2-FACTORS IN CLAW-FREE GRAPHS

Guantao Chen
Georgia State University, Atlanta, GA 30303
Jill R. Faudree
University of Alaska Fairbanks, Fairbanks, AK 99775
Ronald J. Gould
Emory University, Atlanta, GA 30322
AND
Akira Saito
Nihon University, Tokyo 156, Japan

Abstract

We consider the question of the range of the number of cycles possible in a 2 -factor of a 2 -connected claw-free graph with sufficiently high minimum degree. (By claw-free we mean the graph has no induced $K_{1,3}$.) In particular, we show that for such a graph G of order $n \geq 51$ with $\delta(G) \geq \frac{n-2}{3}, G$ contains a 2 -factor with exactly k cycles, for $1 \leq k \leq \frac{n-24}{3}$. We also show that this result is sharp in the sense that if we lower $\delta(G)$, we cannot obtain the full range of values for k.

Keywords: claw-free, forbidden subgraphs, 2-factors, cycles.
2000 Mathematics Subject Classification: 05C38.

1 Introduction

The question of determining when a graph contains a 2-factor (a 2-regular spanning subgraph) has long been an important one in graph theory. Many results deal with hamiltonian graphs, that is, graphs G containing a cycle that spans the vertex set $V(G)$. (See [4]). One special class of graphs that has drawn considerable interest are the claw-free graphs. Such graphs contain no induced subgraph isomorphic to the complete bipartite graph $K_{1,3}$.

In particular, the following was shown in [5].

Theorem 1. If G is a 2-connected $K_{1,3}$-free graph of order n with $\delta(G) \geq$ $\frac{n-2}{3}$, then G is hamiltonian.
We can see that this result is sharp by considering the following nonhamiltonian graph G on $n=3 m$ vertices. Let $V(G)=A_{1} \cup A_{2} \cup A_{3}$ such that $\left|A_{i}\right|=m$ and $\left\langle A_{i}\right\rangle \cong K_{m}$ and let $x_{i}, y_{i} \in A_{i}, x_{i} \neq y_{i}$ for $i=1,2,3$ and so that $\left\langle x_{1}, x_{2}, x_{3}\right\rangle \cong\left\langle y_{1}, y_{2}, y_{3}\right\rangle \cong K_{3}$. Clearly, the minimum degree of G is $m-1=\frac{n-3}{3}$.

Recently the question of determining the number of cycles possible in a 2-factor of a given 2-connected graph satisfying certain degree conditions has been considered in [2].

The purpose of this paper is to investigate this question for 2 -connected claw-free graphs. In particular, we will extend Theorem 1 by showing that the same minimum degree condition implies that G contains a 2-factor with exactly k-cycles for $1 \leq k \leq \frac{n-24}{3}$.

We will let $\langle S\rangle_{G}$ denote the subgraph of G induced by S a subset of $V(G)$. For $A, B \subset V(G), e_{G}(A, B)$ denotes the number of edges in G with one vertex in A and the other in B. For $H \subset G$ we will sometimes write $e_{G}(A, H)$ as shorthand for $e_{G}(A, V(H))$. The independence number of a graph will be denoted by $\alpha(G)$. For a cycle C, we will denote by \vec{C} the cycle under some orientation and \overleftarrow{C} will denote the cycle under the opposite orientation. For a vertex, a, on a cycle with some orientation, \vec{C}, we define a^{+}and a^{-}to be the immediate successor and predecessor respectively of a on C with respect to this orientation. Also, for a collection of vertex disjoint cycles S each with some orientation, we define $N_{S}^{+}(a)$ to be the set $\left\{a^{+} \mid a \in(N(a) \cap V(S))\right\}$. Let $I=a_{0}, a_{1}, \ldots, a_{k}$ where the a_{i} 's are consecutive vertices on a cycle. Then $l(I)=k$, the length of the segment of the cycle. For terms not defined here, see [3].

2 Main Result

In this section we will prove the theorem. However, first we prove the following proposition which gives sufficient conditions for the existence of k disjoint triangles and will lay the foundation for the proof of the theorem.

Proposition 1. Let G be a claw-free graph of order n, let k be a positive integer, and let c be an integer so that $c \geq 0$. If $n>3 k+6-f(k, c)$ where $f(1,1)=f(2,0)=0$ and $f(k, c)=\frac{9 c-9}{k+c-2}$ for all other values of k and c and $\delta(G) \geq \max \{k+c, 3\}$ then G contains k disjoint triangles.

Proof. If $\delta(G) \geq 3$, then $n \geq 4$ and, since G is claw-free, G must contain at least one triangle. Choose m disjoint triangles in G, say $T_{1}, T_{2}, \ldots, T_{m}$, so that m is as large as possible. Since G is claw-free and $\delta(G) \geq 3$, we know $m \geq 1$. Assume $m<k$. Let

$$
A=\bigcup_{i=1}^{m} V\left(T_{i}\right)
$$

and $H=G-A$.
If $\Delta(H) \geq 3$, say $\operatorname{deg}_{H} a \geq 3$ for some $a \in V(H)$, then since G is clawfree, $b_{1} b_{2} \in E(H)$ for some $b_{1}, b_{2} \in N_{H}(a)$ and $\left\{a, b_{1}, b_{2}\right\}$ forms a triangle. This contradicts the maximality of m. Therefore, $\Delta(H) \leq 2$.

Claim. For each $x \in A,\left|N_{G}(x) \cap V(H)\right| \leq 3$.
Proof. Assume $\left|N_{G}(x) \cap V(H)\right| \geq 4$ for some $x \in A$. Let $x \in V\left(T_{i}\right)$ and $V\left(T_{i}\right)=\{x, y, z\}$. Let $a_{1}, a_{2}, a_{3}, a_{4}$ be distinct neighbors of x in H.

If $N_{G}\left(a_{1}\right) \cap\left\{a_{2}, a_{3}, a_{4}\right\}=\emptyset$, then since x and $\left\{a_{1}, a_{2}, a_{3}\right\}$ do not form a claw, without loss of generality, $a_{2} a_{3} \in E(G)$. We apply the same argument to x and $\left\{a_{1}, a_{2}, a_{4}\right\}$ and $\left\{a_{1}, a_{3}, a_{4}\right\}$, and we have $a_{2} a_{4} \in E(G)$ and $a_{3} a_{4} \in E(G)$. But then $\left\{a_{2}, a_{3}, a_{4}\right\}$ forms a triangle, which contradicts the maximality of m. Therefore, $N_{G}\left(a_{1}\right) \cap\left\{a_{2}, a_{3}, a_{4}\right\} \neq \emptyset$. Similarly, we have $\operatorname{deg}_{\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle_{G}} a_{i} \geq 1$ for each $i, 1 \leq i \leq 4$. Since $\Delta(H) \leq 2$, we know $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle_{H}=\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle_{G}$ must contain two independent edges. Thus, without loss of generality, we may assume $a_{1} a_{2}, a_{3} a_{4} \in E(G)$.

Consider the subgraph induced by $F=\left\langle\left\{a_{1}, a_{2}, a_{3}, a_{4}, y, z\right\}\right\rangle_{G}$. We want to show that F must contain $K_{3} \cup K_{2}$ as a subgraph because the existence of such a subgraph in F implies that $\langle F \cup\{x\}\rangle$ contains two independent triangles which contradicts the maximality of A.
Since $r(3,3)=6$ and F does not contain three independent vertices, we know F must contain a triangle, say T. Since $F-V(T)$ cannot be an independent set, it must contain an edge. Therefore, F contains $K_{3} \cup K_{2}$.

Since $\Delta(H) \leq 2$ and $\delta(G) \geq k+c$, we have $e_{G}(x, A) \geq k+c-2$, for each $x \in V(H)$. Thus, $e_{G}(H, A) \geq(k+c-2)(n-3 m)$. On the other hand, $e_{G}(u, H) \leq 3$ for each $u \in A$ which implies $e_{G}(A, H) \leq 3|A|=9 m$. Therefore, $(k+c-2)(n-3 m) \leq 9 m$. Thus, $(k+c-2) n \leq(3 k+3 c+3) m$. Then, using the fact that we assumed $m \leq k-1$, we find $n \leq \frac{3 k^{2}+3 c k-(3 c+3)}{k+c-2}=$ $3 k+6-\frac{9 c-9}{k+c-2}$. This contradicts the assumption and completes the proof.

Theorem 2. Let G be a 2-connected, claw-free graph of order $n \geq 51$ with $\delta(G) \geq \frac{1}{3}(n-2)$. Then for each k with $1 \leq k \leq \frac{n-24}{3}$, G has a 2 -factor with exactly k components.

Proof. By the assumption $n \geq 3 k+24$ and $\delta(G) \geq \frac{n-2}{3} \geq \frac{3 k+22}{3} \geq k+1$. Therefore, by Proposition $1, G$ has k disjoint cycles $C_{1}, C_{2}, \ldots, C_{k}$. Choose C_{1}, \ldots, C_{k} such that $\sum_{i=1}^{k}\left|V\left(C_{i}\right)\right|$ is as large as possible. Let $D=\bigcup_{i=1}^{k} V\left(C_{i}\right)$ and assume $D \neq V(G)$. Let $H=G-D$.

Claim 1. $|V(H)| \geq 4$.
Proof. Let $h=|V(H)|$ and assume $h \leq 3$.
Since $h \leq 3,|D| \geq n-3 \geq 3 k+21$. Thus, there exists some cycle, say C_{i}, such that $\left|V\left(C_{i}\right)\right| \geq 4$. Let $x \in V(H)$ and let $\left|N_{G}(x) \cap V\left(C_{i}\right)\right|=t$, say $N_{G}(x) \cap C_{i}=\left\{a_{1}, \ldots, a_{t}\right\}$. We may assume a_{1}, \ldots, a_{t} appear in consecutive order along some orientation of C_{i}. Let $I_{j}=a_{j} \overrightarrow{C_{i}} a_{j+1}$ for $1 \leq j \leq t-1$ and let $I_{t}=a_{t} \overrightarrow{C_{i}} a_{1}$. If $l\left(I_{j}\right)=1$ for some $1 \leq j \leq t$, then $a_{j+1}=a_{j}^{+}$. Let $C_{i}^{\prime}=a_{j+1} \overrightarrow{C_{i}} a_{j} x a_{j+1}$ and $C_{j}^{\prime}=C_{j}$ for all $j \neq i$. Then $\left\{C_{1}^{\prime}, \ldots, C_{k}^{\prime}\right\}$ is a disjoint collection of cycles of larger total order, a contradiction. Therefore, $l\left(I_{j}\right) \geq 2$ for each $j, 1 \leq j \leq t$.

Since G is claw-free, this implies $a_{j}^{-} a_{j}^{+} \in E(G)$ for each $j, 1 \leq j \leq t$. If $l\left(I_{j}\right)=2$, then $a_{j}^{++}=a_{j+1}$. Let $C_{i}^{\prime}=x a_{j+1} \overrightarrow{C_{i}} a_{j}^{-} a_{j}^{+} a_{j} x$ and $C_{j}^{\prime}=C_{j}$ for all $j \neq i$. If $l\left(I_{j}\right)=3$, then $a_{j}^{+++}=a_{j+1}$. Let $C_{i}^{\prime}=x a_{j+1} a_{j+1}^{-} a_{j+1}^{+} \vec{C} a_{j}^{-} a_{j}^{+} a_{j} x$ and $C_{j}^{\prime}=C_{j}$ for all $j \neq i$. In either case, the collection $\left\{C_{1}^{\prime}, \ldots C_{k}^{\prime}\right\}$ forms a set of independent cycles of larger order, a contradiction.

Therefore, $l\left(I_{j}\right) \geq 4$ for each $j, 1 \leq j \leq t$. This implies $\left|V\left(C_{i}\right)\right|=$ $\sum_{j=1}^{t} l\left(I_{j}\right) \geq 4 t$ or $\left|N_{G}(x) \cap V\left(C_{i}\right)\right| \leq \frac{1}{4}\left|V\left(C_{i}\right)\right|$ for all C_{i} such that $\left|V\left(C_{i}\right)\right| \geq 4$. Note that x has at most one adjacency to every 3-cycle in the collection C_{1}, \cdots, C_{k}.

We may assume $\left|V\left(C_{1}\right)\right|=\left|V\left(C_{2}\right)\right|=\ldots=\left|V\left(C_{s}\right)\right|=3$ and $\left|V\left(C_{i}\right)\right| \geq 4$ for $s+1 \leq i \leq k$. Then,

$$
\begin{aligned}
\frac{n-2}{3} & \leq \operatorname{deg}_{H} x+e(x, D) \\
& \leq(h-1)+s+\frac{1}{4} \sum_{i=s+1}^{k}\left|V\left(C_{i}\right)\right|=(h-1)+\frac{|D|+s}{4} \\
& =\frac{n+3 h+s-4}{4}
\end{aligned}
$$

which implies $n \leq 3 s+9 h-4$. Since $s \leq k$ and $h \leq 3$, we have $n \leq 3 k+23$. This contradicts the assumption. Consequently, we know $|V(H)| \geq 4$.

Claim 2. For each $x \in V(H)$ and for each $y \in V(H)-\{x\}, \operatorname{deg}_{H-x} y \geq 2$.
Proof. Assume $\operatorname{deg}_{H-x} y \leq 1$ for some $y \in V(H)-\{x\}$. As in Claim 1, we count the number of edges from y to D observing that y can have at most one adjacency to a 3 -cycle and y is adjacent to at most one out of every four vertices on cycles of length 4 or more.

We may assume $\left|V\left(C_{1}\right)\right|=\left|V\left(C_{2}\right)\right|=\ldots=\left|V\left(C_{s}\right)\right|=3$ and $\left|V\left(C_{i}\right)\right| \geq 4$ for $s+1 \leq i \leq k$. Then $e(y, D) \leq s+\frac{1}{4} \sum_{i=s+1}^{k}\left|V\left(C_{i}\right)\right|=s+\frac{1}{4}(|D|-3 s)=$ $\frac{1}{4}|D|+\frac{1}{4} s$. Therefore,

$$
\begin{aligned}
\frac{n-2}{3} & \leq \operatorname{deg}_{H} y+\operatorname{deg}_{D} y \leq \operatorname{deg}_{H} y+e(y, D) \\
& \leq 1+\operatorname{deg}_{H-x} y+\frac{1}{4}|D|+\frac{1}{4} s \\
& \leq 1+\operatorname{deg}_{H-x} y+\frac{1}{4}(n-4)+\frac{1}{4} k \\
& \leq 1+\operatorname{deg}_{H-x} y+\frac{1}{4}(n-4)+\frac{n-24}{12} .
\end{aligned}
$$

Thus, $\operatorname{deg}_{H-x} y \geq 2$.
By Claims 1 and 2, we know that for every $x \in V(H), H-x$ contains a cycle, call it C_{x}.

Claim 3. For every $x \in V(H)$, the set $N_{D}^{+}(x)$ is independent.
Proof. Assume, to the contrary, $a_{1}^{+} a_{2}^{+} \in E(G)$ for some $a_{1}, a_{2} \in N_{D}(x)$. If a_{1} and a_{2} lie in the same cycle of D, say C_{i}, then we increase the total order of D by replacing C_{i} by $C_{i}^{\prime}=a_{1}^{+} \overrightarrow{C_{i}} a_{2} x a_{1} \overleftarrow{C_{i}} a_{2}^{+} a_{1}^{+}$. If a_{1} and a_{2} lie in different cycles of D, we may assume without loss of generality $a_{i} \in V\left(C_{i}\right), i=1,2$. Then let $C_{1}^{\prime}=C_{x}, C_{2}^{\prime}=x a_{1} \overleftarrow{C_{1}} a_{1}^{+} a_{2}^{+} \overrightarrow{C_{2}} a_{2} x$ and for $j \neq 1,2$ let $C_{j}^{\prime}=C_{j}$. Then the collection $\left\{C_{1}^{\prime}, \ldots C_{k}^{\prime}\right\}$ forms a set of k disjoint cycles of larger total order, a contradiction.

From the results in [7], we know that in a claw-free graph of order $n, \alpha(G) \leq$ $2 n /(\delta(G)+2)$. Thus, by Claims 3 and the bound on $\alpha(G)$, for each $x \in V(H)$ we have that

$$
\left|N_{D}[x]\right|=\left|N_{D}^{+}(x) \cup\{x\}\right| \leq \alpha(G) \leq \frac{2 n}{\delta(G)+2} \leq \frac{2 n}{\frac{n-2}{3}+2}<6 .
$$

Therefore, $\left|N_{D}(x)\right| \leq 4$ and we have $\operatorname{deg}_{H} x \geq \frac{n-14}{3}$.
Let P be a longest path in H and let x be one of its end vertices. Then $N_{H}(x) \subseteq V(P)$ or a longer path is possible. Therefore, if we choose $y \in N_{H}(x)$ so that $x \vec{P} y$ is as long as possible, we form a cycle $C=x \vec{P} y x$ with $N_{H}(x) \subseteq V(C)$. This implies $|V(C)| \geq \operatorname{deg}_{H} x+1 \geq \frac{n-14}{3}+1=\frac{n-11}{3}$. Then by the maximality of D, we know $\left|V\left(C_{i}\right)\right| \geq \frac{n-11}{3}$, for all $1 \leq i \leq k$.

Claim 4. The number of independent cycles, k, is 2 .
Proof. Assume $k \geq 3$. Then $n=|V(G)| \geq|V(C)|+\left|V\left(C_{1}\right)\right|+\left|V\left(C_{2}\right)\right|+$ $\left|V\left(C_{3}\right)\right| \geq 4\left(\frac{n-11}{3}\right)$. This forces $n \leq 44$, a contradiction.
Since C_{1} and C_{2} each have at least $\frac{n-11}{3}$ vertices, we know

$$
|V(H)| \leq n-\left|V\left(C_{1}\right)\right|-\left|V\left(C_{2}\right)\right| \leq \frac{n+22}{3}
$$

Claim 5. The subgraph H is hamiltonian connected.
Proof. If H is not hamiltonian-connected, then by a result in [6],

$$
\frac{n-14}{3} \leq \delta(H) \leq \frac{1}{2}|V(H)| \leq \frac{n+22}{6}
$$

This forces $n \leq 50$, a contradiction.
In particular, H has a hamiltonian cycle, say C_{0}. By the maximality of D, we know $\left|V\left(C_{0}\right)\right| \leq\left|V\left(C_{i}\right)\right|$ for $i=1,2$. Thus, $\left|V\left(C_{0}\right)\right| \leq \frac{1}{3} n$.

Since G is 2-connected, there exist at least two independent edges between C_{0} and $C_{1} \cup C_{2}$.

Claim 6. There do not exist two independent edges from C_{0} to C_{i}, for $i=1,2$.
Proof. Without loss of generality, let $i=1$. Assume there are two independent edges, say $a_{1} b_{1}$ and $a_{2} b_{2}$ between C_{0} and C_{1} (where $a_{1}, a_{2} \in C_{0}, b_{1}, b_{2} \in$ $\left.C_{1}\right)$. Without loss of generality, we may assume $l\left(b_{1} \overrightarrow{C_{1}} b_{2}\right) \geq \frac{1}{2}\left|V\left(C_{1}\right)\right|$. Since $\left\{a_{2} \vec{P} a_{1} b_{1} \overrightarrow{C_{1}} b_{2} a_{2}, C_{2}\right\}$ forms a set of disjoint cycles where P is a hamiltonian a_{1}, a_{2}-path in H, we know $l\left(b_{2} \overrightarrow{C_{1}} b_{1}\right) \geq\left|V\left(C_{0}\right)\right|+1 \geq \delta(H)+2 \geq \frac{n-8}{3}$. Then $\left|V\left(C_{1}\right)\right| \geq 2 l\left(b_{2} \vec{C} b_{1}\right) \geq \frac{2 n-16}{3}$. Therefore,

$$
n=\left|V\left(C_{0}\right)\right|+\left|V\left(C_{1}\right)\right|+\left|V\left(C_{2}\right)\right| \geq 2\left(\frac{n-11}{3}\right)+\frac{2 n-16}{3}=\frac{4 n-38}{3}
$$

This forces $n \leq 38$ which is a contradiction.

Therefore we may assume $a_{1} b_{1}, a_{2} b_{2} \in E(G)$ where $a_{1}, a_{2} \in V\left(C_{0}\right), a_{1} \neq a_{2}$, $b_{1} \in V\left(C_{1}\right)$, and $b_{2} \in V\left(C_{2}\right)$. As a consequence of Claim 7 and 2 -connectivity, we know there exists an edge $d_{1} d_{2} \in E(G)$ such that $d_{1} \in V\left(C_{1}\right)-b_{1}$ and $d_{2} \in V\left(C_{2}\right)$.

Let $x \in H-\left\{a_{1}, a_{2}\right\}$. (Since $|V(H)|=\left|V\left(C_{0}\right)\right| \geq \frac{n-11}{3}$ we know such an x exists.) Then by Claim $6, N_{C_{1} \cup C_{2}}(x) \subset\left\{b_{1}, b_{2}\right\}$. Therefore, $\operatorname{deg}_{H} x \geq$ $\frac{n-2}{3}-2=\frac{n-8}{3}$, and hence $\left|V\left(C_{0}\right)\right| \geq \frac{n-5}{3}$.

Claim 7. The graph $H-\left\{a_{1}, a_{2}\right\}$ has a triangle T and $H-V(T)$ is hamiltonian-connected.
Proof. Let $H^{\prime}=H-\left\{a_{1}, a_{2}\right\}$ and assume $\delta\left(H^{\prime}\right) \leq \frac{\left|V\left(H^{\prime}\right)\right|}{2}$. Since $\delta\left(H^{\prime}\right) \geq$ $\delta(H)-2 \geq \frac{n-8}{3}-2 \geq \frac{n-14}{3}$ and $\left|V\left(H^{\prime}\right)\right| \leq \frac{n}{3}-2=\frac{n-6}{3}$, we get $\frac{n-14}{3} \leq$ $\frac{1}{2}\left(\frac{n-6}{3}\right)$. This forces $n \leq 18$, a contradiction.

Thus $\delta\left(H^{\prime}\right) \geq \frac{\left|V\left(H^{\prime}\right)\right|+1}{2}$ and $\left|V\left(H^{\prime}\right)\right| \geq \frac{n-5}{3}-2 \geq 3$, which implies by [1] that H^{\prime} is pancyclic. Thus H^{\prime} has a triangle T. Let $H^{\prime \prime}=H-V(T)$. Then $\left|V\left(H^{\prime \prime}\right)\right|=|V(H)|-3 \leq \frac{n}{3}-3=\frac{n-9}{3}$ and $\delta\left(H^{\prime \prime}\right) \geq \frac{n-14}{3}-3 \geq \frac{n-23}{3}$. Therefore, since $n \geq 51, \delta\left(H^{\prime \prime}\right)>\frac{1}{2}\left|V\left(H^{\prime \prime}\right)\right|$. Hence, by $[6] H^{\prime \prime}$ is hamiltonian connected.
First, suppose $d_{2} \neq b_{2}$. We may assume $l\left(d_{1} \overrightarrow{C_{1}} b_{1}\right) \leq \frac{1}{2}\left(\left|V\left(C_{1}\right)\right|\right)$ and $l\left(b_{2} \overrightarrow{C_{2}} d_{2}\right) \leq \frac{1}{2}\left(\left|V\left(C_{2}\right)\right|\right)$. By the maximality of C_{1} and C_{2} and the fact that G is claw-free, $b_{1}^{+} b_{1}^{-}, b_{2}^{+} b_{2}^{-} \in E(G)$. Let $C^{\prime}=a_{1} b_{1} b_{1}^{-} b_{1}^{+} \overrightarrow{C_{1}} d_{1} d_{2} \overrightarrow{C_{2}} b_{2}^{-} b_{2}^{+} b_{2} a_{2} P a_{1}$, where P is a hamiltonian $a_{1} a_{2}$-path in $H-T$. Since C^{\prime} and T are disjoint cycles, $l\left(d_{1}^{+} \overrightarrow{C_{1}} b_{1}^{--}\right)+l\left(b_{2}^{+}+\overrightarrow{C_{2}} d_{2}^{-}\right)+2 \geq|V(H)|$. Thus $\frac{\left|V\left(C_{1}\right)\right|+\left|V\left(C_{2}\right)\right|}{2}-4 \geq$ $|V(H)| \geq \frac{n-5}{3}$, which implies that $\left|V\left(C_{1}\right)\right|+\left|V\left(C_{2}\right)\right| \geq \frac{2 n+14}{3}$. Since $|V(H)|=\left|V\left(C_{0}\right)\right| \geq \frac{n-5}{3}$, we have $n=|V(H)|+\left|V\left(C_{1}\right)\right|+\left|V\left(C_{2}\right)\right| \geq \frac{3 n+9}{3}=$ $n+3$, a contradiction. Therefore, we know $d_{2}=b_{2}$ which implies that there cannot be three independent edges between the cycles C, C_{1}, and C_{2}.

Since G is 2-connected, there exists an edge $b_{2}^{\prime} u$ from $C_{2}-\left\{b_{2}\right\}$ to $C_{0} \cup C_{1}$
Case 1. We consider the case where $u \in C_{0}$. If $u \neq a_{1}$ the three edges $a_{1} b_{1}, d_{1} b_{2}$, and $b_{2}^{\prime} u$ are independent, a contradiction. Thus, $u=a_{1}$. But now the two edges $a_{2} b_{2}$ and $a_{1} b_{2}^{\prime}$ between C_{0} and C_{2} are independent. This contradicts Claim 7.

Case 2. We consider the case where $u \in C_{1}$. If $u \neq b_{1}$, then the three edges $a_{1} b_{1}, u b_{2}^{\prime}$, and $a_{2} b_{2}$ are independent, a contradiction. If $u=b_{1}$, consider b_{1} and $\left\{a_{1}, b_{1}^{+}, b_{2}^{\prime}\right\}$. We know $b_{2}^{\prime} b_{1}^{+} \notin E(G)$ because $u=b_{1}$.

By Claim $7, a_{1} b_{2}^{\prime} \notin E(G)$. If $a_{1} b_{1}^{+} \in E(G)$, then the three edges $a_{1} b_{1}^{+}, b_{1} b_{2}^{\prime}$ and $a_{2} b_{2}$ are independent, a contradiction. Thus, $\left\langle b_{1}, b_{1}^{+}, a_{1}, b_{2}^{\prime}\right\rangle_{G}$ is a claw, a contradiction.

Hence, in all cases we reach a contradiction, and the result is proved.

References

[1] J.A. Bondy, Pancyclic Graphs I, J. Combin. Theory (B) 11 (1971) 80-84.
[2] S. Brandt, G. Chen, R.J. Faudree, R.J. Gould and L. Lesniak, On the Number of Cycles in a 2-Factor, J. Graph Theory, 24 (1997) 165-173.
[3] G. Chartrand and L. Lesniak, Graphs \& Digraphs (Chapman and Hall, London, 3rd edition, 1996).
[4] R.J. Gould, Updating the Hamiltonian Problem - A Survey, J. Graph Theory 15 (1991) 121-157.
[5] M.M. Matthews and D.P. Sumner, Longest Paths and Cycles in $K_{1,3}$-Free Graphs, J. Graph Theory 9 (1985) 269-277.
[6] O. Ore, Hamiltonian Connected Graphs, J. Math. Pures. Appl. 42 (1963) 21-27.
[7] H. Li and C. Virlouvet, Neighborhood Conditions for Claw-free Hamiltonian Graphs, Ars Combinatoria 29 (A) (1990) 109-116.

Received 19 February 1999
Revised 24 January 2000

