NOTE ON THE WEIGHT OF PATHS IN PLANE TRIANGULATIONS OF MINIMUM DEGREE 4 AND 5

Tomás Madaras
Department of Geometry and Algebra
P.J. Šafárik University
Jesenná 5, 04154 Košice, Slovak Republic
e-mail: madaras@duro.upjs.sk

Abstract

The weight of a path in a graph is defined to be the sum of degrees of its vertices in entire graph. It is proved that each plane triangulation of minimum degree 5 contains a path P_{5} on 5 vertices of weight at most 29 , the bound being precise, and each plane triangulation of minimum degree 4 contains a path P_{4} on 4 vertices of weight at most 31 .

Keywords: weight of path, plane graph, triangulation.
2000 Mathematics Subject Classification: 05C10, 05C38, 52B10.

Throughout this paper we consider connected graphs without loops or multiple edges. Let $P_{r}\left(C_{r}\right)$ denote a path (cycle) on r vertices (an r-path and r-cycle, in the sequel). A vertex of degree m is called an m-vertex, a vertex of degree at least (at most) m is called a $+m$-vertex ($-m$-vertex).

The weight of the subgraph H in the graph G is defined to be the sum of the degrees of the vertices of H in $G, w(H)=\sum_{v \in V(H)} \operatorname{deg}_{G}(v)$. For a family \mathcal{G} of graphs having a subgraph isomorphic to H, define the number $w(H, \mathcal{G})=\max _{G \in \mathcal{G}} \min _{H \subseteq G} w(H)$.

The exact value of $w(H, \mathcal{G})$ is known only for a few graphs and families of graphs. For $\mathcal{G}(3)$ the family of all 3 -connected plane graphs, Ando, Iwasaki and Kaneko [1] proved that $w\left(P_{3}, \mathcal{G}(3)\right)=21$. From the result of Fabrici and Jendrol' [5] it follows that $w\left(P_{k}, \mathcal{G}(3)\right) \leq 5 k^{2}$ for $k \geq 1$; also, they gave a lower bound for this number as a function of order $O(k \log (k))$, see [6]. Recently, the upper bound $5 k^{2}$ was improved to $\frac{5}{2} k(k+1)$ for $k \geq 4$, see [11]. For PHam the class of all hamiltonian plane graphs, Mohar [12] proved the exact
value $w\left(P_{k}, P H a m\right)=6 k-1$. For $\mathcal{G}(5)$ and $\mathcal{T}(5)$ the families of all connected plane graphs/triangulations of minimum degree 5 and subgraphs other than a path, the known exact values are $w\left(C_{3}, \mathcal{G}(5)\right)=17([2]), w\left(K_{1,3}, \mathcal{G}(5)\right)=$ $23([9]), w\left(K_{1,4}, \mathcal{G}(5)\right)=30, w\left(C_{4}, \mathcal{T}(5)\right)=25, w\left(C_{5}, \mathcal{T}(5)\right)=30([4])$.

In the following we deal with the weight of paths P_{k} in the graphs of the families $\mathcal{T}(4)$ and $\mathcal{T}(5)$ (plane triangulations of minimum degree 4 and 5). It is known that $w\left(P_{2}, \mathcal{G}(5)\right)=11([13]), w\left(P_{3}, \mathcal{G}(5)\right)=17([8])$, $w\left(P_{4}, \mathcal{G}(5)\right)=23([9]), w\left(P_{3}, \mathcal{G}(4)\right)=17([1,3]), w\left(P_{4}, \mathcal{T}(4)\right) \leq 4 \cdot 15=60$ ([7]). The aim of this paper is to improve the best known upper bound for $w\left(P_{k}, \mathcal{T}(4)\right), w\left(P_{k}, \mathcal{T}(5)\right)$ for small values of k, showing the following

Theorem 1. $w\left(P_{5}, \mathcal{T}(5)\right)=29$.
Theorem 2. $27 \leq w\left(P_{4}, \mathcal{T}(4)\right) \leq 31$.
Proof of Theorem 1. To prove first the inequality $w\left(P_{5}, \mathcal{T}(5)\right) \leq 29$ suppose that there exists a graph $G \in \mathcal{T}(5)$ in which every path P_{5} has a weight $w\left(P_{5}\right)>29$. We will use the Discharging method. According to the consequence of the Euler formula,

$$
\sum_{x \in V(G)}\left(\operatorname{deg}_{G}(x)-6\right)=-12
$$

assign to each vertex $x \in V(G)$ the initial charge $\varphi(x)=\operatorname{deg}_{G}(x)-6$. Thus $\sum_{x \in V(G)} \varphi(x)=-12$.

Now, we define a local redistribution of charges in a way such that the sum of the charges after redistribution remains the same. This redistribution is performed by the following

Rule. Each k-vertex $x, k \geq 6$, sends the charge $\frac{k-6}{m(x)}$ to each adjacent 5 vertex, where $m(x)$ is the number of 5 -vertices adjacent to x. If $m(x)=0$, no charge is transferred.

Proposition. Each +8 -vertex sends at least $\frac{1}{2}$ to each adjacent 5 -vertex; each 7 -vertex sends at least $\frac{1}{4}$ to each adjacent 5 -vertex.
Proof. Consider a 7 -vertex x. Then x is adjacent to at most four 5 -vertices (otherwise two pairs of adjacent 5 -vertices are found in the neighbourhood of x, hence there exists a path P_{5} of weight 27 , a contradiction). From the similar reason, a 8 -vertex (9 -vertex) is adjacent to at most four (five) 5 -vertices. Since none five consecutive vertices in the neighbourhood of
a k-vertex, $k \geq 6$, can be 5 -vertices, every 10 -vertex and every 11 -vertex is adjacent to at most eight 5 -vertices. Then computing $\frac{k-6}{m(x)}$ yields the desired values of charge. A +12 -vertex always sends at least $\frac{1}{2}$.

We will show that, after redistribution of charges, the new charges $\widetilde{\varphi}(x)$ are non-negative for all $x \in V(G)$. This will contradict the fact that $\sum_{x \in V(G)} \widetilde{\varphi}(x)=\sum_{x \in V(G)} \varphi(x)=-12$. To this end, several cases have to be considered.

Case 1. x is a 5 -vertex. Then x is adjacent to at least two +7 -vertices (otherwise, it is adjacent to at least four -6 -vertices and there exists a path P_{5} with $w\left(P_{5}\right) \leq 5+4 \cdot 6=29$, a contradiction); denote them u, v. If u, v are both +8 -vertices, then $\widetilde{\varphi}(x) \geq-1+2 \cdot \frac{1}{2}=0$ by Proposition. Otherwise consider the following possibilities:

Case 1a. u is a +8 -vertex, v is a 7 -vertex, all other neighbours are 6vertices. Observe that x is the only 5 -neighbour of v (otherwise, a 5 -path of weight at most $2 \cdot 5+2 \cdot 6+7=29$ is found). Thus $\widetilde{\varphi}(x) \geq-1+1+\frac{1}{2}>0$.

Case 1b. u, v are 7 -vertices, all other neighbours are 6 -vertices. As above, x is the only 5 -neighbour of u, v, thus $\widetilde{\varphi}(x) \geq-1+2 \cdot 1>0$.

Case 1c. Three of the neighbours of x are 7 -vertices, the other ones are -6 -vertices. Observe that, for at least one 7 -vertex, x is its only 5 -neighbour; thus $\widetilde{\varphi}(x) \geq-1+1+2 \cdot \frac{1}{4}>0$.

Case 1d. At least four of the neighbours of x are 7 -vertices. Then $\widetilde{\varphi}(x) \geq-1+4 \cdot \frac{1}{4}=0$.

Case 2. x is a k-vertex, $k \geq 6$. If x is adjacent to a 5 -vertex, then $\widetilde{\varphi}(x)=k-6-m(x) \cdot \frac{k-6}{m(x)}=0 ;$ otherwise $\widetilde{\varphi}(x)=\varphi(x)=k-6 \geq 0$.

To prove that the upper bound is best possible consider the so called edgehexagon substitution by which a given plane map G is transformed into the following plane map G^{\prime} : Let every $x \in V(G)$ be also a vertex of G^{\prime}. Assign to every incident pair (x, α) of a vertex x and a face α of G a new vertex of G^{\prime}. Connect two vertices $x_{1}^{\prime}, x_{2}^{\prime} \in V\left(G^{\prime}\right)$ by an edge iff either $x_{1}^{\prime}, x_{2}^{\prime}$ are assigned to $\left(x_{1}, \alpha_{1}\right),\left(x_{2}, \alpha_{2}\right)$ with $\left(x_{1}, x_{2}\right) \in E(G)$ and with $\alpha_{1}=\alpha_{2}$, or if x_{1}^{\prime} is assigned to a pair $\left(x_{1}, \alpha_{1}\right)$ where $x_{2}^{\prime}=x_{1}$, see Figure (cf. [10]):

Consider a graph of the Archimedean polytope $(6,6,5)$ and on each its edge apply the edge-hexagon substitution. Into each face of the obtained graph insert a new vertex and join it with new edges to the vertices of the face boundary. In the resulting graph, every 5 -path is of the weight of at least 29.

Proof of Theorem 2. To prove the upper bound suppose that there exists a counterexample G in which every 4 -path has a weight of at least 32 .

The following propositions are easy to prove:
Proposition 1. Each k-vertex with $7 \leq k \leq 16$ is adjacent to at most $\left\lfloor\frac{k}{2}\right\rfloor-5$-vertices.

Proposition 2. Each k-vertex, $k \geq 17$, is adjacent to at most $\left\lfloor\frac{3 k}{4}\right\rfloor-5$ vertices.

We use again the Discharging method. As before, the initial assignment of charges is $\mu(x)=\operatorname{deg}_{G}(x)-6$ for each vertex $x \in V(G)$. The local redistribution of charges is based on the following rules:

Rule 1. Each k-vertex $x, k \geq 6$, sends the charge $\frac{k-6}{m(x)}$ to each adjacent -5 -vertex; $m(x)$ is the number of -5 -vertices adjacent to x. If $m(x)=0$, no charge is transferred.

The following table shows the minimal charge sent by a k-vertex $x, k \geq 7$, to an adjacent -5 -vertex, according to Rule 1 (the corresponding values $m(x)$ are computed due to Propositions 1 and 2):

As seen from the table, the only cases when the minimal charge is less than 1 are those with $k \in\{7,8,9,10,17,18,19,20\}$.

Let $\bar{\mu}$ denote the charge of a vertex after application of Rule 1. A vertex y is said to be overcharged if $\bar{\mu}(y)>0$, and undercharged if $\bar{\mu}(y)<0$.

Rule 2. Each overcharged -5 -vertex x sends the charge $\frac{\bar{\mu}(x)}{\bar{m}(x)}$ to each adjacent undercharged 4 -vertex; $\bar{m}(x)$ is the number of undercharged 4 -vertices adjacent to x. If $\bar{m}(x)=0$, no charge is transferred.

Let $\tilde{\mu}$ be the charge of vertices after application of Rule 2. Note that $\bar{\mu}(y) \geq 0$ implies that $\widetilde{\mu}(y) \geq 0$. We will show that after redistribution of charges we have $\widetilde{\mu}(x) \geq 0$ for each vertex $x \in G$, a contradiction. To this end, several cases have to be considered.

Case 1. Let x be a k-vertex, $k \geq 6$. Then either all its charge is sent to adjacent -5 -vertices $(\bar{\mu}(x)=0)$ or there is no transfer from x and $\bar{\mu}(x)=k-6 \geq 0$.

Case 2. Let x be a 5 -vertex. Then x is adjacent to at least three +9 vertices (otherwise it is adjacent to at least three -8 -vertices and we can find a 4-path of weight of at most $8 \cdot 3+5=29<31$); hence $\bar{\mu}(x) \geq-1+3 \cdot \frac{3}{4}=$ $\frac{5}{4}>0$ (thus every 5 -vertex is overcharged).

Case 3. Let x be a 4 -vertex. Then x is adjacent to at least two +10 vertices (otherwise it is adjacent to at least three -9 -vertices and we can find a 4 -path of weight of at most $9 \cdot 3+4=31$). If x is adjacent to at least three +10 -vertices then $\bar{\mu}(x) \geq-2+3 \cdot \frac{4}{5}=\frac{2}{5}>0$; so, suppose that x is adjacent to exactly two +10 -vertices u, v. If both u, v are +21 -vertices, or one of them is +21 -vertex and the degree of another one is between 11 and 16 , or both their degrees are between 11 and 16 , then u and v send 1 to x (see Table) and $\bar{\mu}(x) \geq-2+2 \cdot 1=0$. Hence (without loss of generality) it is enough to consider the following possibilities for degrees of u, v (denote y, z the remaining neighbours of x):

Case 3.1. Both u, v are 10 -vertices. Then both y, z are +8 -vertices (otherwise a 4 -path of weight of at most $4+2 \cdot 10+7=31$ is found) and $\bar{\mu}(x) \geq-2+2 \cdot \frac{4}{5}+2 \cdot \frac{1}{2}>0$.

Case 3.2. u is 10 -vertex, v is +11 -vertex. Then the sum of degrees of y, z is at least 18 (otherwise x, y, u, z form a 4-path of weight of at most $10+4+17=31$); hence, one of them has to be a +9 -vertex. Thus $\bar{\mu}(x) \geq$ $-2+\frac{4}{5}+\frac{11}{12}+\frac{3}{4}>0$.

Case 3.3. The degrees of u, v are between 17 and 20 . If some of y, z is a +7 -vertex, then a simple calculation yields $\bar{\mu}(x) \geq-2+2 \cdot \frac{11}{12}+\frac{1}{3}>0$; if some of them is a 5 -vertex, the application of Rule 2 yields $\widetilde{\mu}(x) \geq-2+2 \cdot \frac{11}{12}$ $+\frac{\frac{5}{4}}{2}>0$. Now, suppose that y, z are 6 - or 4 -vertices; then we have to treat several cases:

Case 3.3a. y, z are 4 -vertices forming a triangular face with x. Then u, v are 20 -vertices. Consider the neighbourhood of the vertices u, v, y, z; then the vertices u, v have at least six +6 -neighbours. Thus $\bar{\mu}(x) \geq$ $-2+2 \cdot \frac{20-6}{20-6}=0$.

Case 3.3b. y, z are 4 -vertices not forming a triangular face with x. Then all their neighbours, except x, are +20 -vertices and we have $\bar{\mu}(y) \geq$ $-2+3 \cdot \frac{14}{15}=\frac{12}{15}, \bar{\mu}(z) \geq-2+3 \cdot \frac{14}{15}=\frac{12}{15}$. Hence y, z are overcharged and using Rule 2 we have $\widetilde{\mu}(x) \geq-2+2 \cdot \frac{14}{15}+2 \cdot \frac{12}{15}>0$.

Case 3.3c. y, z are 6 -vertices. Considering that each of their neighbours except x has to be a +16 -vertex, it is easy to see that u, v have at least six +6 -neighbours, thus $\bar{\mu}(x) \geq-2+2 \cdot \frac{17-6}{17-6}=0$.

Case 3.3d. y is a 4 -vertex, z is a 6 -vertex and they do not form a triangular face with x. Then each neighbour of z, except for x, is a +18 vertex, i.e., u, v are +18 -vertices and, moreover, they have at least six +6 neighbours. Hence $\bar{\mu}(x) \geq-2+2 \cdot \frac{18-6}{18-6}=0$.

Case 3.3e. y is a 4 -vertex, z is a 6 -vertex and they form a triangular face with x. Then u, v are +18 -vertices. Let u be adjacent to y and v to z. Since every neighbour of z, except x and y, has to be a +18 -vertex, v has at least six +6 -neighbours and it sends at least 1 to x. If u is a 20 -vertex, then it has also at least six +6 -neighbours, thus $\bar{\mu}(x) \geq-2+2 \cdot 1=0$. So suppose that u is 18- or 19-vertex not having at least six +6 -neighbours.

If u is a 19 -vertex, then in consequence of Proposition 2 it has exactly five +6 -neighbours and sends $\frac{19-6}{19-5}=\frac{13}{14}$ to x. Denote $v_{1}^{\prime}, v_{2}^{\prime} \ldots v_{l}^{\prime}$ the neighbours of v in the cyclical ordering such that $v_{1}^{\prime}=z, v_{2}^{\prime}=x, v_{3}^{\prime}=u$. Due to the neighbourhood of u, v_{4}^{\prime} has to be a 5 -vertex and v_{5}^{\prime} has to be +17 -vertex. From this fact we obtain that v has at least seven +6 -neighbours, so it sends at least $\frac{18-6}{18-7}=\frac{12}{11}$ to x. Hence $\bar{\mu}(x) \geq-2+\frac{13}{14}+\frac{12}{11}=\frac{3}{154}>0$.

If u is a 18 -vertex, then every its neighbour, except x and y, has to be a +6 -vertex (otherwise a 4 -path of weight of at most $2 \cdot 4+18+5=31$ can be found), so u even sends at least 2 to x and clearly $\bar{\mu}(x)>0$.

Case 3.4. The degree of u is between 17 and 20, the degree of v is either between 11 and 16 , or is at least 21 . According to the similarity to case 3.3 (note that v always sends at least 1 to x) it is enough to consider the cases when y or z are neither +7 -vertices nor -5 -vertices, that means, $\left(\operatorname{deg}_{G}(y), \operatorname{deg}_{G}(z)\right) \in\{(4,4),(4,6),(6,4),(6,6)\}$. In these cases, it is routine check to prove that u has at least $6+6$-neighbours, or we obtain a similar situation as in 3.3 e , so $\bar{\mu}(x) \geq 0$.
Consider the graph of an icosahedron; into each its triangular face $[X Y Z]$ insert a new triangle $[A B C]$ and add new edges $\{A, X\},\{A, Y\},\{B, Y\}$, $\{B, Z\},\{C, Z\},\{C, X\}$. In the resulting graph, every 4 -path is of weight of at least $15+3 \cdot 4=27$.

Acknowledgement

A support of Slovak VEGA grant $1 / 7467 / 20$ is acknowledged.

References

[1] K. Ando, S. Iwasaki and A. Kaneko, Every 3-connected planar graph has a connected subgraph with small degree sum, Annual Meeting of the Mathematical Society of Japan, 1993 (in Japanese).
[2] O.V. Borodin, Solution of problems of Kotzig and Grünbaum concerning the isolation of cycles in planar graphs, Mat. Zametki 46 (5) (1989) 9-12.
[3] O.V. Borodin, Minimal vertex degree sum of a 3-path in plane maps, Discuss. Math. Graph Theory 17 (1997) 279-284.
[4] O.V. Borodin and D.R. Woodall, Short cycles of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 18 (1998) 159-164.
[5] I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, Graphs and Combinatorics 13 (1997) 245-250.
[6] I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar graphs, Discrete Math. 191 (1998) 83-90.
[7] I. Fabrici, E. Hexel, S. Jendrol' and H. Walther, On vertex-degree restricted paths in polyhedral graphs, Discrete Math. 212 (2000) 61-73.
[8] P. Franklin, The four color problem, Amer. J. Math. 44 (1922) 225-236.
[9] S. Jendrol' and T. Madaras, On light subgraphs in plane graphs of minimum degree five, Discuss. Math. Graph Theory 16 (1996) 207-217.
[10] E. Jucovič, Convex polytopes (Veda, Bratislava, 1981).
[11] T. Madaras, Note on weights of paths in polyhedral graphs, Discrete Math. 203 (1999) 267-269.
[12] B. Mohar, Light paths in 4-connected graphs in the plane and other surfaces, J. Graph Theory 34 (2000) 170-179.
[13] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426.

