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Abstract

We consider the question of the range of the number of cycles pos-
sible in a 2-factor of a 2-connected claw-free graph with sufficiently
high minimum degree. (By claw-free we mean the graph has no in-
duced K1,3.) In particular, we show that for such a graph G of order
n ≥ 51 with δ(G) ≥ n−2

3 , G contains a 2-factor with exactly k cycles,
for 1 ≤ k ≤ n−24

3 . We also show that this result is sharp in the sense
that if we lower δ(G), we cannot obtain the full range of values for k.
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1 Introduction

The question of determining when a graph contains a 2-factor (a 2-regular
spanning subgraph) has long been an important one in graph theory. Many
results deal with hamiltonian graphs, that is, graphs G containing a cycle
that spans the vertex set V (G). (See [4]). One special class of graphs that
has drawn considerable interest are the claw-free graphs. Such graphs con-
tain no induced subgraph isomorphic to the complete bipartite graph K1,3.

In particular, the following was shown in [5].
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Theorem 1. If G is a 2-connected K1,3-free graph of order n with δ(G) ≥
n−2

3 , then G is hamiltonian.

We can see that this result is sharp by considering the following nonhamil-
tonian graph G on n = 3m vertices. Let V (G) = A1 ∪ A2 ∪ A3 such that
|Ai| = m and 〈Ai〉=̃Km and let xi, yi ∈ Ai, xi 6= yi for i = 1, 2, 3 and
so that 〈x1, x2, x3〉=̃〈y1, y2, y3〉=̃K3. Clearly, the minimum degree of G is
m− 1 = n−3

3 .
Recently the question of determining the number of cycles possible in

a 2-factor of a given 2-connected graph satisfying certain degree conditions
has been considered in [2].

The purpose of this paper is to investigate this question for 2-connected
claw-free graphs. In particular, we will extend Theorem 1 by showing that
the same minimum degree condition implies that G contains a 2-factor with
exactly k-cycles for 1 ≤ k ≤ n−24

3 .
We will let 〈S〉G denote the subgraph of G induced by S a subset of

V (G). For A,B ⊂ V (G), eG(A,B) denotes the number of edges in G with
one vertex in A and the other in B. For H ⊂ G we will sometimes write
eG(A,H) as shorthand for eG(A, V (H)). The independence number of a

graph will be denoted by α(G). For a cycle C, we will denote by
−→
C the

cycle under some orientation and
←−
C will denote the cycle under the opposite

orientation. For a vertex, a, on a cycle with some orientation,
−→
C , we define

a+ and a− to be the immediate successor and predecessor respectively of
a on C with respect to this orientation. Also, for a collection of vertex
disjoint cycles S each with some orientation, we define N+

S (a) to be the set
{a+|a ∈ (N(a)∩V (S))}. Let I = a0, a1, ..., ak where the ai’s are consecutive
vertices on a cycle. Then l(I) = k, the length of the segment of the cycle.
For terms not defined here, see [3].

2 Main Result
In this section we will prove the theorem. However, first we prove the
following proposition which gives sufficient conditions for the existence of k
disjoint triangles and will lay the foundation for the proof of the theorem.

Proposition 1. Let G be a claw-free graph of order n, let k be a positive
integer, and let c be an integer so that c ≥ 0. If n > 3k + 6− f(k, c) where
f(1, 1) = f(2, 0) = 0 and f(k, c) = 9c−9

k+c−2 for all other values of k and c and
δ(G) ≥ max{k + c, 3} then G contains k disjoint triangles.
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Proof. If δ(G) ≥ 3, then n ≥ 4 and, since G is claw-free, G must contain
at least one triangle. Choose m disjoint triangles in G, say T1, T2, ..., Tm, so
that m is as large as possible. Since G is claw-free and δ(G) ≥ 3, we know
m ≥ 1. Assume m < k. Let

A =
m⋃

i=1

V (Ti)

and H = G−A.
If ∆(H) ≥ 3, say degH a ≥ 3 for some a ∈ V (H), then since G is claw-

free, b1b2 ∈ E(H) for some b1, b2 ∈ NH(a) and {a, b1, b2} forms a triangle.
This contradicts the maximality of m. Therefore, ∆(H) ≤ 2.

Claim. For each x ∈ A, |NG(x) ∩ V (H)| ≤ 3.

Proof. Assume |NG(x) ∩ V (H)| ≥ 4 for some x ∈ A. Let x ∈ V (Ti) and
V (Ti) = {x, y, z}. Let a1, a2, a3, a4 be distinct neighbors of x in H.

If NG(a1) ∩ {a2, a3, a4} = ∅, then since x and {a1, a2, a3} do not form
a claw, without loss of generality, a2a3 ∈ E(G). We apply the same ar-
gument to x and {a1, a2, a4} and {a1, a3, a4}, and we have a2a4 ∈ E(G)
and a3a4 ∈ E(G). But then {a2, a3, a4} forms a triangle, which contra-
dicts the maximality of m. Therefore, NG(a1) ∩ {a2, a3, a4} 6= ∅. Similarly,
we have deg〈a1,a2,a3,a4〉G ai ≥ 1 for each i, 1 ≤ i ≤ 4. Since ∆(H) ≤ 2,
we know 〈a1, a2, a3, a4〉H = 〈a1, a2, a3, a4〉G must contain two independent
edges. Thus, without loss of generality, we may assume a1a2, a3a4 ∈ E(G).

Consider the subgraph induced by F = 〈{a1, a2, a3, a4, y, z}〉G. We want
to show that F must contain K3 ∪K2 as a subgraph because the existence
of such a subgraph in F implies that 〈F ∪ {x}〉 contains two independent
triangles which contradicts the maximality of A.
Since r(3, 3) = 6 and F does not contain three independent vertices, we
know F must contain a triangle, say T . Since F − V (T ) cannot be an
independent set, it must contain an edge. Therefore, F contains K3 ∪K2.

Since ∆(H) ≤ 2 and δ(G) ≥ k + c, we have eG(x,A) ≥ k + c − 2, for each
x ∈ V (H). Thus, eG(H, A) ≥ (k + c − 2)(n − 3m). On the other hand,
eG(u,H) ≤ 3 for each u ∈ A which implies eG(A,H) ≤ 3|A| = 9m. There-
fore, (k + c− 2)(n− 3m) ≤ 9m. Thus, (k + c− 2)n ≤ (3k + 3c + 3)m. Then,
using the fact that we assumed m ≤ k − 1, we find n ≤ 3k2+3ck−(3c+3)

k+c−2 =
3k + 6 − 9c−9

k+c−2 . This contradicts the assumption and completes the
proof.
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Theorem 2. Let G be a 2-connected, claw-free graph of order n ≥ 51 with
δ(G) ≥ 1

3(n− 2). Then for each k with 1 ≤ k ≤ n−24
3 , G has a 2-factor with

exactly k components.

Proof. By the assumption n ≥ 3k + 24 and δ(G) ≥ n−2
3 ≥ 3k+22

3 ≥ k + 1.
Therefore, by Proposition 1, G has k disjoint cycles C1, C2, ..., Ck. Choose
C1, ..., Ck such that

∑k
i=1 |V (Ci)| is as large as possible. Let D =

⋃k
i=1 V (Ci)

and assume D 6= V (G). Let H = G−D.

Claim 1. |V (H)| ≥ 4.

Proof. Let h = |V (H)| and assume h ≤ 3.
Since h ≤ 3, |D| ≥ n− 3 ≥ 3k + 21. Thus, there exists some cycle, say

Ci, such that |V (Ci)| ≥ 4. Let x ∈ V (H) and let |NG(x) ∩ V (Ci)| = t, say
NG(x) ∩ Ci = {a1, ..., at}. We may assume a1, ..., at appear in consecutive

order along some orientation of Ci. Let Ij = aj
−→
Ciaj+1 for 1 ≤ j ≤ t − 1

and let It = at
−→
Cia1. If l(Ij) = 1 for some 1 ≤ j ≤ t, then aj+1 = a+

j .

Let C ′
i = aj+1

−→
Ciajxaj+1 and C ′

j = Cj for all j 6= i. Then {C ′
1, ..., C

′
k} is a

disjoint collection of cycles of larger total order, a contradiction. Therefore,
l(Ij) ≥ 2 for each j, 1 ≤ j ≤ t.

Since G is claw-free, this implies a−j a+
j ∈ E(G) for each j, 1 ≤ j ≤ t. If

l(Ij) = 2, then a++
j = aj+1. Let C ′

i = xaj+1
−→
Cia

−
j a+

j ajx and C ′
j = Cj for all

j 6= i. If l(Ij) = 3, then a+++
j = aj+1. Let C ′

i = xaj+1a
−
j+1a

+
j+1

−→
C a−j a+

j ajx
and C ′

j = Cj for all j 6= i. In either case, the collection {C ′
1, ...C

′
k} forms a

set of independent cycles of larger order, a contradiction.
Therefore, l(Ij) ≥ 4 for each j, 1 ≤ j ≤ t. This implies |V (Ci)| =∑t

j=1 l(Ij) ≥ 4t or |NG(x) ∩ V (Ci)| ≤ 1
4 |V (Ci)| for all Ci such that

|V (Ci)| ≥ 4. Note that x has at most one adjacency to every 3-cycle in
the collection C1, · · · , Ck.

We may assume |V (C1)| = |V (C2)| = ... = |V (Cs)| = 3 and |V (Ci)| ≥ 4
for s + 1 ≤ i ≤ k. Then,

n− 2
3

≤ degH x + e(x,D)

≤ (h− 1) + s +
1
4

k∑

i=s+1

|V (Ci)| = (h− 1) +
|D|+ s

4

=
n + 3h + s− 4

4
,
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which implies n ≤ 3s + 9h− 4. Since s ≤ k and h ≤ 3, we have n ≤ 3k + 23.
This contradicts the assumption. Consequently, we know |V (H)| ≥ 4.

Claim 2. For each x ∈ V (H) and for each y ∈ V (H)− {x}, degH−x y ≥ 2.

Proof. Assume degH−x y ≤ 1 for some y ∈ V (H)−{x}. As in Claim 1, we
count the number of edges from y to D observing that y can have at most
one adjacency to a 3-cycle and y is adjacent to at most one out of every four
vertices on cycles of length 4 or more.

We may assume |V (C1)| = |V (C2)| = ... = |V (Cs)| = 3 and |V (Ci)| ≥ 4
for s + 1 ≤ i ≤ k. Then e(y,D) ≤ s + 1

4

∑k
i=s+1 |V (Ci)| = s + 1

4(|D| − 3s) =
1
4 |D|+ 1

4s. Therefore,

n− 2
3

≤ degH y + degD y ≤ degH y + e(y, D)

≤ 1 + degH−x y +
1
4
|D|+ 1

4
s

≤ 1 + degH−x y +
1
4
(n− 4) +

1
4
k

≤ 1 + degH−x y +
1
4
(n− 4) +

n− 24
12

.

Thus, degH−x y ≥ 2.

By Claims 1 and 2, we know that for every x ∈ V (H), H − x contains a
cycle, call it Cx.

Claim 3. For every x ∈ V (H), the set N+
D (x) is independent.

Proof. Assume, to the contrary, a+
1 a+

2 ∈ E(G) for some a1, a2 ∈ ND(x). If
a1 and a2 lie in the same cycle of D, say Ci, then we increase the total order

of D by replacing Ci by C ′
i = a+

1

−→
Cia2xa1

←−
Cia

+
2 a+

1 . If a1 and a2 lie in different
cycles of D, we may assume without loss of generality ai ∈ V (Ci), i = 1, 2.

Then let C ′
1 = Cx, C ′

2 = xa1
←−
C1a

+
1 a+

2

−→
C2a2x and for j 6= 1, 2 let C ′

j = Cj .
Then the collection {C ′

1, ...C
′
k} forms a set of k disjoint cycles of larger total

order, a contradiction.

From the results in [7], we know that in a claw-free graph of order n, α(G) ≤
2n/(δ(G)+2). Thus, by Claims 3 and the bound on α(G), for each x ∈ V (H)
we have that

|ND[x]| = |N+
D (x) ∪ {x}| ≤ α(G) ≤ 2n

δ(G) + 2
≤ 2n

n−2
3 + 2

< 6.
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Therefore, |ND(x)| ≤ 4 and we have degH x ≥ n−14
3 .

Let P be a longest path in H and let x be one of its end vertices.
Then NH(x) ⊆ V (P ) or a longer path is possible. Therefore, if we choose

y ∈ NH(x) so that x
−→
P y is as long as possible, we form a cycle C = x

−→
P yx

with NH(x) ⊆ V (C). This implies |V (C)| ≥ degH x + 1 ≥ n−14
3 + 1 = n−11

3 .
Then by the maximality of D, we know |V (Ci)| ≥ n−11

3 , for all 1 ≤ i ≤ k.

Claim 4. The number of independent cycles, k, is 2.

Proof. Assume k ≥ 3. Then n = |V (G)| ≥ |V (C)| + |V (C1)| + |V (C2)| +
|V (C3)| ≥ 4(n−11

3 ). This forces n ≤ 44, a contradiction.

Since C1 and C2 each have at least n−11
3 vertices, we know

|V (H)| ≤ n− |V (C1)| − |V (C2)| ≤ n + 22
3

.

Claim 5. The subgraph H is hamiltonian connected.

Proof. If H is not hamiltonian-connected, then by a result in [6],

n− 14
3

≤ δ(H) ≤ 1
2
|V (H)| ≤ n + 22

6
.

This forces n ≤ 50, a contradiction.

In particular, H has a hamiltonian cycle, say C0. By the maximality of D,
we know |V (C0)| ≤ |V (Ci)| for i = 1, 2. Thus, |V (C0)| ≤ 1

3n.
Since G is 2-connected, there exist at least two independent edges be-

tween C0 and C1 ∪ C2.

Claim 6. There do not exist two independent edges from C0 to Ci, for
i = 1, 2.

Proof. Without loss of generality, let i = 1. Assume there are two indepen-
dent edges, say a1b1 and a2b2 between C0 and C1 (where a1, a2 ∈ C0, b1, b2 ∈
C1). Without loss of generality, we may assume l(b1

−→
C1b2) ≥ 1

2 |V (C1)|. Since

{a2
−→
P a1b1

−→
C1b2a2, C2} forms a set of disjoint cycles where P is a hamiltonian

a1, a2-path in H, we know l(b2
−→
C1b1) ≥ |V (C0)|+ 1 ≥ δ(H) + 2 ≥ n−8

3 . Then

|V (C1)| ≥ 2l(b2
−→
C b1) ≥ 2n−16

3 . Therefore,

n = |V (C0)|+ |V (C1)|+ |V (C2)| ≥ 2
(

n− 11
3

)
+

2n− 16
3

=
4n− 38

3
.

This forces n ≤ 38 which is a contradiction.
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Therefore we may assume a1b1, a2b2 ∈ E(G) where a1, a2 ∈ V (C0), a1 6= a2,
b1 ∈ V (C1), and b2 ∈ V (C2). As a consequence of Claim 7 and 2-connectivity,
we know there exists an edge d1d2 ∈ E(G) such that d1 ∈ V (C1) − b1 and
d2 ∈ V (C2).

Let x ∈ H − {a1, a2}. (Since |V (H)| = |V (C0)| ≥ n−11
3 we know such

an x exists.) Then by Claim 6, NC1∪C2(x) ⊂ {b1, b2}. Therefore, degH x ≥
n−2

3 − 2 = n−8
3 , and hence |V (C0)| ≥ n−5

3 .

Claim 7. The graph H − {a1, a2} has a triangle T and H − V (T ) is
hamiltonian-connected.

Proof. Let H ′ = H − {a1, a2} and assume δ(H ′) ≤ |V (H′)|
2 . Since δ(H ′) ≥

δ(H) − 2 ≥ n−8
3 − 2 ≥ n−14

3 and |V (H ′)| ≤ n
3 − 2 = n−6

3 , we get n−14
3 ≤

1
2

(
n−6

3

)
. This forces n ≤ 18, a contradiction.

Thus δ(H ′) ≥ |V (H′)|+1
2 and |V (H ′)| ≥ n−5

3 − 2 ≥ 3, which implies by
[1] that H ′ is pancyclic. Thus H ′ has a triangle T. Let H ′′ = H − V (T ).
Then |V (H ′′)| = |V (H)| − 3 ≤ n

3 − 3 = n−9
3 and δ(H ′′) ≥ n−14

3 − 3 ≥ n−23
3 .

Therefore, since n ≥ 51, δ(H ′′) > 1
2 |V (H ′′)|. Hence, by [6] H ′′ is hamiltonian

connected.

First, suppose d2 6= b2. We may assume l(d1
−→
C1b1) ≤ 1

2(|V (C1)|) and

l(b2
−→
C2d2) ≤ 1

2(|V (C2)|). By the maximality of C1 and C2 and the fact that G

is claw-free, b+
1 b−1 , b+

2 b−2 ∈ E(G). Let C ′ = a1b1b
−
1 b+

1

−→
C1d1d2

−→
C2b

−
2 b+

2 b2a2Pa1,
where P is a hamiltonian a1a2-path in H − T. Since C ′ and T are disjoint

cycles, l(d+
1

−→
C1b

−−
1 ) + l(b++

2

−→
C2d

−
2 ) + 2 ≥ |V (H)|. Thus |V (C1)|+|V (C2)|

2 − 4 ≥
|V (H)| ≥ n−5

3 , which implies that |V (C1)| + |V (C2)| ≥ 2n+14
3 . Since

|V (H)| = |V (C0)| ≥ n−5
3 , we have n = |V (H)|+ |V (C1)|+ |V (C2)| ≥ 3n+9

3 =
n+3, a contradiction. Therefore, we know d2 = b2 which implies that there
cannot be three independent edges between the cycles C, C1, and C2.

Since G is 2-connected, there exists an edge b′2u from C2−{b2} to C0∪C1

Case 1. We consider the case where u ∈ C0. If u 6= a1 the three edges
a1b1, d1b2, and b′2u are independent, a contradiction. Thus, u = a1. But
now the two edges a2b2 and a1b

′
2 between C0 and C2 are independent. This

contradicts Claim 7.

Case 2. We consider the case where u ∈ C1. If u 6= b1, then the three
edges a1b1, ub′2, and a2b2 are independent, a contradiction. If u = b1,
consider b1 and {a1, b

+
1 , b′2}. We know b′2b

+
1 6∈ E(G) because u = b1.
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By Claim 7, a1b
′
2 6∈ E(G). If a1b

+
1 ∈ E(G), then the three edges a1b

+
1 , b1b

′
2

and a2b2 are independent, a contradiction. Thus, 〈b1, b
+
1 , a1, b

′
2〉G is a claw,

a contradiction.
Hence, in all cases we reach a contradiction, and the result is proved.
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