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Abstract

The dichromatic number dc(D) of a digraph D is the smallest num-
ber of colours needed to colour the vertices of D so that no monochro-
matic directed cycle is created. In this paper the problem of computing
the dichromatic number of a Zykov-sum of digraphs over a digraph D
is reduced to that of computing a multicovering number of an hyper-
graph H1(D) associated to D in a natural way. This result allows us to
construct an infinite family of pairwise non isomorphic vertex-critical
k-dichromatic circulant tournaments for every k ≥ 3, k 6= 7.
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1 Introduction

The dichromatic number dc(D) of a digraph D is the least number of colours
needed to colour the vertices of D in such a way that each chromatic class
is acyclic ([3, 9, 10]). It is apparent that this invariant measures in some
way the complexity of the cyclic structure of digraphs. The importance of
studying this invariant, introduced in [10], comes from the following fact: If
G is a graph and G∗ denotes the digraph obtained from G by orienting each
one of the edges in both directions, then χ(G) = dc(G∗); so the dichromatic
number is a natural extension of the chromatic number to the class of all
digraphs.
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The structure of arc-critical k-dichromatic digraphs was investigated in [10]
and consequently new remarkable properties of k-chromatic graphs were
obtained there.

We continue here the study of vertex-critical k-dichromatic tournaments
initiated in [15]. Related topics have been considered in [4, 5, 11].

Let H be an hypergraph without isolated vertices and suppose a positive
integer ξu has been assigned to each vertex u of H; the covering number of
H corresponding to that assignment of weights is defined to be the minimum
cardinality of a family of not necessarily different edges of H such that each
vertex u belongs to at least ξu edges of the family.

Let D be a digraph and let H1(D) be the hypergraph whose vertex set
is V (D) and has the maximal acyclic subsets of V (D) as hyperedges. In this
paper the problem of computing the dichromatic number of a Zykov-sum
of digraphs over a digraph D is reduced to that of computing the cove-
ring number of H1(D) with respect to an adequate assignment of weights
(Theorem 4.2). We apply this result to construct an infinite family of pair-
wise non isomorphic vertex-critical k-dichromatic circulant tournaments for
every k ≥ 3, k 6= 7. This improves previous results included in [15]. Other
related results are also presented.

2 Preliminary Results and Terminology

For general concepts we refer the reader to [2].

Let D be a digraph; V (D) and A(D) will denote the sets of vertices and arcs
of D respectively, o(D) = |V (D)| is the order of D; D is acyclic provided no
directed cycle is contained in D. The subdigraph of D induced by a subset
S of V (D) will be denoted by D[S]; S is said to be acyclic iff D[S] is acyclic.
The maximal cardinality of an acyclic set of vertices of D will be denoted
by β→(D). A colouring of V (D) is acyclic if all the chromatic classes are
acyclic. So the dichromatic number dc(D) of a digraph D is the minimum
number of colours in an acyclic colouring of V (D). Clearly dc(Dop) = dc(D)
where Dop is obtained from D by reversing each one of its arcs.

D is called r-dichromatic if dc(D) = r and vertex-critical r-dichromatic
if dc(D) = r and dc(D − u) < r for every u ∈ V (D).

N will denote the set of nonnegative integers, In = {1, . . . , n} and Zn

is the set of integers mod n. For any nonempty subset J of Zn − {0},
the circulant digraph ~Cn(J) is defined by V (~Cn(J)) = Zn and A(~Cn(J)) =
{(i, j): i, j ∈ Zn and j − i ∈ J}. In particular, ~Cn({1}) is the directed cycle
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~Cn; ~C2m+1(J) is a circulant tournament whenever |{j,−j}∩J | = 1 for every
j ∈ Z2m+1 − {0}. If i, j ∈ V ( ~Cn), Ai,j will denote the directed ij-path in
~Cn. For j ∈ Im, Im,j will denote the set Im ∪ {2m + 1− j} − {j} considered
as a subset of Z2m+1.

In [12] it was proved that there is only one 4-dichromatic oriented graph
of order at most 11, namely ~C11(I5,2); this tournament is not only vertex-
critical but also arc-critical. In [13] it was proved that ~C6m+1(I3m,2m) is a
vertex-critical 4-dichromatic circulant tournament for m ≥ 2. In a previous
paper [15] an infinite family of vertex-critical r-dichromatic regular tourna-
ments was constructed for each r ≥ 3, r 6= 4. However these tournaments
were circulants only for r = 3, 5, 8.

We will need the following

Lemma 2.1 [13]. For any two integers r, s such that 1 ≤ s < r holds
β→(Hr,s) = r where Hr,s is the tournament defined by V (Hr,s) = {1, 2, . . . ,
r + s} and A(Hr,s) = {(i, j): (i < j and j − i 6= r)} ∪ {(i + r, i): i ≤ s}.

3 Multicoverings of Hypergraphs

If H = (V (H), E(H)) is an hypergraph, the rank ρ(H) of H is defined to
be the maximum cardinality of an edge of H; H is an r-graph if each one of
its edges has cardinality r.

Let H be a finite hypergraph without isolated points. A function ξ:
V (H) → N will be called a weight function (w.f.) on H; ξ will be said to be
degenerate if ξ−1(0) 6= ∅. We define ‖ξ‖ =

∑
w∈V (H) ξ(w) and denote by k

the w.f. on H, which has constant value k. Let (αj)j∈J be a family of edges
of H and u ∈ V (H); define Ju = {j ∈ J : u ∈ αj}. We will say that (αj)j∈J

is a ξ-covering of H whenever |Ju| ≥ ξ(u) for every u ∈ V (H). Finally, we
define the ξ-covering number ñ(H, ξ) of H by ñ(H, ξ) = min {|J |: (αj)j∈J is a
ξ-covering of H}. So the k-covering number of H is the usual (multi)covering
number which has been studied in many articles (see [1]).

Remark 31. Note that if H ′ is the spanning subhypergraph of H whose
edges are the maximal edges of H, then ñ(H, ξ) = ñ(H ′, ξ).

Proposition 32.

(i) ñ(H, ξ + ξ′) ≤ ñ(H, ξ) + ñ(H, ξ′) and ñ(H, kξ) ≤ kñ(H, ξ) for every
positive integer k.
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(ii) ñ(H, ξ) ≤ ñ(H, ξ′) whenever ξ ≤ ξ′.
(iii) ñ(H, ξ) ≥ d‖ξ‖/ρ(H)e.
(iv) If H0 is a spanning subhypergraph of H then ñ(H, ξ) ≤ ñ(H0, ξ).

Proof. Properties (i), (ii) and (iv) are obvious, Property (iii) follows from
the inequality ρ(H)ñ(H, ξ) ≥ ‖ξ‖.
An hypergraph H is called circulant if it has an automorphism which is a
cyclic permutation of V (H). If r ≤ m, the circulant r-graph Λm,r is defined
by V (Λm,r) = Zm and E(Λm,r) = {αj : j ∈ Zm} where αj = {j, j +1, . . . , j +
r − 1} for j ∈ Zm. For every positive integer s, we define the w.f. ξ(s) on
Λm,r as follows: If sr = qm + t where t is the residue of sr mod m, then
ξ(s)(j) = q or q + 1 depending on whether j belongs or not to At,m−1. In
particular, ξ(s) = q when t = 0. Notice that ‖ξ(s)‖ = sr.

Proposition 33. If H contains Λm,r as a spanning subhypergraph and
ρ(H) = r then ñ(H, ξ(s)) = s and ñ(H, ξ′) > s whenever ‖ξ′‖ > ‖ξ(s)‖.
Proof. The family {αj : j = rj′, j′ = 0, 1, . . . , s} is a ξ(s)-covering of H
and so ñ(H, ξ(s)) ≤ s. The equality and the second inequality follow from
Proposition 3.2 (iii) and the fact that ‖ξ′‖ > ‖ξ(s)‖ = sr.

Proposition 34. Let k be a positive integer. If ρ(H) = r and H contains
an isomorphic copy of Λm,r as a spanning subhypergraph, then ñ(H,k) =
ñ(Λm,r,k) = dkm/re.
Proof. We may assume that Λm,r is a spanning subhypergraph of H. The
inequality ñ(H,k) ≥ dkm/re follows from Proposition 3.2 (iii). Since ξ(s) ≥
k for s = dkm/re, the equality is obtained by applying Propositions 3.2
and 3.3.

Proposition 3.4 applies in particular to K
(r)
m , the complete r-graph of

order m.

4 Zykov Sums and Dichromatic Number

Let D be a digraph and α = (αi)i∈V (D) a family of nonempty mutu-
ally disjoint digraphs. The Zykov sum σ(α, D) of α over D is defined by
V (σ(α,D)) =

⋃
i∈V (D) V (αi); A(σ(α, D)) =

⋃
i∈V (D) A(αi)∪{uw: u ∈ V (αi),

w ∈ V (αj), ij ∈ A(D)}.
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If the members of the family α are not mutually disjoint we replace
each of them by one isomorphic copy so that the new family α′ becomes
one of mutually disjoint digraphs; nevertheless σ(α,D) will still denote the
resulting digraph σ(α′, D) which is defined up to isomorphism. The func-
tion p: σ(α, D) → D whose value is constant in each αu and equal to u,
is a reflexive epimorphism which will be called the natural projection from
σ(α, D) onto D. If αi

∼= W for every i ∈ V (D) we will write D[W ] instead
of σ(α, D).

In [10] it was proved that dc(D[W ]) ≥ dc(D) + dc(W ) − 1. In [15],
t(α1, α2, α3) denoted the same as σ(α, D) for D = ~C3 and α = (α0, α1, α2).

Now, if D is a digraph, the hypergraph H1(D) is defined by V (H1(D)) =
V (D), E(H1(D)) = {S ⊆ V (D):S is a maximal acyclic set}.
Proposition 41.

(i) H1(~C2m+1(Im)) ⊇ Λ2m+1,m+1, β→( ~C2m+1(Im)) = m + 1.
(ii) H1(~C2m+1(Im,m)) ⊇ Λ2m+1,m, β→( ~C2m+1(Im,m)) = m.
(iii) H1(~C6m+1(I3m,2m)) ⊇ Λ6m+1,2m, β→( ~C6m+1(I3m,2m)) = 2m.
(iv) H1(~C17(I8,5)) ⊇ Λ17,5, β→( ~C17(I8,5)) = 5.
(v) H1(~C17(I8,7)) ⊇ Λ17,7, β→( ~C17(I8,7)) = 7 and
(vi) H1(~C17(I8,6)) ⊇ Λ17,6, β→( ~C17(I8,6)) = 6.

Proof. (i) is trivial, (ii) and (iii) were proved in [15] and [13] respectively.
The inclusions of (iv), (v) and (vi) are obvious. Let T j = ~C17(I8,j), j =
5, 6, 7 and notice that Ai(i+j−1) is an acyclic set of cardinality j. Let Sj be
an acyclic set of T j . We will prove that |Sj | ≤ j. We may assume that 0
is the source of T j [Sj ]. Let Nj be the out neighbourhood of 0 in T j . So
Sj−{0} ⊆ Nj . Notice that T j [Nj−{17−j}] ∼= Hj−1,8−j (the correspondence
i → i for 0 < i ≤ j − 1 and i → i + 1 for j ≤ i ≤ 7 is an isomorphism from
Hj−1,8−j onto T j [Nj − {17 − j}]) and j − 1 > 8 − j. So by Lemma 2.1,
|Sj | ≤ j whenever 17− j /∈ Sj . We assume that 17− j ∈ Sj .

Case j = 5. We have 12 ∈ S5. If 4 ∈ S5 then S5 ∩ {1, 2, 3} = ∅ and
since |S5 ∩ {7, 8}| ≤ 1 we obtain |S5| ≤ 5. If 4 /∈ S5 and 8 ∈ S5 then
S5 ∩ {1, 2, 7} = ∅ and so |S5| ≤ 5. Finally if S5 ∩ {4, 8} = ∅, then since
T 5[N5] − {0, 4, 8, 12} ∼= H3,2, we conclude by Lemma 2.1 that |S5| ≤ 5. So
the proof of (iv) is complete.

Case j = 7. We have 10 ∈ S7. If {1, 3} ∩ S7 6= ∅ then {4, 5, 6} ∩ S7 = ∅
and again by Lemma 2.1, |S7| ≤ 5. In the remaining case |S7| ≤ 7. So (v)
holds.
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Case j = 6. Since 11 ∈ S6, either {1, 2} ∩ S6 = ∅ or {3, 4} ∩ S6 = ∅.
Moreover |S6 ∩ {5, 7}| ≤ 1, therefore |S6| ≤ 6 and the proof of (vi) ends.

Let D be a digraph and Q = (Qu)u∈V (D) a family of digraphs. Define the
w.f. ξQ:V (D) → N by ξQ(u) = dc(Qu).

Theorem 42. dc(σ(D, Q)) = ñ(H1(D), ξQ).

Proof. We may assume that Q is formed with mutually disjoint digraphs
and so Qu ⊆ σ(D, Q). Let p: σ(D,Q) → D be the natural projection, so
p(Qu) = u for every u ∈ V (D). Let (αj)j∈J be an optimal ξQ-covering of
H1(D); then |J | = ñ(H1(D), ξQ). Define a colouring f of σ(D, Q) with J
as set of colours, as follows: For each u ∈ V (D), take an acyclic colouring
of Qu with colours in Ju (this is possible because Qu is ξQ(u)-dichromatic
and |Ju| ≥ ξQ(u)). Let C be a directed cycle of σ(D, Q). If C ⊆ Qu for
some u, C is not monochromatic. Otherwise, p(C) contains a directed cycle
C0. If C were monochromatic of colour j, αj ⊇ V (p(C)) ⊇ V (C0) which is
impossible since αj is acyclic. Then C is not monochromatic and f is an
acyclic colouring. Therefore dc(σ(D, Q)) ≤ ñ(H1(D), ξQ). Let J be a set of
cardinality dc(σ(D, Q)) and f : σ(D, Q) → J an optimal acyclic colouring of
σ(D, Q). Denote by Rj the chromatic class of colour j. Then αj = p(Rj)
is an acyclic subset of V (D) since Rj is acyclic and so αj ∈ E(H1(D)).
Since Ju = {j: u ∈ αj}, j ∈ Ju if and only if Rj ∩ V (Qu) is nonempty, then
|Ju| ≥ dc(Qu) = ξQ(u) and (αj)j∈J is a ξQ-covering of H1(D). Therefore
ñ(H1(D), ξQ) ≤ dc(σ(D, Q)) and the proof is complete.

From here on, we will write ñ1(D, ξ) instead of ñ(H1(D), ξ). Note that
ñ1(D,1) = dc(D).

Corollary 43. If dc(α) = k then dc(D[α])) = ñ1(D,k).

Let ξ be a w.f. on ~C3 such that ξ0 ≥ ξ1 ≥ ξ2 where ξ(j) = ξj . In [15], the
following result was proved.

Proposition 44. ñ1(~C3, ξ) = d(ξ0 +ξ1 +ξ2)/2e or ξ0 depending on whether
ξ0 ≤ ξ1 + ξ2 or ξ1 + ξ2 ≤ ξ0. In particular ñ1(~C3,k) = d3k/2e.

Proposition 45.
(i) ñ1(~C2m+1(Im),k) = dk(2m + 1)/(m + 1)e for m ≥ 2.
(ii) ñ1(~C2m+1(Im,m),k) = dk(2m + 1)/me for m ≥ 3.

(iii) ñ1(~C6m+1(I3m,2m),k) = dk(6m + 1)/2me for m ≥ 2.
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(iv) ñ1(~C17(I8,5),k) = d17k/5e, ñ1(~C17(I8,7),k) = d17k/7e and
ñ1( ~C17(I8,6),k) = d17k/6e.

Proof. The equalities follow directly from Proposition 4.1 and Proposi-
tion 3.4.

4.6. An application. If ξ: Z7 → N is defined by ξ(j) = 2 for j 6= 0 and
ξ(0) = 1, then for T = ~C7(1, 2, 4), ñ1(T, ξ) ≥ d13/3e = 5 by Proposition
3.2 (iii) since β→(~C7(1, 2, 4)) = 3. By Proposition 3.3, ñ1(T, ξ(5)) = 5 and
since ξ ≤ ξ(5) it follows from Proposition 3.2 that ñ1(T, ξ) = 5. Define Q0 =
T1 and Qj = ~C3 for j ∈ Z7−{0}. Because of Theorem 4.2, σ(T, (Qu)u∈V (T ))
is a 5-dichromatic tournament of order 19. The minimum order of a 5-
dichromatic tournament is not known, this example shows that it is not
bigger than 19. It can be proved that it is at least 17.

Let G∗ be the digraph obtained from a graph G by orienting each one
of the edges in both directions. Some properties and the behaviour of the
function ñ1(G∗,k) have been studied in several papers [6, 7, 8, 17].

5 Subcritical and Upcritical Weight Functions

A weight function ξ on H is said to be H-subcritical if for every w.f. ξ′ such
that ξ′ ≤ ξ and ‖ξ′‖ = ‖ξ‖ − 1, we have ñ(H, ξ′) < ñ(H, ξ) (and therefore
ñ(H, ξ′) = ñ(H, ξ) − 1). For brevity we will write D-subcritical instead of
H1(D)-subcritical.

Notice that the w.f. ξ considered in Proposition 4.4 is ~C3-subcritical iff
ξ0 ≤ ξ1 + ξ2 and ξ0 + ξ1 + ξ2 is odd [15].

Theorem 51. If for every u ∈ V (D), Qu is a vertex-critical ξQ(u)-di-
chromatic digraph and ξQ is D-subcritical, then σ(D, Q) is vertex-critical
ñ1(D,Q)-dichromatic.

Proof. This follows directly from Theorem 4.2.

It is not difficult to prove that the w.f. ξ defined in 4.6 is ~C7(1, 2, 4)-
subcritical. Therefore the tournament σ(T, (Qu)u∈V (T )) constructed there
is vertex-critical.

Theorem 52.
(i) k is ~C2m+1(Im)-subcritical iff k ≡ m mod (m + 1) and m ≥ 2.
(ii) k is ~C2m+1(Im,m)-subcritical iff k ≡ 1 mod m and m ≥ 3.
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(iii) k is ~C6m+1(I3m,2m)-subcritical iff k ≡ 1 mod 2m and m ≥ 2.
(iv) k is

~C3-subcritical iff k is odd,
~C17(I8,5)-subcritical iff k ≡ 3 mod 5,
~C17(I8,7)-subcritical iff k ≡ 5 mod 7,
~C17(I8,6)-subcritical iff k ≡ 5 mod 6.

Proof. It follows from Proposition 4.4 that k is ~C3-subcritical iff k is odd.
Let T any of the tournaments of (i), (ii) or (iii) and let ξ be a w.f. such
that ξ ≤ k, ‖ξ‖ = ‖k‖−1. From Proposition 4.5 it follows immediately that
ñ(T, ξ) = ñ(T,k) unless k ≡ m mod (2m+1) in case (i), k ≡ 1 mod (2m+1)
in case (ii) or k ≡ 1mod 2m in case (iii). In these last cases r = β→(T )
divides ‖ξ‖. Since Aut(T ) is vertex transitive, we may assume that ξ = ξ(s)

for s = ‖ξ‖/r and the assertion follows from Proposition 3.3. The remaining
cases can be proved in a similar way.

5.3. Another application. Let ξ: Z7−{0} → N be defined by ξ(j) = 1 for
j ∈ {1, 2, 3, 4, 5} and ξ(6) = 2. It is easy to see that ξ is ST6-subcritical where
ST6 = ~C7(1, 2, 4) − {0} and ñ1(ST6, ξ) = 3. Proceeding as in the example
of 4.6, a vertex-critical 3-dichromatic tournament T (3) of order 8 is obta-
ined. Let T (m) (resp: W (m)) denote a generic vertex-critical m-dichromatic
tournament of even (resp: odd) order. Recall that t(T (m),W (m), T1) is
a vertex-critical (m + 1)-dichromatic tournament of even order and that
there are infinitely many pairwise non isomorphic tournaments W (3) [15].
Using induction, it follows that an infinite family of pairwise non isomorphic
vertex-critical r- dichromatic tournaments of even order can be constructed
for every integer r ≥ 4. This solves a question of [15].

After considering subcritical w.f., we define in a similar way a w.f. ξ on
H to be H-upcritical if for every w.f. ξ′ such that ξ ≤ ξ′ and ‖ξ′‖ = ‖ξ‖+1,
we have ñ(H, ξ) < ñ(H, ξ′) (and therefore ñ(H, ξ′) = ñ(H, ξ) + 1). For
brevity we will write D-upcritical instead of H1(D)-upcritical.

As an example, Proposition 3.3 asserts that the w.f. ξ(s) is H-upcritical.
Notice that the w.f. ξ considered in Proposition 4.4, is ~C3-upcritical iff
ξ0 ≤ ξ1 + ξ2 and ξ0 + ξ1 + ξ2 is even [16, Lemma 2]. Lemma 3 in [16] can be
easily generalized as follows.

Theorem 53. If ξQ is D-upcritical then every acyclic ñ1(D, Q)-colouring
of σ(D, Q) induces in each Qu an optimal acyclic colouring.
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6 Vertex-Critical r-Dichromatic Circulant
Tournaments

In this section we will prove the existence of vertex-critical k-dichromatic
circulant tournaments for every k ≥ 3, k 6= 7. We will use the fact that
the composition of two circulant tournaments is a circulant tournament [14,
Proposition 3.3].
Let f0, f ′0, f1 and f ′1 be the functions with codomain N2 defined by:

(1) f0(r,m) = r(2m + 1)− 1, f ′0(r,m) = r(m + 1)− 1
for r ≥ 1, m ≥ 2.

(2) f1(r,m) = r(2m + 1) + 3, f ′1(r,m) = rm + 1
for r ≥ 1, m ≥ 3.

Lemma 61. If x is an integer then x ∈ Image (f0) ∪ Image (f1) iff x ≥ 4
and x /∈ {5, 7, 11, 15, 23}.

Proof. Take X = Image (f0) ∪ Image (f1). Clearly x ∈ X implies x ≥ 4.
If x is an even number, x ≥ 4, then x ∈ Image (f0). Let x = 2x1 + 1 with
x1 ≥ 2 and x /∈ X. Then 2x1+2 has no odd divisor bigger than 3 and 2x1−2
has no odd divisor bigger than 5. So, x1 +1 = 2t.i1 and x1−1 = 2s.i2 where
i1 ∈ {1, 3} and i2 ∈ {1, 3, 5}. It follows that either t ≤ 1 or s ≤ 1. In
the first case x ∈ {5, 11}, in the second, x ∈ {5, 9, 13, 7, 15, 23}. However
{9, 13} ⊆ Image (f1) and therefore x ∈ {5, 7, 11, 15, 23}. It can be easily
verified that in fact these values do not belong to X.

Let Dj be the (acyclic) digraph whose vertices are the integers bigger than 2
and whose arcs are the pairs of the form (f ′j(r,m), fj(r,m)), j = 0, 1 and take
D = D0∪D1. It is easy to prove that D0 and D1 are arc disjoint. We assign
to each arc τ = (f ′j(r,m), fj(r,m)) the weight ω(τ) = 2m + 1 and a digraph
operator τ̂ so that τ̂(α) = ~C2m+1(Im)[α] if j = 0 and τ̂(α) = ~C2m+1(Im,m)[α]
if j = 1. If π = (u0, τ1, u1, τ1, u2, . . . , un−1, τn, un) is a directed path in D we
define π̂ = τ̂n ◦ · · · ◦ τ̂2 ◦ τ̂1 and ω(π) = ω(τn) . . . ω(τ1).

Using Corollary 4.3, Proposition 4.5 and Theorems 5.1 and 5.2 we obtain
the following

Lemma 62. If α is a vertex-critical u0-dichromatic circulant tournament
then π̂(α) is a vertex-critical un-dichromatic circulant tournament such that
o(π̂(α)) = o(α)ω(π).
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Remark 63. Using Lemma 6.1 it follows immediately that the set of ver-
tices of D with indegree 0 is {3, 4, 5, 7, 11, 15, 23}.

Lemma 64. For each integer n ≥ 3, n 6= 7 there is a directed path in D
from a vertex in {3, 4, 5, 11, 13, 15, 23} to n.

Proof. Let B = {3, 4, 5, 11, 13, 15, 23} and W = {w ∈ V (D): there is a di-
rected Bw-path in D}. Since (3, 6), (4, 8), (5, 9), (5, 10), (6, 12), (8, 14), (8, 16),
(9, 17), (9, 18), (10, 20), (11, 19), (11, 20), (11, 21), (11, 22), (12, 24) ∈ A(D1)
then I24 − {1, 2, 7} ⊆ W . We will prove that K = N − {1, 2, 7} = W . The
proof is by induction. Let n ≥ 25 such that s ∈ W whenever s ≤ n − 1,
s ∈ K. Because of Remark 6.3 there exists a k such that (k, n) ∈ A(D). Now
k < n and k /∈ {1, 2, 7} since the only {1, 2, 7}w-arcs of D are (2, 4), (7, 13)
and (7, 14). Therefore k ∈ K and so n ∈ K.

Proposition 65. For every integer k ∈ {3, 4, 5, 11, 13, 15, 23} there exists
an infinite family Fk of vertex-critical k-dichromatic circulant tournaments
no two of them having the same order.

Proof. The families Fj for j = 3, 4 and 5 are the following:
F3 = {~C2m+1(Im,m):m ≥ 3}, F5 = {~C3[~C2m+1(Im,m)]:m ≥ 3} [15]; F4 =
{~C6m+1(I3m,2m):m ≥ 2} [13]. Define now F11 = {~C17(I8,5)[α]:α ∈ F3};
F13 = {~C17(I8,7)[α]:α ∈ F5}; F15 = {~C17(I8,6)[α]: α ∈ F5}. That these last
3 families satisfy the required conditions is a direct consequence of Corollary
4.3, Proposition 4.5 and Theorems 5.1 and 5.2 and the fact that for each
j ∈ {11, 13, 15}, all the members of Fj have different orders. Finally define
the family F23 = {~C3[α]:α ∈ F15} which satisfies the required conditions
because of Proposition 4.4 and Theorems 4.2, 5.1 and 5.2.

Theorem 66. For every integer k ≥ 3, k 6= 7 there exists an infinite fa-
mily Fk of pairwise non isomorphic vertex-critical k-dichromatic circulant
tournaments.

Proof. In fact, we will construct for each k ≥ 3, k 6= 7 an infinite family
Fk of vertex-critical k-dichromatic circulant tournaments such that all its
members have different orders. By Lemma 6.4 there is in D a directed uk-
path π with u ∈ {3, 4, 5, 11, 13, 15, 23}. Define Fk = {π̂(α):α ∈ Fu}. By
Lemmas 6.2 and 6.5, Fk has the required properties.
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