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Abstract
For two vertices u and v of a graph G, the closed interval I[u, v]

consists of u, v, and all vertices lying in some u − v geodesic in G.
If S is a set of vertices of G, then I[S] is the union of all sets I[u, v]
for u, v ∈ S. If I[S] = V (G), then S is a geodetic set for G. The
geodetic number g(G) is the minimum cardinality of a geodetic set. A
set S of vertices in a graph G is uniform if the distance between every
two distinct vertices of S is the same fixed number. A geodetic set is
essential if for every two distinct vertices u, v ∈ S, there exists a third
vertex w of G that lies in some u− v geodesic but in no x− y geodesic
for x, y ∈ S and {x, y} 6= {u, v}. It is shown that for every integer
k ≥ 2, there exists a connected graph G with g(G) = k which contains
a uniform, essential minimum geodetic set. A minimal geodetic set S
has no proper subset which is a geodetic set. The maximum cardinality
of a minimal geodetic set is the upper geodetic number g+(G). It is
shown that every two integers a and b with 2 ≤ a ≤ b are realizable as
the geodetic and upper geodetic numbers, respectively, of some graph
and when a < b the minimum order of such a graph is b + 2.
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1 Introduction

The distance d(u, v) between two vertices u and v in a connected graph G is
the length of a shortest u−v path in G. For a vertex v of G, the eccentricity
e(v) is the distance between v and a vertex farthest from v. The minimum
eccentricity among the vertices of G is the radius , rad G, and the maximum
eccentricity is its diameter, diam G. A u − v path of length d(u, v) is also
referred to as a u−v geodesic. Please see the books [2, 5] for graph notation
and terminology. We define the closed interval I[u, v] as the set consisting of
u, v, and all vertices lying in some u− v geodesic of G, and for a nonempty
subset S of V (G),

I[S] =
⋃

u,v∈S

I[u, v].

The set S is convex if I[S] = S. A set S of vertices of G is defined in [1, 3]
to be a geodetic set in G if I[S] = V (G), and a geodetic set of minimum car-
dinality is a minimum geodetic set. The cardinality of a minimum geodetic
set in G is the geodetic number g(G).

The graph G1 of Figure 1 has geodetic number 2 as S1 = {w1, y1} is
the unique minimum geodetic set of G1. On the other hand, each 2-element
subset S of the vertex set of G2 has the property that I[S] is properly
contained in V (G2). Thus g(G2) ≥ 3. Since S2 = {u2, v2, x2} is a geodetic
set, g(G2) = 3.

Figure 1. Illustrating the geodetic number

The closed intervals I[u, v] in a connected graph G were studied and charac-
terized by Nebeský [7, 8] and were also investigated extensively in the book
by Mulder [6], where it was shown that these sets provide an important
tool for studying metric properties of connected graphs. The intervals of an
oriented graph have been studied in [4].
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2 Uniform and Essential Minimum Geodetic
Sets

A graph F is called a minimum geodetic subgraph if there exists a graph
G containing F as an induced subgraph such that V (F ) is a minimum
geodetic set in G. Those graphs that are minimum geodetic subgraphs
were characterized in [1].

Theorem A. A nontrivial graph F is a minimum geodetic subgraph if
and only if every vertex of F has eccentricity 1 or no vertex of F has
eccentricity 1.

As a consequence of this theorem, there exists a graph G containing a min-
imum geodetic set S such that 〈S〉 is complete or S is independent. In the
former case, dG(u, v) = 1 for all distinct u, v ∈ S; while in the latter case,
dG(u, v) ≥ 2 for all distinct u, v ∈ S. This is illustrated in Figure 2.

Figure 2. Graphs with uniform minimum geodetic sets

The graphs G1, G2, and G3 in Figure 2 contain minimum geodetic sets
S1 = {u1, v1, w1, x1}, S2 = {u2, v2}, and S3 = {u3, v3, w3}, respectively,
with an added property. For every two distinct vertices y, z ∈ Si, i = 1, 2, 3,
dGi(y, z) = i. This suggests the following definition. A set S of vertices in a
connected graph G is uniform if the distance between every two vertices of
S is the same fixed number. Obviously, if S is uniform, then 〈S〉 is complete
or S is independent. Hence each minimum geodetic set indicated in Figure 2
is uniform.

We define a geodetic set S to be essential if for every two vertices u, v
in S, there exists a vertex w 6= u, v of G that lies in a u − v geodesic but
in no x − y geodesic for x, y ∈ S and {x, y} 6= {u, v}. For example the set
S = {x, y, z} is an essential geodetic set of the graph G of Figure 3, while S
is not uniform in G.
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Figure 3. A graph G with an essential geodetic set

We now show that it is possible for a graph to have a minimum geodetic
set with a specified number of vertices designated as essential as well as
uniform.

Theorem 21. For each integer k ≥ 2, there exists a connected graph G with
g(G) = k which contains a uniform, essential minimum geodetic set.

Proof. Let K
(k−1)
k denote the multigraph of order k for which every two

vertices of K
(k−1)
k are joined by k − 1 edges. Let Gk = S

(
K

(k−1)
k

)
be the

subdivision graph of K
(k−1)
k . Clearly diam Gk = 3 if k ≥ 3. We show by

induction that g(Gk) = k and V
(
K

(k−1)
k

)
is a uniform, essential minimum

geodetic set for Gk.
To begin the inductive proof, for k = 2, the graph G2 = S

(
K

(1)
2

)

is a path of order 3. Therefore, g(G2) = 2 and the two end-vertices of
G2 form a uniform, essential minimum geodetic set for G2. Now we take
g(Gk−1) = k − 1, where k − 1 ≥ 2, and V

(
K

(k−2)
k−1

)
is a uniform, essential

minimum geodetic set for Gk−1. We now consider Gk.
Let S = V

(
K

(k−1)
k

)
= {v1, v2, · · · , vk}. For each pair i, j, 1 ≤ i < j ≤ k,

label the k − 1 vertices of degree 2 that are adjacent to both vi and vj by
v1
i,j , v

2
i,j , · · · , vk−1

i,j . Since I[S] = V (Gk), it follows that g(Gk) ≤ k.
Suppose, to the contrary, that g(Gk) = m < k and let W = {w1,

w2, · · · , wm} be a minimum geodetic set of Gk. We consider three cases.

Case 1. W is a proper subset of {v1, v2, · · · , vk}. Then I[W ] = V (Gm),
where Gm = S

(
Km−1

m

)
with V

(
Km−1

m

)
= W . Therefore, I[W ] 6= V (Gk),

contradicting the fact that W is a geodetic set of Gk.

Case 2. W = {v1
i,j , v

2
i,j , · · · , vk−1

i,j } where 1 ≤ i < j ≤ k. Then I[W ] =
W ∪{vi, vj} ⊂ V (Gk), once again contradicting the fact that W is a geodetic
set of Gk.
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Case 3. There exist integers i, j, p, q, where 1 ≤ i < j ≤ k and 1 ≤ p <
q ≤ k − 1, such that vp

i,j ∈ W and vq
i,j 6∈ W . Since I[W ] = V (Gk), there

exist x, y ∈ W such that vq
i,j lies on an x− y geodesic in Gk. Since vq

i,j 6∈ W,
it follows that 2 ≤ d(x, y) ≤ 3.

Suppose first that d(x, y) = 2. We show that

I[W ] = I
[
W − {vp

i,j}
]
.

In this case, {x, y} = {vi, vj}, say x = vi and y = vj . So vq
i,j lies in the

geodesic x, vq
i,j , y in Gk. It follows that vp

i,j lies in the geodesic x, vp
i,j , y in

Gk, so vp
i,j ∈ I[x, y]. Let v 6∈ W be a vertex that lies in some vp

i,j−w geodesic
in Gk, where w ∈ W . If d(vp

i,j , w) = 2, then v ∈ {x, y}. This contradicts
the fact that v 6∈ W , so d(vp

i,j , w) = 3. Thus v lies in either the geodesic

vi, v, w or in the geodesic vj , v, w in Gk. Therefore, I[W ] = I
[
W − {vp

i,j}
]
,

contradicting the fact that W is a minimum geodetic set of Gk.
Suppose next that d(x, y) = 3. We show that a geodetic set W ′ of a

graph Gk−1 can be formed from W , where |W ′| ≤ k − 2 and which will
contradict the induction hypothesis.

In this case, exactly one of x and y belongs to {vi, vj}, say x = vi and
y 6= vj . Then y is a subdivision vertex, so deg y = 2 in Gk, and vq

i,j lies in the
x− y geodesic x, vq

i,j , vj , y in Gk. This implies that vp
i,j also lies in an x− y

geodesic, namely the geodesic x, vp
i,j , vj , y, in Gk. So vp

i,j ∈ I[x, y]. Now let
v 6∈ W be a vertex that lies in some vp

i,j − w geodesic in Gk, where w ∈ W .
If d(vp

i,j , w) = 2, then v = vj . This implies that v lies in the x− y geodesic
x, vp

i,j , v, y in Gk, so v ∈ I[x, y] and d(vp
i,j , w) = 3. Then w ∈ {v1, v2, · · · , vk},

say w = vh. Let

W ′ = W −W
⋂
{v`

i,j , v
`
j,h : 1 ≤ ` ≤ k − 1}.

Since vp
i,j , y ∈ W

⋂ {v`
i,j , v

`
j,h : 1 ≤ ` ≤ k − 1}, it follows that |W ′| ≤ k − 2.

Let Gk−1 = S
(
K

(k−2)
k−1

)
, where V

(
K

(k−2)
k−1

)
= {v1, v2, · · · , vj−1, vj+1, · · · , vk}.

We show that I[W ′] = V (Gk−1), contradicting the induction hypothesis.
Let v 6∈ W ′ be a vertex of Gk−1. Since I[W ] = V (Gk), it follows that

v lies in some u − w geodesic P in Gk, where u, w ∈ W . Observe that
at least one of u,w must be in W ′, for otherwise, P contains no vertex in
Gk−1. Assume first that u,w ∈ W ′. Then P is also a geodesic in Gk−1

giving the desired result. Therefore, exactly one of u and w belongs to
W ′, say w ∈ W ′. If d(u,w) = 2, then v ∈ {vi, vh}, contradicting v 6∈ W ′,
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therefore d(u,w) = 3. Then v lies in either the geodesic vi, v, w, or in
the geodesic vh, v, w in Gk−1. It follows that I[W ′] = V (Gk−1), which
contradicts the induction hypothesis.

Therefore S = V
(
K

(k−1)
k

)
is a minimum geodetic set of Gk. Then

v`
i,j , where 1 ≤ i < j ≤ k and 1 ≤ ` ≤ k − 1, lies in exactly one geodesic,

namely the geodesic vi, v
`
i,j , vj , in Gk. Moreover, d(u,w) = 2 for all u,w ∈ S.

Therefore, S is a uniform, essential minimum geodetic set for Gk.

3 Minimal Geodetic Sets

A geodetic set S in a connected graph G is called a minimal geodetic set if
no proper subset of S is a geodetic set. Of course, every minimum geodetic
set is a minimal geodetic set, but the converse is not true. For example, let
G = K2,3 of Figure 4 with partite sets V1 = {x, y} and V2 = {u, v, w}. Then
{u, v, w} is a minimal geodetic set of K2,3 but is not a minimum geodetic set
of K2,3 since {x, y} is its unique minimum geodetic set. We define the upper
geodetic number g+(G) as the maximum cardinality of a minimal geodetic
set of G. Obviously, g(G) ≤ g+(G). The graph G of Figure 4 has geodetic
number 2 and upper geodetic number 3.

Figure 4. A graph G with a minimal geodetic set

We now show that every two integers a and b with 2 ≤ a ≤ b are realizable
as the geodetic number and upper geodetic number, respectively, of some
graph. Furthermore, we determine the minimum order of such a graph.
Certainly, this minimum order is at least b. Indeed, if a = b, then the only
geodetic set of Kb is its vertex set; so g(Kb) = g+(Kb) = b and the minimum
order is b. Indeed, if G is a graph of order n with g+(G) = n, then G = Kn

and so g(G) = g+(G). Before taking this observation one step further, we
present a lemma.
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Lemma 3.1. Let G be a nontrivial connected graph of order n with g+(G) =
n− 1 and let S be a minimal geodetic set of maximum cardinality such that
V (G) − S = {v}. Then G does not contain nonadjacent vertices u,w ∈ S
such that u and w are mutually adjacent to both v and some vertex of S.

Proof. Suppose, to the contrary, that there exist vertices x, y, z ∈ S such
that xy /∈ E(G) and x and y are mutually adjacent to both v and z. Then z
lies in the geodesic x, z, y, while v lies in the geodesic x, v, y. Hence S−{z}
is a geodetic set, contradicting the minimality of S.

Theorem 3.2. Let G be a nontrivial connected graph of order n. If g+(G) =
n− 1, then g(G) = g+(G).

Proof. Let V (G) = {v1, v2, · · · , vn}, where S = {v1, v2, · · · , vn−1} is a
minimal geodetic set of maximum cardinality. First, we claim that every
vertex in S is adjacent to vn. Suppose, to the contrary, that some v ∈ S is
not adjacent to vn. Among the pairs x, y of distinct vertices of S for which
v lies in some x−y geodesic, we choose a pair such that d(x, y) is minimum.
If v 6= x, y, then vn lies in some u− w geodesic of length 2, where u,w ∈ S
and u, w 6= v. This implies that S − {v} is a geodetic set, a contradiction.
Therefore, either x = v or y = v, say the former. We consider two cases.

Case 1. yvn ∈ E(G). Then there are two subcases.

Subcase 1.1. Among the vertices of S adjacent to vn, there exists some
vertex z not adjacent to y.

Here vn lies in the geodesic y, vn, z in G. By Lemma 3.1, xz /∈ E(G).
Since P : x, y, vn, z is a path in G, it follows that d(x, z) ≤ 3. Assume
first that d(x, z) = 2. Then there exists a vertex w ∈ S adjacent to both
x and z. By Lemma 3.1, wy /∈ E(G). Then x lies in the geodesic y, x, w
in G, implying that S − {x} is a geodetic set, producing a contradiction.
Therefore, d(x, z) = 3. Thus P is a geodesic and S − {y} is a geodetic set,
which is a contradiction.

Subcase 1.2. Every vertex of S that is adjacent to vn is also adjacent to y.
Since vn lies in some u−w geodesic for u,w ∈ S, it follows that deg vn ≥ 3.
Necessarily, uw /∈ E(G), this is impossible by Lemma 3.1.

Case 2. yvn /∈ E(G).
Then vn lies in some u − v geodesic of length 2. By Lemma 3.1, y is not
adjacent to both u and v, say yu /∈ E(G). Let d(y, u) = ` and let y =
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w0, w1, w2, · · · , w` = u be a y−u geodesic. Since yvn /∈ E(G), it follows that
w1 6= vn. If w1 6= v, then S−{w1} is a geodetic set, which is a contradiction.
Thus w1 = v. Then y, v, vn, u is a geodesic and S − {v} is a geodetic set,
contrary to hypothesis.

This completes the proof of the claim. Therefore, for every pair x, y of
nonadjacent vertices in S, the vertex vn lies in the geodetic x, vn, y. Clearly,
diam(G) = 2.

Next we show that

G = (Kn1 ∪Kn2 ∪ · · · ∪Knr) + K1

where n1, n2, · · · , nr, r are positive integers with n1 + n2 + · · ·+ nr = n− 1
and V (K1) = {vn}, which implies that g(G) = g+(G) = n− 1. Suppose, to
the contrary, that this is not the case. Then there exist x, y, z ∈ S such that
d(x, y) = 2 and xz, zy ∈ E(G). It follows that z and vn both lie in some
x− y geodesic. So S − {z} is a geodetic set, which is a contradiction.

We can now complete the proof of the realizability of every two integers a
and b with 2 ≤ a ≤ b as the geodetic number and upper geodetic number,
respectively, of some graph.

Theorem 3.3. For every two positive integers a and b, where 2 ≤ a < b,
there exists a graph G with g(G) = a and g+(G) = b.

Proof. Let F = Kb−a+1+K2, where V (Kb−a+1) = {v1, v2, · · · , vb−a+1} and
V (K2) = {x, y}. The graph G is formed from F by adding a − 1 pendant
edges yui (1 ≤ i ≤ a − 1) to the vertex y of F (see Figure 5). The graph
G has the unique minimum geodetic set S = {x, u1, u2, · · · , ua−1} and so
g(G) = a.

Figure 5. A graph G with g(G) = a and g+(G) = b
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Now let
S′ = {u1, u2, · · · , ua−1, v1, v2, · · · , vb−a+1}.

Then I[S′] = V (G). We show that S′ is a minimal geodetic set of G. Let
v ∈ S′. We show that I[S′ − {v}] 6= V (G). Assume first that v = ui for
some i (1 ≤ i ≤ a − 1). Then I[S′ − {ui}] = V (G) − {ui}. So v = vj for
some j (1 ≤ j ≤ b − a + 1). Then I[S′ − {vj}] = V (G) − {vj}. It follows
that I [S′ − {v}] 6= V (G) for every v ∈ S′. Since |S′| = b, we have that
g+(G) ≥ b.

Next we show that there is no minimal geodetic set W of G with |W | > b,
which implies that g+(G) = b. Note that the graph G has order n =
b + 2. Since g(G) = a < b, it suffices to show that G does not contain an
(n − 1)-element minimal geodetic set. Suppose, to the contrary, that W is
a minimal geodetic set of G where |W | = n − 1. Let v 6∈ W . Since every
geodetic set of G must contain all end-vertices of G, it follows that v = x,
for otherwise, the geodetic set S = {x, u1, u2, · · · , ua−1} is a proper subset of
W , which contradicts the fact that W is minimal. Then y ∈ W . It follows
that I[W ] = I [W − {y}] = V (G). Once again, this contradicts W being a
minimal geodetic set of G.

The proof of Theorem 3.3 shows that if b − a ≥ 2 and k is an integer with
a < k < b, then there need not be a graph G with g(G) = a and g+(G) = b
containing a minimal geodetic set of cardinality k, that is, a graph G need
not contain an ‘intermediate’ minimal geodetic set.

The following corollary gives the smallest order of a graph satisfying the
hypothesis of Theorem 3.3. The proof is a direct consequence of Theorem 3.2
and 3.3.

Corollary 3.4. For every two positive integers a and b, where 2 ≤ a < b,
the smallest order of a graph G with g(G) = a and g+(G) = b is b + 2.
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