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Abstract

The weight of a path in a graph is defined to be the sum of degrees
of its vertices in entire graph. It is proved that each plane triangulation
of minimum degree 5 contains a path P5 on 5 vertices of weight at most
29, the bound being precise, and each plane triangulation of minimum
degree 4 contains a path P4 on 4 vertices of weight at most 31.
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Throughout this paper we consider connected graphs without loops or mul-
tiple edges. Let Pr (Cr) denote a path (cycle) on r vertices (an r-path and
r-cycle, in the sequel). A vertex of degree m is called an m-vertex, a vertex
of degree at least (at most) m is called a +m-vertex (−m-vertex).

The weight of the subgraph H in the graph G is defined to be the sum
of the degrees of the vertices of H in G, w(H) =

∑
v∈V (H) degG(v). For a

family G of graphs having a subgraph isomorphic to H, define the number
w(H,G) = maxG∈G minH⊆G w(H).

The exact value of w(H,G) is known only for a few graphs and families of
graphs. For G(3) the family of all 3-connected plane graphs, Ando, Iwasaki
and Kaneko [1] proved that w(P3,G(3)) = 21. From the result of Fabrici and
Jendrol’ [5] it follows that w(Pk,G(3)) ≤ 5k2 for k ≥ 1; also, they gave a lower
bound for this number as a function of order O(k log(k)), see [6]. Recently,
the upper bound 5k2 was improved to 5

2k(k + 1) for k ≥ 4, see [11]. For
PHam the class of all hamiltonian plane graphs, Mohar [12] proved the exact



174 T. Madaras

value w(Pk, PHam) = 6k−1. For G(5) and T (5) the families of all connected
plane graphs/triangulations of minimum degree 5 and subgraphs other than
a path, the known exact values are w(C3,G(5)) = 17 ([2]), w(K1,3,G(5)) =
23 ([9]), w(K1,4,G(5)) = 30, w(C4, T (5)) = 25, w(C5, T (5)) = 30 ([4]).

In the following we deal with the weight of paths Pk in the graphs
of the families T (4) and T (5) (plane triangulations of minimum degree 4
and 5). It is known that w(P2,G(5)) = 11 ([13]), w(P3,G(5)) = 17 ([8]),
w(P4,G(5)) = 23 ([9]), w(P3,G(4)) = 17 ([1, 3]), w(P4, T (4)) ≤ 4 · 15 = 60
([7]). The aim of this paper is to improve the best known upper bound for
w(Pk, T (4)), w(Pk, T (5)) for small values of k, showing the following

Theorem 1. w(P5, T (5)) = 29.

Theorem 2. 27 ≤ w(P4, T (4)) ≤ 31.

Proof of Theorem 1. To prove first the inequality w(P5, T (5)) ≤ 29
suppose that there exists a graph G ∈ T (5) in which every path P5 has a
weight w(P5) > 29. We will use the Discharging method. According to the
consequence of the Euler formula,

∑

x∈V (G)

(degG(x)− 6) = −12

assign to each vertex x ∈ V (G) the initial charge ϕ(x) = degG(x)− 6. Thus∑
x∈V (G) ϕ(x) = −12.

Now, we define a local redistribution of charges in a way such that the
sum of the charges after redistribution remains the same. This redistribution
is performed by the following

Rule. Each k-vertex x, k ≥ 6, sends the charge k−6
m(x) to each adjacent 5-

vertex, where m(x) is the number of 5-vertices adjacent to x. If m(x) = 0,
no charge is transferred.

Proposition. Each +8-vertex sends at least 1
2 to each adjacent 5-vertex;

each 7-vertex sends at least 1
4 to each adjacent 5-vertex.

Proof. Consider a 7-vertex x. Then x is adjacent to at most four 5-vertices
(otherwise two pairs of adjacent 5-vertices are found in the neighbourhood
of x, hence there exists a path P5 of weight 27, a contradiction). From
the similar reason, a 8-vertex (9-vertex) is adjacent to at most four (five)
5-vertices. Since none five consecutive vertices in the neighbourhood of
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a k-vertex, k ≥ 6, can be 5-vertices, every 10-vertex and every 11-vertex is
adjacent to at most eight 5-vertices. Then computing k−6

m(x) yields the desired
values of charge. A +12-vertex always sends at least 1

2 .

We will show that, after redistribution of charges, the new charges ϕ̃(x)
are non-negative for all x ∈ V (G). This will contradict the fact that∑

x∈V (G) ϕ̃(x) =
∑

x∈V (G) ϕ(x) = −12. To this end, several cases have to be
considered.

Case 1. x is a 5-vertex. Then x is adjacent to at least two +7-vertices
(otherwise, it is adjacent to at least four −6-vertices and there exists a path
P5 with w(P5) ≤ 5 + 4 · 6 = 29, a contradiction); denote them u, v. If u, v
are both +8-vertices, then ϕ̃(x) ≥ −1 + 2 · 1

2 = 0 by Proposition. Otherwise
consider the following possibilities:

Case 1a. u is a +8-vertex, v is a 7-vertex, all other neighbours are 6-
vertices. Observe that x is the only 5-neighbour of v (otherwise, a 5-path of
weight at most 2 · 5 + 2 · 6 + 7 = 29 is found). Thus ϕ̃(x) ≥ −1 + 1 + 1

2 > 0.

Case 1b. u, v are 7-vertices, all other neighbours are 6-vertices. As
above, x is the only 5-neighbour of u, v, thus ϕ̃(x) ≥ −1 + 2 · 1 > 0.

Case 1c. Three of the neighbours of x are 7-vertices, the other ones are
−6-vertices. Observe that, for at least one 7-vertex, x is its only 5-neighbour;
thus ϕ̃(x) ≥ −1 + 1 + 2 · 1

4 > 0.

Case 1d. At least four of the neighbours of x are 7-vertices. Then
ϕ̃(x) ≥ −1 + 4 · 1

4 = 0.

Case 2. x is a k-vertex, k ≥ 6. If x is adjacent to a 5-vertex, then
ϕ̃(x) = k − 6−m(x) · k−6

m(x) = 0; otherwise ϕ̃(x) = ϕ(x) = k − 6 ≥ 0.

To prove that the upper bound is best possible consider the so called edge-
hexagon substitution by which a given plane map G is transformed into the
following plane map G′: Let every x ∈ V (G) be also a vertex of G′. Assign
to every incident pair (x, α) of a vertex x and a face α of G a new vertex
of G′. Connect two vertices x′1, x′2 ∈ V (G′) by an edge iff either x′1, x′2 are
assigned to (x1, α1), (x2, α2) with (x1, x2) ∈ E(G) and with α1 = α2, or if
x′1 is assigned to a pair (x1, α1) where x′2 = x1, see Figure (cf. [10]):
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Consider a graph of the Archimedean polytope (6, 6, 5) and on each its
edge apply the edge-hexagon substitution. Into each face of the obtained
graph insert a new vertex and join it with new edges to the vertices of
the face boundary. In the resulting graph, every 5-path is of the weight of
at least 29.

Proof of Theorem 2. To prove the upper bound suppose that there
exists a counterexample G in which every 4-path has a weight of at least 32.

The following propositions are easy to prove:

Proposition 1. Each k-vertex with 7 ≤ k ≤ 16 is adjacent to at most
bk

2c −5-vertices.

Proposition 2. Each k-vertex, k ≥ 17, is adjacent to at most b3k
4 c −5-

vertices.

We use again the Discharging method. As before, the initial assignment
of charges is µ(x) = degG(x) − 6 for each vertex x ∈ V (G). The local
redistribution of charges is based on the following rules:

Rule 1. Each k-vertex x, k ≥ 6, sends the charge k−6
m(x) to each adjacent

−5-vertex; m(x) is the number of −5-vertices adjacent to x. If m(x) = 0,
no charge is transferred.

The following table shows the minimal charge sent by a k-vertex x, k ≥ 7, to
an adjacent −5-vertex, according to Rule 1 (the corresponding values m(x)
are computed due to Propositions 1 and 2):



Note on the Weight of Paths ... 177

k 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ≥ 21

min.charge 1
3

1
2

3
4

4
5 1 1 7

6
8
7

9
7

5
4

11
12

12
13

13
14

14
15 ≥ 1

As seen from the table, the only cases when the minimal charge is less than
1 are those with k ∈ {7, 8, 9, 10, 17, 18, 19, 20}.

Let µ denote the charge of a vertex after application of Rule 1. A vertex
y is said to be overcharged if µ(y) > 0, and undercharged if µ(y) < 0.

Rule 2. Each overcharged −5-vertex x sends the charge µ(x)
m(x) to each adja-

cent undercharged 4-vertex; m(x) is the number of undercharged 4-vertices
adjacent to x. If m(x) = 0, no charge is transferred.

Let µ̃ be the charge of vertices after application of Rule 2. Note that
µ(y) ≥ 0 implies that µ̃(y) ≥ 0. We will show that after redistribution of
charges we have µ̃(x) ≥ 0 for each vertex x ∈ G, a contradiction. To this
end, several cases have to be considered.

Case 1. Let x be a k-vertex, k ≥ 6. Then either all its charge is
sent to adjacent −5-vertices (µ(x) = 0) or there is no transfer from x and
µ(x) = k − 6 ≥ 0.

Case 2. Let x be a 5-vertex. Then x is adjacent to at least three +9-
vertices (otherwise it is adjacent to at least three −8-vertices and we can find
a 4-path of weight of at most 8 · 3+5 = 29 < 31); hence µ(x) ≥ −1+3 · 3

4 =
5
4 > 0 (thus every 5-vertex is overcharged).

Case 3. Let x be a 4-vertex. Then x is adjacent to at least two +10-
vertices (otherwise it is adjacent to at least three −9-vertices and we can
find a 4-path of weight of at most 9 · 3 + 4 = 31). If x is adjacent to at least
three +10-vertices then µ(x) ≥ −2 + 3 · 4

5 = 2
5 > 0; so, suppose that x is

adjacent to exactly two +10-vertices u, v. If both u, v are +21-vertices, or
one of them is +21-vertex and the degree of another one is between 11 and
16, or both their degrees are between 11 and 16, then u and v send 1 to x
(see Table) and µ(x) ≥ −2 + 2 · 1 = 0. Hence (without loss of generality)
it is enough to consider the following possibilities for degrees of u, v (denote
y, z the remaining neighbours of x):
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Case 3.1. Both u, v are 10-vertices. Then both y, z are +8-vertices
(otherwise a 4-path of weight of at most 4 + 2 · 10 + 7 = 31 is found) and
µ(x) ≥ −2 + 2 · 4

5 + 2 · 1
2 > 0.

Case 3.2. u is 10-vertex, v is +11-vertex. Then the sum of degrees of
y, z is at least 18 (otherwise x, y, u, z form a 4-path of weight of at most
10 + 4 + 17 = 31); hence, one of them has to be a +9-vertex. Thus µ(x) ≥
−2 + 4

5 + 11
12 + 3

4 > 0.

Case 3.3. The degrees of u, v are between 17 and 20. If some of y, z is
a +7-vertex, then a simple calculation yields µ(x) ≥ −2 + 2 · 11

12 + 1
3 > 0; if

some of them is a 5-vertex, the application of Rule 2 yields µ̃(x) ≥ −2+2 · 11
12

+
5
4
2 > 0. Now, suppose that y, z are 6- or 4-vertices; then we have to treat

several cases:

Case 3.3a. y, z are 4-vertices forming a triangular face with x. Then
u, v are 20-vertices. Consider the neighbourhood of the vertices u, v, y, z;
then the vertices u, v have at least six +6-neighbours. Thus µ(x) ≥
−2 + 2 · 20−6

20−6 = 0.

Case 3.3b. y, z are 4-vertices not forming a triangular face with x.
Then all their neighbours, except x, are +20-vertices and we have µ(y) ≥
−2 + 3 · 14

15 = 12
15 , µ(z) ≥ −2 + 3 · 14

15 = 12
15 . Hence y, z are overcharged and

using Rule 2 we have µ̃(x) ≥ −2 + 2 · 14
15 + 2 ·

12
15
1 > 0.

Case 3.3c. y, z are 6-vertices. Considering that each of their neighbours
except x has to be a +16-vertex, it is easy to see that u, v have at least six
+6-neighbours, thus µ(x) ≥ −2 + 2 · 17−6

17−6 = 0.

Case 3.3d. y is a 4-vertex, z is a 6-vertex and they do not form a
triangular face with x. Then each neighbour of z, except for x, is a +18-
vertex, i.e., u, v are +18-vertices and, moreover, they have at least six +6-
neighbours. Hence µ(x) ≥ −2 + 2 · 18−6

18−6 = 0.

Case 3.3e. y is a 4-vertex, z is a 6-vertex and they form a triangular
face with x. Then u, v are +18-vertices. Let u be adjacent to y and v to z.
Since every neighbour of z, except x and y, has to be a +18-vertex, v has
at least six +6-neighbours and it sends at least 1 to x. If u is a 20-vertex,
then it has also at least six +6-neighbours, thus µ(x) ≥ −2 + 2 · 1 = 0. So
suppose that u is 18- or 19-vertex not having at least six +6-neighbours.
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If u is a 19-vertex, then in consequence of Proposition 2 it has exactly five
+6-neighbours and sends 19−6

19−5 = 13
14 to x. Denote v′1, v′2 . . . v′l the neighbours

of v in the cyclical ordering such that v′1 = z, v′2 = x, v′3 = u. Due to the
neighbourhood of u, v′4 has to be a 5-vertex and v′5 has to be +17-vertex.
From this fact we obtain that v has at least seven +6-neighbours, so it sends
at least 18−6

18−7 = 12
11 to x. Hence µ(x) ≥ −2 + 13

14 + 12
11 = 3

154 > 0.
If u is a 18-vertex, then every its neighbour, except x and y, has to be

a +6-vertex (otherwise a 4-path of weight of at most 2 · 4 + 18 + 5 = 31 can
be found), so u even sends at least 2 to x and clearly µ(x) > 0.

Case 3.4. The degree of u is between 17 and 20, the degree of v is
either between 11 and 16, or is at least 21. According to the similarity to
case 3.3 (note that v always sends at least 1 to x) it is enough to consider
the cases when y or z are neither +7-vertices nor −5-vertices, that means,
(degG(y), degG(z)) ∈ {(4, 4), (4, 6), (6, 4), (6, 6)}. In these cases, it is routine
check to prove that u has at least 6 +6-neighbours, or we obtain a similar
situation as in 3.3e, so µ(x) ≥ 0.

Consider the graph of an icosahedron; into each its triangular face [XY Z]
insert a new triangle [ABC] and add new edges {A,X}, {A, Y }, {B, Y },
{B,Z}, {C,Z}, {C, X}. In the resulting graph, every 4-path is of weight of
at least 15 + 3 · 4 = 27.
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