SOME RESULTS CONCERNING THE ENDS OF MINIMAL CUTS OF SIMPLE GRAPHS

Xiaofeng Jia
Department of Mathematics
Taiyuan University of Technology (West Campus)
Taiyuan, Shanxi, P.R. China 030024

Abstract

Let S be a cut of a simple connected graph G. If S has no proper subset that is a cut, we say S is a minimal cut of G. To a minimal cut S, a connected component of $G-S$ is called a fragment. And a fragment with no proper subset that is a fragment is called an end. In the paper ends are characterized and it is proved that to a connected graph $G=(V, E)$, the number of its ends $\Sigma \leq|V(G)|$.

Keywords: cut, fragment, end, interference.
1991 Mathematics Subject Classification: 05C35, 05C40.

In this paper $G=(V, E)$ will always denote finite non-complete connected graph. The notations not mentioned are the same with those in reference [1]. For $A \subset V(G)$ we use $\Gamma(A)$ to denote the adjacent set of A, that is, $\Gamma(A)=\{v \mid u v \in E(G), u \in A\}$, and we put $N(A)=\Gamma(A)-A .\langle A\rangle$ is a subgraph induced by $A \subset V(G)$, that is, $\langle A\rangle=G[A]$. A set of vertices $S \subset V(G)$ is called a cut of G if there are at least two connected components in $G-S$. A minimal cut is a cut without a proper subset that is a cut. If S is a minimal cut, then a connected component of $G-S$ is called a fragment. And a fragment with no proper subset that is a fragment is called an end. It is obvious that the graphs we discuss all have cuts and furthermore, minimal cuts. Thus a graph has at least two fragments. Since all fragments have ends, a graph has at least two ends.

It is obvious that:

Proposition P. Let S be a cut of G. Then S is a minimal cut if and only if for any $u \in S$ and a connected component of $G-S$, say $\langle A\rangle, N(u) \cap A \neq \emptyset$.

Definition 1. If S_{1} and S_{2} are two minimal cuts of G and there are at least two connected components of $G-S_{1}$ which contain vertices of S_{2}, then S_{1} interferes with S_{2}.

Theorem 2. Let S_{1} and S_{2} be two minimal cuts of G and S_{1} interferes with S_{2}, then there exist vertices of S_{1} in every fragment of $G-S_{2}$.

Proof. Suppose $\langle A\rangle$ is a fragment of $G-S_{2}$ and $A \cap S_{1}=\emptyset$, then because $\langle A\rangle$ is connected, all the vertices in A must belong to a fragment of $G-S_{1}$. By Proposition P, for each $v \in S_{2}-S_{1}, N(v) \cap A \neq \emptyset$, then $\left\langle A \cup\left(S_{2}-S_{1}\right)\right\rangle$ is connected. Thus the vertices which belong to $S_{2}-S_{1}$ can only be in one fragment of $G-S_{1}$, and it contradicts the fact that S_{1} interferes with S_{2}.

By Theorem 2, S_{1} interferes with S_{2} and S_{2} interferes with S_{1} are equivalent assertions.

Theorem 3. Let $\langle A\rangle$ be an end of G, then for any $u \in A$, every minimal cut of G that contains u interferes with $N(A)$.

Proof. Suppose S is a minimal cut of G that contains u and does not interfere with $N(A)$, then by applying Theorem 2 and Definition $1, S-$ $N(A) \subset A$. And since $N(u) \subset(A \cup N(A))$, from Proposition P, every fragment in $G-S$ contains a vertex in A or $N(A)$. Since S does not interfere with $N(A)$, there is at least one of such fragments that does not contain any vertex in $N(A)$. Thus it contains vertices in A and only in A. But this fragment does not contain u, then it is a proper subset of A, contradicting the fact that $\langle A\rangle$ is an end.

Corollary 4. Let S be a minimal cut of G. If G does not contain any minimal cuts that interfere with S, then a vertex in S cannot belong to any end of G.

Theorem 5. Suppose $\langle A\rangle$ is a fragment of G, then $\langle A\rangle$ is also an end of G if and only if $N(A)$ is the only minimal cut that is contained by $A \cup N(A)$.

Proof. (a) From Theorem 3, if $\langle A\rangle$ is an end of G, then $N(A)$ is the only minimal cut that is contained by $A \cup N(A)$.
(b) For every non-empty proper subset of A, say A^{\prime}, since $N\left(A^{\prime}\right) \subset A \cup N(A)$, and $N(A)$ is the only minimal cut that is contained by $A \cup N(A)$, then $N\left(A^{\prime}\right)$ is not a minimal cut, thus $\left\langle A^{\prime}\right\rangle$ is not a fragment and $\langle A\rangle$ is an end.

Theorem 6. Let $\langle A\rangle$ be a fragment of G, then $\langle A\rangle$ is an end if and only if for any $u \in A$ and $v \in N(A), u v \in E(G)$.

Proof. (a) Suppose A is an end. There are $u \in A, v \in N(A)$ and $u v \notin E$. Consider all the $u-v$ paths in G. There must exist vertices of $(A \cup N(A))-$ $\{u, v\}$ in every such path. Delete all the vertices in $(A \cup N(A))-\{u, v\}$ from each path, then we obtain a disconnected graph with no $u-v$ paths, thus the vertices we deleted are a cut of G. But this cut is contained by $A \cup N(A)$ and it is not $N(A)$, contradicting Theorem 5 .
(b) Let A^{\prime} be a proper subset of A. It is obvious that $N\left(A^{\prime}\right) \subset(A \cup N(A))$ and $N\left(A^{\prime}\right) \cap\left(A-A^{\prime}\right) \neq \emptyset$ under the conditions of the theorem, then $N\left(A^{\prime}\right)$ is not a minimal cut. Thus $\left\langle A^{\prime}\right\rangle$ is not a fragment, then $\langle A\rangle$ is an end.

Corollary 7. Let $\langle A\rangle$ be an end of G, then all the minimal cuts that interfere with $N(A)$ contain A.

Proof. Let S be a minimal cut that interferes with $N(A)$. If there exist $v \in A$ and $v \notin S$, then there must exist a fragment of $G-S$ that contains at least one vertex $u \in N(A)$ and does not contain vertex v, which contradicts Theorem 6.

Theorem 8. Let $\langle A\rangle$ be an end of G and $\langle B\rangle$ be a fragment of G that does not contain A, then $A \cap B=\emptyset$.

Proof. Under the conditions of the theorem, if $A \cap B \neq \emptyset$, then since $A-B \neq \emptyset$ and $\langle A\rangle$ is connected, we have $N(B) \cap A \neq \emptyset$.

Thus, if $N(B)$ interferes with $N(A)$, by applying Corollary 7, $A \subset$ $N(B)$. It contradicts $A \cap B \neq \emptyset$. If $N(B)$ does not interfere with $N(A)$, from $N(B) \cap A \neq \emptyset$ we have $N(B) \subset(A \cup N(A))$. If $N(B) \neq N(A)$, it will contradict Theorem 5.
From Theorem 8 we know, for any two distinct ends of $G,\langle A\rangle$ and $\langle B\rangle$, there must be $A \cap B=\emptyset$. Thus by denoting the number of distinct ends of G as Σ, there is

Corollary 9. $\Sigma \leq|V(G)|$.

References

[1] B. Bollobas, Extremal Graph Theory (Academic Press, New York, 1978).
[2] H. Veldman, Non k-Critical Vertices in Graphs, Discrete Math. 44 (1983) 105-110.

Received 14 October 1999
Revised 24 February 2000

