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Abstract

A mixed hypergraph is a triple H = (X, C,D) where X is the
vertex set and each of C, D is a family of subsets of X, the C-edges and
D-edges, respectively. A k-coloring of H is a mapping c : X → [k]
such that each C-edge has two vertices with the same color and each
D-edge has two vertices with distinct colors. H = (X, C,D) is called
a mixed hypertree if there exists a tree T = (X, E) such that every
D-edge and every C-edge induces a subtree of T. A mixed hypergraph
H is called uniquely colorable if it has precisely one coloring apart
from permutations of colors. We give the characterization of uniquely
colorable mixed hypertrees.
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1 Preliminaries

We use the standard concepts of graphs and hypergraphs from [1, 2] and
updated terminology on mixed hypergraphs from [4, 5, 6, 7].

A mixed hypergraph is a triple H = (X, C,D) where X is the vertex set,
|X| = n, and each of C, D is a family of subsets of X, the C-edges and
D-edges, respectively.

A proper k-coloring of a mixed hypergraph is a mapping c : X → [k]
from the vertex set X into a set of k colors so that each C-edge has two ver-
tices with the same color and each D-edge has two vertices with different co-
lors. The chromatic polynomial P (H, k) gives the number of different proper
k-colorings of H.

A strict k-coloring is a proper coloring using all k colors. By c(x) we
denote the color of vertex x ∈ X in the coloring c. The maximum number
of colors in a strict coloring of H is the upper chromatic number χ̄(H); the
minimum number is the lower chromatic number χ(H).

If for a mixed hypergraph H there exists at least one coloring, then it is
called colorable. Otherwise H is called uncolorable. Throughout the paper
we consider colorable mixed hypergraphs.

IfH = (X, C,D) is a mixed hypergraph, then the subhypergraph induced
by X ′ ⊆ X is the mixed hypergraph H′ = (X ′, C′,D′) defined by setting
C′ = {C ∈ C : C ⊆ X ′}, D′ = {D ∈ D : D ⊆ X ′} and denoted by
H′ = H/X ′.

The mixed hypergraph H = (X, ∅,D) (H = (X, C, ∅)) is called ”D-
hypergraph” (”C-hypergraph”) and denoted by HD (HC). If HD contains
only D-edges of size 2 then from the coloring point of view it coincides with
classical graph ([2]). We call it D-graph.

For each k, let rk be the number of partitions of the vertex set into k
nonempty parts (color classes) such that the coloring constraint is satisfied
on each C- and D- edge. In fact rk equals the number of different strict
k-colorings of H if we disregard permutations of colors. The vector R(H) =
(r1, . . . , rn) = (0, . . . , 0, rχ(H), . . . , rχ̄(H), 0, . . . , 0) is the chromatic spectrum
of H.

For the simplicity we assume that two strict k-colorings are considered
the same if they can be obtained from each other by permutation of colors.
In this case the number of different strict k-colorings coincides with rk(H).
A mixed hypergraph H is called a uniquely colorable (uc for short) [5] if it
has just one strict coloring.
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A mixed hypergraph H = (X, C,D) is called uc-orderable [5] if there exists
the ordering of the vertex set X, say X = {x1, x2, . . . , xn}, with the follow-
ing property: each subhypergraph Hi = H/Xi induced by the vertex set
Xi = {xi, xi+1, . . . , xn} is uniquely colorable. The corresponding sequence
x1, . . . , xn will be called a uc-ordering of H.

A sequence x0, x1, . . . , xt+1 of vertices is called aD-path if (xi, xi+1) ∈ D,
0 ≤ i ≤ t. A mixed hypergraph H = (X, C,D) is called reduced if |C| ≥ 3
for each C ∈ C, and |D| ≥ 2 for each D ∈ D, and moreover, no one C-edge
(D-edge) is included in another C-edge (D-edge).

As it follows from the splitting-contraction algorithm [6, 7] colorings
properties of arbitrary mixed hypergraph may be obtained from some
reduced mixed hypergraph. Therefore, throughout the paper we consider
reduced mixed hypergraphs.

Let C(x)(D(x)) denote the set of C-edges (D-edges) containing vertex
x ∈ X. Call the set

N(x) = {y : y ∈ X, y 6= x, C(x) ∩ C(y) 6= ∅, or D(x) ∩ D(y) 6= ∅}
the neighbourhood of the vertex x in a mixed hypergraph H. In other words,
the neighbourhood of a vertex x consists of those vertices which are con-
tained in common C-edges or D-edges with x except x itself.

A vertex x is called simplicial [8] in a mixed hypergraph if its
neighbourhood induces a uniquely colorable mixed subhypergraph. A mixed
hypergraph H = (X, C,D) is called pseudo-chordal [8] if there exists an
ordering σ of the vertex set X, σ = (x1, x2, . . . , xn), such that the vertex xj

is simplicial in the subhypergraph induced by the set {xj , xj+1, . . . , xn} for
each j = 1, 2, . . . , n− 1.

Definition [8]. A mixed hypergraph H = (X, C,D) is called a mixed hy-
pertree if there exists a tree T = (X, E) such that every C-edge induces a
subtree of T and every D-edge induces a subtree of T .

Such a tree T is called further a host tree. The edge set of a host tree T is
denoted by E = {e1, e2, . . . , en−1}, ei = (x, y), x, y ∈ X, i = 1, 2, . . . , n− 1.

2 Uniquely Colorable Mixed Hypertrees
Let H = (X, C,D) be an arbitrary mixed hypergraph.

Definition. A sequence of vertices of H, x = x0, x1, . . . , xk = y, k ≥ 1, is
called (x, y)-invertor iff:
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(1) xi 6= xi+1, i = 0, 1, . . . , k − 1;
(2) (xi, xi+1) ∈ D, i = 0, 1, . . . , k − 1;
(3) if xj 6= xj+2 then (xj , xj+1, xj+2) ∈ C, j = 0, 1, . . . , k − 2.

In H for two vertices x, y ∈ X there may exist many (x, y)-invertors.
The shortest (x, y)-invertor contains minimal number of vertices. Two
(x, y)-invertors are different if they have at least one distinct vertex.
A (x, y)-invertor with x = y is called cyclic invertor.

Definition. In a mixed hypertree, a cyclic invertor is called simple if all
C-edges are different and every D-edge appears consecutively precisely two
times.

Let µ = (z0, z1, . . . , zk = z0), k ≥ 6, be some simple cyclic invertor in a
mixed hypertree. Without loss of generality assume that z0 6= z1 6= z2 6= z0.
From the definition of simple cyclic invertor it follows that z0 6= z2 66= . . . 6=
zk−2 and z1 = z3 = . . . = zk−1 = y, where y is the center of some star in the
host tree T .

Theorem 1. If H = (X, C,D) is a mixed hypertree then
(1) χ(H) ≤ 2;
(2) if, in addition, |D| ≤ n− 2 then r2(H) ≥ 2.

Proof. (1) It follows from the possibility to start at any vertex and to
color H alternatively by the colors 1 and 2 along the host tree T .

(2) Let T = (X, E) be a host tree of the mixed hypertree H. Since
|D| ≤ n − 2 in T there exists an edge e = (x, y) 6∈ D. Starting with the
vertices x, y we can construct two different colorings with two colors in the
following way. First, put c(x) = c(y) = 1 and color all the other vertices
alternatively along the tree T with the colors 2, 1, 2, . . . . Second, apply the
same procedure starting with c(x) = 1 and c(y) = 2.

Theorem 2. A mixed hypertree H = (X, C,D) is uniquely colorable if and
only if for every two vertices x, y ∈ X there exists an (x, y)-invertor.

Proof. ⇒ Let c be the unique strict coloring of the mixed hypertree H.
We show that for any two vertices x, y ∈ X there exists an (x, y)-invertor.

Suppose H has two vertices u, v ∈ X such that there is no (u, v)-invertor
in H. Consider the unique (u, v)-path in the host tree T of H. The assump-
tion implies that either in H there is no D-path connecting u and v or in
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the sequence u = x1, x2, . . . , xp = v there exists a triple of pairwise different
vertices xj , xj+1, xj+2 not belonging to C.

If there is no D-path connecting u and v then by Theorem 1(2) H
has two different colorings with two colors. This contradicts to the unique
colorability of mixed hypertree H.

Assume that in the sequence u = x1, x2, . . . , xp = v there exists a triple
of pairwise different vertices xj , xj+1, xj+2 such that (xj , xj+1, xj+2) 6∈ C.
Evidently, xj+1 is not pendant in T. Let T1 and T2 be two connected com-
ponents obtained after deletion of vertex xj+1 from the host tree T .

There are two cases. (1) c(xj) = c(xj+2). From Theorem 1(1) it follows
that the number of colors in the unique coloring c of H is 2. Recolor the
vertex xj+2 and all vertices on even distance from xj+2 in the component T2

with the new color. The obtained coloring is a proper coloring of H different
from c, a contradiction.

(2) c(xj) 6= c(xj+2). Since (xj , xj+1), (xj+1, xj+2) ∈ D we have that
c(xj) 6= c(xj+1) 6= c(xj+2). Consequently, H is colored with at least three
colors. But according to Theorem 1 every mixed hypertree can be colored
with two colors, a contradiction.

⇐ Assume that any two vertices x, y ∈ X are joined by an (x, y)-
invertor. Suppose H has at least two strict colorings c1 and c2. Then there
exist two vertices, say x′, y′, such that c1(x′) = c1(y′) but c2(x′) 6= c2(y′).
Consider (x′, y′)-invertor x′ = x0, x1, . . . , xk = y′. From the definition of
invertor follows that if k is even then in all possible colorings the vertices
x′ and y′ have the same color. If k is odd then in all possible colorings
the vertices x′ and y′ have distinct colors. Consider the unique (x′, y′)-path
connecting the vertices x′, y′ on the host tree T . One can see that the parity
of k coincides with the parity of length of the path. Moreover, it is true for
any other (x′, y′)-invertor. Therefore, in all colorings either c(x′) = c(y′) or
c(x′) 6= c(y′), a contradiction.

Corollary 1. If H is a uniquely colorable mixed hypertree then D = E .

Definition. Let H = (X, C,D) be a mixed hypergraph. The C-edge C ∈ C
is called redundant if R(H) = R(H1), where H1 = (X, C \ {C},D).

In a uniquely colorable mixed hypertree H = (X, C,D) any C-edge of size
≥ 4 is redundant because there is no invertor containing such C-edge.

Theorem 3. In a uniquely colorable mixed hypertree H = (X, C,D) a C-edge
Cof size 3 is redundant if and only if there exists a simple cyclic invertor
containing C.
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Proof. Let C = (x1, x2, x3) be the redundant C-edge. By definition H′ =
(X, C′,D) where C′ = C \{C} is a uniquely colorable mixed hypertree. Then
for the vertices x1 and x3 in H′ there exisits an (x1, x3)-invertor: x1 =
z0, z1, . . . , zk = x3. Construct the (x1, x1)-invertor in the following way:
x1 = z0, z1, . . . , zk = x3, x2, x1. This invertor is a simple cyclic invertor of
H containing C.

Conversely, suppose that C-edge, C = (x1, x2, x3) is contained in some
simple cyclic invertor x1 = z0, z1, . . . , zk = x3, x2, x1. Then the vertices
x1 and x3 are joined by two different (x1, x3)-invertors: (x1, x2, x3) = C
and (x1 = z0, z1, . . . , zk = x3) = (x1, x3)′-invertor. In each (x, y)-invertor
containing C replace this C-edge by (x1, x3)′-invertor. Thus, H′ = (X, C \
{C},D) is uniquely colorable, i.e., the C-edge C is redundant.

Let us have a mixed hypergraph H = (X, C,D) . Consider X = X1 ∪ X2

∪ . . . ∪ Xi any i-coloring of H, χ(H) ≤ i ≤ χ̄(H). Choose any Xj and
construct touching graph Lj = (Xj , Vj) in the following way: if some C ∈ C
satisfies C ∩Xj = {x, y} and |C ∩Xk| ≤ 1, k 6= j, for some x, y ∈ Xj , then
(x, y) ∈ Vj (cf. pair graphs [3]).

Theorem 4. If a mixed hypertree H = (X, C,D) is uniquely colorable then
in its 2-coloring the touching graphs L1 and L2 are connected.

Proof. By Theorem 1(2), Corollary 1 we obtain |D| = n − 1, χ̄ = 2 for
each uniquely colorable mixed hypertree. If at least one touching graph
is disconnected, then we can construct a new coloring of H with 3 colors
by assigning new color to the vertices of one component. This assures the
proper coloring also of any C-edge of size ≥ 4.

Corollary 2. The minimal number of C-edges in any uniquely colorable
mixed hypertree H = (X, C,D) is n− 2.

Proof. Let H be a uniquely colorable mixed hypertree. Consider its
unique 2-coloring, say X = X1 ∪ X2, and construct the touching graphs
L1 = (X1, V1), L2 = (X2, V2). The minimal number of edges in Li to be
connected is |Xi| − 1, and in this case each of Li is a tree, i = 1, 2. Since
every edge in Li corresponds to some C-edge of H, we obtain that the
minimal number of C-edges is:

|X1| − 1 + |X2| − 1 = |X| − 2.
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Corollary 3. In a uniquely colorable mixed hypertree H = (X, C,D) the
number of redundant C-edges is |C| − n + 2.

Proof. Indeed, consider touching graphs Li, and construct a spanning trees
Ti, i = 1, 2. Each elementary cycle in Li generates some simple cyclic invertor
in H. Therefore, each C-edge of H which has a size ≥ 4 or corresponds to
some edge of Li which is a chord with respect to Ti, is redundant. Hence,
the assertion follows.

Remark. Redundant C-edge may become not redundant after deleting from
C some another redundant C-edges.

Definition. A mixed hypertree H = (X, C,D) is called complete if every
edge of the host tree T forms a D-edge ofH, and every path on three vertices
of T forms a C-edge in H.

Therefore, having the host tree T for the complete mixed hypertree H =
(X, C,D) we obtain that D = E .

Denote by M the number of C-edges of a complete mixed hypertree H =
(X, C,D) . Then

M =
∑
x∈T

d(x)≥2

(
d(x)

2

)
,

where d(x) is the degree of vertex x in the host tree T .
Examples show that for any k > 1 one can construct a mixed hypertree

H = (X, C,D) with |D| = n− 1, n− 2 ≤ |C| ≤ M and χ̄(H) = k. Therefore
these bounds on |D| and |C| are not sufficient for the mixed hypertrees to
be uniquely colorable.

Proposition 1. A uniquely colorable mixed hypertree with |C| = n− 2 is a
pseudo-chordal mixed hypergraph.

Proof. Since H is uniquely colorable mixed hypertree and |C| = n − 2
then it contains no redundant C-edges and, moreover, all C-edges have the
size 3. It follows that there exists a pendant vertex, say x, of the host
tree T = (X, E) which belongs to precisely one C-edge, say (x, y, z). The
neighbourhood of x induces a complete D-graph on 2 vertices, which itself
is uniquely colorable. Consequently, the vertex x is simplicial in H. Delet-
ing the vertex x and C-edge and D-edge containing it, obtain H′ which



88 A. Niculitsa and V. Voloshin

is uniquely colorable mixed hypertree with minimal number of C-edges.
Indeed, if H′ would be not uniquely colorable, then two distinct colorings of
H′ formed different colorings of H because c(x) = c(z), a contradiction.

Remark. Redundant C-edges enlarge the neighbourhood of some vertices
without affecting any coloring. Therefore, to recognise the pseudo-chordality
we need to delete the redundant C-edges.

From the Theorem 4, Corollaries 2–4 and Proposition 1 we conclude that a
uc-orderable mixed hypertree H can be recognised by consecutive elemina-
tion of pendant vertices of D-graph HD in special ordering by applying the
following

Algorithm (uc-ordering).

Input: A mixed hypertree H = (X, C,D) , σ – n-dimensional empty vector.

Idea: Simultanious decomposition of HD, spanning trees T1 and T2 of
touching graphs L1, L2, respectively, by pendant vertices.

Iterations:

1. If there is a vertex x ∈ X belonging to none C-edge of size 3 or D-edge
of size 2 then return NON UC. Otherwise remove from C all elements
of size ≥ 4.

2. Color D-graph HD with two colors.
3. Construct touching graphs L1 and L2.
4. If Li, i = 1, 2, is not connected then return NON UC.
5. For Li construct spanning tree Ti, i = 1, 2.
6. i := 1.

7. While in Ti there exists a vertex x pendant in both Ti and HD then
delete it from Ti and HD and include x in σ.

8. If at least one of T1 and T2 is not empty then go to 9. Otherwise return
UC, σ-uc-ordering.

9. If i = 1 then assign i := i + 1, otherwise i := i− 1. Go to 7.

Remark. All chords of graph Li with respect to spanning tree Ti, i = 1, 2,
correspond to redundant C-edges inH. The trees T1 and T2 provide existence
of unique (x, y)-invertor for any x, y ∈ X. The last assures at any step of
the algorithm the existence of a vertex, say x, pendant in both HD and one
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of T1 or T2. Notice that not every elimination of pendant vertices generates
a uc- ordering in HD.

Example. Given the mixed hypertree H with X = {0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15}, C = {(0, 1, 2); (0, 1, 3); (0, 2, 3); (0, 3, 4); (0, 4, 5);
(0, 5, 6); (0, 4, 6); (0, 2, 7); (0, 7, 8); (7, 8, 9); (9, 8, 10); (9, 10, 11); (9, 11, 12);
(9, 10, 12); (9, 12, 13); (9, 13, 14); (9, 14, 15); (9, 13, 15)}, and D = {(0, 1);
(0, 2); (0, 3); (0, 4); (0, 5); (0, 6); (0, 7); (7, 8); (8, 9); (9, 10); (9, 11); (9, 12);
(9, 13); (9, 14); (9, 15)}, see the figures 1 and 2 (the C-edges are depicted by
triangles).

Figure 1

Apply the algorithm. Each vertex of H belongs to at least one D-edge of
size 2 and at least one C-edge of size 3. Color HD with 2 colors. Denote by
X1 = {0, 8, 10, 11, 12, 13, 14, 15} and X2 = {1, 2, 3, 4, 5, 6, 7, 9} two color
classes of HD. Construct the following touching graphs L1 = (X1, V1) and
L2 = (X2, V2), where V1 = {(0, 8); (8, 10); (10, 11); (10, 12); (11, 12); (12, 13);
(13, 14); (13, 15); (14, 15)} and V2 = {(1, 2); (1, 3); (2, 3); (2, 7); (3, 4); (4, 5);
(4, 6); (5, 6); (7, 9)}. Choose the respective trees T1 and T2 (Figure 3).

Consecutively applying the algorithm we obtain one of uc-orderings of
H: σ = {15, 14, 13, 11, 12, 10, 1, 5, 9, 6, 4, 3, 2, 8, 0, 7}. At the 7-th step of the
algorithm, after including of vertex 10 in σ, we alternate the trees because T1

has no pendant vertex which is also pendant in HD. The next alternations
of trees are made after adding to σ of vertices 2 and 0. From the above
algorithm we have
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Figure 3
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Theorem 5. A mixed hypertree is uniquely colorable if and only if it is
uc-orderable.

Therefore, combining the Theorems 2, 5 and relation between chromatic
polynomial and chromatic spectrum [6, 7], we obtain the following

Theorem 6. Let H = (X, C,D) be a mixed hypertree. Then the following
five statements are equivalent:
(1) R(H) = (0, 1, 0, . . . , 0);
(2) P (H, k) = k(k − 1);
(3) H is uniquely colorable;
(4) Every two vertices x, y ∈ X are joined by an (x, y)-invertor;
(5) H is uc-orderable.
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