LONG INDUCED PATHS IN 3-CONNECTED PLANAR GRAPHS

Jorge Luis Arocha and Pilar Valencia
Instituto de Matemáticas, UNAM, Ciudad Universitaria
Area de la Investigación Científica, Circuito Exterior
México, D.F. 04510
e-mail: arocha@math.unam.mx
e-mail: pilarvalencia@hotmail.com

Abstract

It is shown that every 3 -connected planar graph with a large number of vertices has a long induced path.

Keywords: Induced paths, 3-connected planar graphs.
1991 Mathematics Subject Classification: 05C38, 05C40.

Let G be an undirected graph without loops and multiple edges. Denote by $p(G)$ the number of vertices in the longest induced path of G. Finding long induced paths in graphs is an interesting but difficult problem. However, it is easy to revise all the references devoted to related problems (see [1-7]).

Denote $p_{n}=\min \{p(G)\}$ where the minimum is taken over all triconnected planar graphs of order n. The purpose of this note is to prove the following.

Theorem. $\lim _{n \rightarrow \infty} p_{n}=\infty$
Proof. Denote by G_{n} a fixed triconnected planar graph such that $p\left(G_{n}\right)=$ p_{n}. Let Δ_{n} be the maximum degree of G_{n} and let v_{n} be a fixed vertex of maximum degree in G_{n}. It is easy to see that the diameter d of any graph is large if it has an small maximum degree. In fact one can prove that $p_{n} \geq d\left(G_{n}\right)+1 \geq \log _{\Delta_{n}} n$. So if $\left\{\Delta_{n}\right\}$ is bounded, then we are done. Hence, we can suppose that $\left\{\Delta_{n}\right\}$ grows.

A well known theorem of Whitney states that, any triconnected planar graph has an unique embedding in the sphere. In this embedding the topological neighborhood of a vertex v is an open disk bounded by a cycle C_{v}
of the graph which in general contains more vertices than the ones in the graphical neighborhood of the vertex.

Denote by G_{n}^{\prime} the graph obtained from G_{n} by deleting v_{n} and every other vertex not in $C_{v_{n}}$. Of course, any induced path in G_{n}^{\prime} is an induced path in G_{n}. We denote by n^{\prime} the order of G_{n}^{\prime}. We know that $n^{\prime} \geq \Delta_{n}$ and therefore $\left\{n^{\prime}\right\}$ is unbounded.

We can think on the graph G_{n}^{\prime} as drawn in the plane in such a way that the cycle $C_{v_{n}}$ bounds the infinite face. Let D_{n} be the dual graph of G_{n}^{\prime} and let us delete from D_{n} the vertex corresponding to the infinite face to obtain D_{n}^{\prime}. Since every vertex of G_{n}^{\prime} lies in the boundary of the infinite face then, D_{n}^{\prime} is a tree.

Let us associate to each vertex of D_{n}^{\prime} a weight equal to the number of vertices of the corresponding face in G_{n}^{\prime} minus two. The weight of a path in D_{n}^{\prime} is by definition the sum of the weights of its vertices. Observe that a path of weight w in D_{n}^{\prime} corresponds to a subgraph P of G_{n}^{\prime} which is a path of faces separated by edges. It is easy to see that P has exactly $w+2$ vertices. Deleting a vertex from each of the two end faces of P we split the boundary of P into two paths. Again, the fact that every vertex of G_{n}^{\prime} lies in the boundary of the infinite face implies that these two paths are induced in G_{n}^{\prime} and one of them has at least $w / 2$ vertices. Therefore, if we denote by w_{n} the maximum weight of a path in D_{n}^{\prime} then, to prove the proposition we must show that $\left\{w_{n}\right\}$ is unbounded.

Denote by $k=k(n)$ the size of the biggest interior face in G_{n}^{\prime} and by $m=m(n)$ the number of vertices in D_{n}^{\prime}. If we triangulate all interior faces of G_{n}^{\prime}, then the number of all interior triangles with respect to the cycle $C_{v_{n}}$ must be $n^{\prime}-2$, but in the interior of each face there are at most $k-2$ triangles and so $m \geq \frac{n^{\prime}-2}{k-2}$. Let v be a vertex in D_{n}^{\prime} of eccentricity equal to the diameter $d=d(n)$ of D_{n}^{\prime} and denote by V_{i} the set of vertices at distance i from v.

It is clear that

$$
\frac{n^{\prime}-2}{k-2} \leq m=\sum_{i=0}^{d}\left|V_{i}\right| \leq \sum_{i=0}^{d} k^{i} \leq \frac{k^{d+1}-2}{k-2}
$$

and therefore $\log _{3} n^{\prime} \leq(d+1) \log _{3} k$. Since any vertex has weight no less than one then $w_{n} \geq d+1$. On the other hand, $w_{n} \geq k-2 \geq \log _{3} k$ for any $k \geq 3$. Hence, $w_{n} \geq \sqrt{\log _{3} n^{\prime}}$ and the proof is completed.

Remark. The method in the proof of the proposition gives a lower bound $O(\log n)$ for maximal outerplanar graphs with n vertices. However, this an
easier result that can be proved in several other ways. In this case the bound is asymptotically sharp. It is reached in the family $\left\{\mathbf{S}_{i}\right\}$ shown in the figure.

Figure 1. Polygon triangulations with $p=O(\log n)$.

References

[1] P. Alles and S. Poljak, Long induced paths and cycles in Kneser graphs, Graphs Combin. 5 (1989) 303-306.
[2] G. Bacsó and Z. Tuza, A Characterization of Graphs Without Long Induced Paths, J. Graph Theory 14 (1990) 455-464.
[3] F. Buckley and F. Harary, On longest induced path in graphs, Chinese Quart. J. Math. 3 (1988) 61-65.
[4] J. Dong, Some results on graphs without long induced paths, J. Graph Theory 22 (1996) 23-28.
[5] P. Erdös, M. Saks and V. Sós, Maximum Induced Trees in Graphs, J. Combin. Theory (B) 41 (1986) 61-79.
[6] A. Frieze and B. Jackson, Large holes in sparse random graphs, Combinatorica 7 (1987) 265-274.
[7] S. Suen, On large induced trees and long induced paths in sparse random graphs, J. Combin. Theory (B) 56 (1992) 250-262.

