \tau_n, u_n)$ is a directed path in D we define $\hat{\pi} = \hat{\tau}_n \circ \cdots \circ \hat{\tau}_2 \circ \hat{\tau}_1$ and $\omega(\pi) = \omega(\tau_n) \dots \omega(\tau_1)$.

Using Corollary 4.3, Proposition 4.5 and Theorems 5.1 and 5.2 we obtain the following

Lemma 62. If α is a vertex-critical u_0 -dichromatic circulant tournament then $\hat{\pi}(\alpha)$ is a vertex-critical u_n -dichromatic circulant tournament such that $o(\hat{\pi}(\alpha)) = o(\alpha)\omega(\pi)$.

Remark 63. Using Lemma 6.1 it follows immediately that the set of vertices of D with indegree 0 is $\{3, 4, 5, 7, 11, 15, 23\}$.

Lemma 64. For each integer $n \ge 3$, $n \ne 7$ there is a directed path in D from a vertex in $\{3, 4, 5, 11, 13, 15, 23\}$ to n.

Proof. Let $B = \{3, 4, 5, 11, 13, 15, 23\}$ and $W = \{w \in V(D):$ there is a directed Bw-path in $D\}$. Since $(3, 6), (4, 8), (5, 9), (5, 10), (6, 12), (8, 14), (8, 16), (9, 17), (9, 18), (10, 20), (11, 19), (11, 20), (11, 21), (11, 22), (12, 24) \in A(D_1)$ then $I_{24} - \{1, 2, 7\} \subseteq W$. We will prove that $K = \mathbb{N} - \{1, 2, 7\} = W$. The proof is by induction. Let $n \geq 25$ such that $s \in W$ whenever $s \leq n - 1$, $s \in K$. Because of Remark 6.3 there exists a k such that $(k, n) \in A(D)$. Now k < n and $k \notin \{1, 2, 7\}$ since the only $\{1, 2, 7\}w$ -arcs of D are (2, 4), (7, 13) and (7, 14). Therefore $k \in K$ and so $n \in K$.

Proposition 65. For every integer $k \in \{3, 4, 5, 11, 13, 15, 23\}$ there exists an infinite family \mathcal{F}_k of vertex-critical k-dichromatic circulant tournaments no two of them having the same order.

Proof. The families \mathcal{F}_j for j = 3, 4 and 5 are the following:

 $\mathcal{F}_{3} = \{\vec{C}_{2m+1}(I_{m,m}): m \geq 3\}, \ \mathcal{F}_{5} = \{\vec{C}_{3}[\vec{C}_{2m+1}(I_{m,m})]: m \geq 3\} \ [15]; \ \mathcal{F}_{4} = \{\vec{C}_{6m+1}(I_{3m,2m}): m \geq 2\} \ [13]. Define now \ \mathcal{F}_{11} = \{\vec{C}_{17}(I_{8,5})[\alpha]: \alpha \in \mathcal{F}_{3}\}; \ \mathcal{F}_{13} = \{\vec{C}_{17}(I_{8,7})[\alpha]: \alpha \in \mathcal{F}_{5}\}; \ \mathcal{F}_{15} = \{\vec{C}_{17}(I_{8,6})[\alpha]: \alpha \in \mathcal{F}_{5}\}. That these last 3 families satisfy the required conditions is a direct consequence of Corollary 4.3, Proposition 4.5 and Theorems 5.1 and 5.2 and the fact that for each <math>j \in \{11, 13, 15\},$ all the members of \mathcal{F}_{j} have different orders. Finally define the family $\mathcal{F}_{23} = \{\vec{C}_{3}[\alpha]: \alpha \in \mathcal{F}_{15}\}$ which satisfies the required conditions because of Proposition 4.4 and Theorems 4.2, 5.1 and 5.2.

Theorem 66. For every integer $k \geq 3$, $k \neq 7$ there exists an infinite family \mathcal{F}_k of pairwise non isomorphic vertex-critical k-dichromatic circulant tournaments.

Proof. In fact, we will construct for each $k \ge 3$, $k \ne 7$ an infinite family \mathcal{F}_k of vertex-critical k-dichromatic circulant tournaments such that all its members have different orders. By Lemma 6.4 there is in D a directed uk-path π with $u \in \{3, 4, 5, 11, 13, 15, 23\}$. Define $\mathcal{F}_k = \{\hat{\pi}(\alpha) : \alpha \in \mathcal{F}_u\}$. By Lemmas 6.2 and 6.5, \mathcal{F}_k has the required properties.

References

 C. Berge, Graphs and Hypergraphs (Amsterdam, North Holland Publ. Co., 1973).

- [2] J.A. Bondy, U.S.R Murty, Graph Theory with Applications (American Elsevier Pub. Co., 1976).
- [3] P. Erdös, Problems and results in number theory and graph theory, in: Proc. Ninth Manitoba Conf. Numer. Math. and Computing (1979) 3–21.
- [4] P. Erdös, J. Gimbel and D. Kratsch, Some extremal results in cochromatic and dichromatic theory, J. Graph Theory 15 (1991) 579–585.
- [5] P. Erdös and V. Neumann-Lara, On the dichromatic number of a graph, in preparation.
- [6] D.C. Fisher, Fractional Colorings with large denominators, J. Graph Theory, 20 (1995) 403–409.
- [7] D. Geller and S. Stahl, The chromatic number and other parameters of the lexicographical product, J. Combin. Theory (B) 19 (1975) 87–95.
- [8] A.J.W. Hilton, R. Rado, and S.H. Scott, Multicolouring graphs and hypergraphs, Nanta Mathematica 9 (1975) 152–155.
- H. Jacob and H. Meyniel, Extension of Turan's and Brooks theorems and new notions of stability and colorings in digraphs, Ann. Discrete Math. 17 (1983) 365–370.
- [10] V. Neumann-Lara, The dichromatic number of a digraph, J. Combin. Theory (B) 33 (1982) 265–270.
- [11] V. Neumann-Lara, The generalized dichromatic number of a digraph, in: Colloquia Math. Soc. Jânos Bolyai, Finite and Infinite Sets 37 (1981) 601–606.
- [12] V. Neumann-Lara, The 3 and 4-dichromatic tournaments of minimum order, Discrete Math. 135 (1994) 233–243.
- [13] V. Neumann-Lara, Vertex-critical 4-dichromatic circulant tournaments, Discrete Math. 170 (1997) 289–291.
- [14] V. Neumann-Lara, The acyclic disconnection of a digraph, Discrete Math. 197/198 (1999) 617–632.
- [15] V. Neumann-Lara and J. Urrutia, Vertex-critical r-dichromatic tournaments, Discrete Math. 40 (1984) 83–87.
- [16] V. Neumann-Lara and J. Urrutia, Uniquely colourable r-dichromatic tournaments, Discrete Math. 62 (1986) 65–70.
- [17] S. Stahl, n-tuple colourings and associated graphs, J. Combin. Theory (B) 20 (1976) 185–203.

V. NEUMANN-LARA

Received 10 November 1999 Revised 30 October 2000