ABOUT UNIQUELY COLORABLE MIXED HYPERTREES

Angela Niculitsa*

Department of Mathematical Cybernetics Moldova State University Mateevici 60, Chişinău, MD-2009, Moldova

AND

VITALY VOLOSHIN[†]

Institute of Mathematics and Informatics Moldovan Academy of Sciences Academiei, 5, Chisinău, MD-2028, Moldova

Abstract

A mixed hypergraph is a triple $\mathcal{H}=(X,\mathcal{C},\mathcal{D})$ where X is the vertex set and each of \mathcal{C},\mathcal{D} is a family of subsets of X, the \mathcal{C} -edges and \mathcal{D} -edges, respectively. A k-coloring of \mathcal{H} is a mapping $c:X\to [k]$ such that each \mathcal{C} -edge has two vertices with the same color and each \mathcal{D} -edge has two vertices with distinct colors. $\mathcal{H}=(X,\mathcal{C},\mathcal{D})$ is called a mixed hypertree if there exists a tree $T=(X,\mathcal{E})$ such that every \mathcal{D} -edge and every \mathcal{C} -edge induces a subtree of T. A mixed hypergraph \mathcal{H} is called uniquely colorable if it has precisely one coloring apart from permutations of colors. We give the characterization of uniquely colorable mixed hypertrees.

Keywords: colorings of graphs and hypergraphs, mixed hypergraphs, unique colorability, trees, hypertrees, elimination ordering.

1991 Mathematics Subject Classification: 05C15.

^{*}Partially supported by DAAD, TU-Dresden.

[†]Partially supported by DFG, TU-Dresden.

1 Preliminaries

We use the standard concepts of graphs and hypergraphs from [1, 2] and updated terminology on mixed hypergraphs from [4, 5, 6, 7].

A mixed hypergraph is a triple $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ where X is the vertex set, |X| = n, and each of \mathcal{C} , \mathcal{D} is a family of subsets of X, the \mathcal{C} -edges and \mathcal{D} -edges, respectively.

A proper k-coloring of a mixed hypergraph is a mapping $c: X \to [k]$ from the vertex set X into a set of k colors so that each \mathcal{C} -edge has two vertices with the same color and each \mathcal{D} -edge has two vertices with different colors. The *chromatic polynomial* $P(\mathcal{H}, k)$ gives the number of different proper k-colorings of \mathcal{H} .

A strict k-coloring is a proper coloring using all k colors. By c(x) we denote the color of vertex $x \in X$ in the coloring c. The maximum number of colors in a strict coloring of \mathcal{H} is the upper chromatic number $\bar{\chi}(\mathcal{H})$; the minimum number is the lower chromatic number $\chi(\mathcal{H})$.

If for a mixed hypergraph \mathcal{H} there exists at least one coloring, then it is called colorable. Otherwise \mathcal{H} is called uncolorable. Throughout the paper we consider colorable mixed hypergraphs.

If $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ is a mixed hypergraph, then the subhypergraph induced by $X' \subseteq X$ is the mixed hypergraph $\mathcal{H}' = (X', \mathcal{C}', \mathcal{D}')$ defined by setting $\mathcal{C}' = \{C \in \mathcal{C} : C \subseteq X'\}, \ \mathcal{D}' = \{D \in \mathcal{D} : D \subseteq X'\}$ and denoted by $\mathcal{H}' = \mathcal{H}/X'$.

The mixed hypergraph $\mathcal{H} = (X, \emptyset, \mathcal{D})$ ($\mathcal{H} = (X, \mathcal{C}, \emptyset)$) is called " \mathcal{D} -hypergraph" (" \mathcal{C} -hypergraph") and denoted by $\mathcal{H}_{\mathcal{D}}$ ($\mathcal{H}_{\mathcal{C}}$). If $\mathcal{H}_{\mathcal{D}}$ contains only \mathcal{D} -edges of size 2 then from the coloring point of view it coincides with classical graph ([2]). We call it \mathcal{D} -graph.

For each k, let r_k be the number of partitions of the vertex set into k nonempty parts (color classes) such that the coloring constraint is satisfied on each C- and D- edge. In fact r_k equals the number of different strict k-colorings of \mathcal{H} if we disregard permutations of colors. The vector $R(\mathcal{H}) = (r_1, \ldots, r_n) = (0, \ldots, 0, r_{\chi(\mathcal{H})}, \ldots, r_{\bar{\chi}(\mathcal{H})}, 0, \ldots, 0)$ is the *chromatic spectrum* of \mathcal{H} .

For the simplicity we assume that two strict k-colorings are considered the same if they can be obtained from each other by permutation of colors. In this case the number of different strict k-colorings coincides with $r_k(\mathcal{H})$. A mixed hypergraph \mathcal{H} is called a uniquely colorable (uc for short) [5] if it has just one strict coloring.

A mixed hypergraph $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ is called *uc-orderable* [5] if there exists the ordering of the vertex set X, say $X = \{x_1, x_2, \dots, x_n\}$, with the following property: each subhypergraph $\mathcal{H}_i = \mathcal{H}/X_i$ induced by the vertex set $X_i = \{x_i, x_{i+1}, \dots, x_n\}$ is uniquely colorable. The corresponding sequence x_1, \dots, x_n will be called a *uc-ordering* of \mathcal{H} .

A sequence $x_0, x_1, \ldots, x_{t+1}$ of vertices is called a \mathcal{D} -path if $(x_i, x_{i+1}) \in \mathcal{D}$, $0 \le i \le t$. A mixed hypergraph $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ is called reduced if $|C| \ge 3$ for each $C \in \mathcal{C}$, and $|D| \ge 2$ for each $D \in \mathcal{D}$, and moreover, no one \mathcal{C} -edge $(\mathcal{D}$ -edge) is included in another \mathcal{C} -edge $(\mathcal{D}$ -edge).

As it follows from the splitting-contraction algorithm [6, 7] colorings properties of arbitrary mixed hypergraph may be obtained from some reduced mixed hypergraph. Therefore, throughout the paper we consider reduced mixed hypergraphs.

Let $C(x)(\mathcal{D}(x))$ denote the set of C-edges (\mathcal{D} -edges) containing vertex $x \in X$. Call the set

$$N(x) = \{ y : y \in X, y \neq x, C(x) \cap C(y) \neq \emptyset, \text{ or } D(x) \cap D(y) \neq \emptyset \}$$

the neighbourhood of the vertex x in a mixed hypergraph \mathcal{H} . In other words, the neighbourhood of a vertex x consists of those vertices which are contained in common C-edges or D-edges with x except x itself.

A vertex x is called simplicial [8] in a mixed hypergraph if its neighbourhood induces a uniquely colorable mixed subhypergraph. A mixed hypergraph $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ is called pseudo-chordal [8] if there exists an ordering σ of the vertex set X, $\sigma = (x_1, x_2, \ldots, x_n)$, such that the vertex x_j is simplicial in the subhypergraph induced by the set $\{x_j, x_{j+1}, \ldots, x_n\}$ for each $j = 1, 2, \ldots, n-1$.

Definition [8]. A mixed hypergraph $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ is called a *mixed hypertree* if there exists a tree $T = (X, \mathcal{E})$ such that every \mathcal{C} -edge induces a subtree of T and every \mathcal{D} -edge induces a subtree of T.

Such a tree T is called further a *host tree*. The edge set of a host tree T is denoted by $\mathcal{E} = \{e_1, e_2, \dots, e_{n-1}\}, e_i = (x, y), x, y \in X, i = 1, 2, \dots, n-1$.

2 Uniquely Colorable Mixed Hypertrees

Let $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ be an arbitrary mixed hypergraph.

Definition. A sequence of vertices of \mathcal{H} , $x = x_0, x_1, \ldots, x_k = y, \ k \ge 1$, is called (x, y)-invertor iff:

- (1) $x_i \neq x_{i+1}, i = 0, 1, \dots, k-1;$
- (2) $(x_i, x_{i+1}) \in \mathcal{D}, i = 0, 1, \dots, k-1;$
- (3) if $x_j \neq x_{j+2}$ then $(x_j, x_{j+1}, x_{j+2}) \in \mathcal{C}, j = 0, 1, \dots, k-2$.

In \mathcal{H} for two vertices $x, y \in X$ there may exist many (x, y)-invertors. The *shortest* (x, y)-invertor contains minimal number of vertices. Two (x, y)-invertors are different if they have at least one distinct vertex. A (x, y)-invertor with x = y is called *cyclic invertor*.

Definition. In a mixed hypertree, a cyclic invertor is called simple if all C-edges are different and every D-edge appears consecutively precisely two times.

Let $\mu=(z_0,z_1,\ldots,z_k=z_0),\ k\geq 6$, be some simple cyclic invertor in a mixed hypertree. Without loss of generality assume that $z_0\neq z_1\neq z_2\neq z_0$. From the definition of simple cyclic invertor it follows that $z_0\neq z_2\neq \ldots \neq z_{k-2}$ and $z_1=z_3=\ldots=z_{k-1}=y$, where y is the center of some star in the host tree T.

Theorem 1. If $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ is a mixed hypertree then

- (1) $\chi(\mathcal{H}) \leq 2$;
- (2) if, in addition, $|\mathcal{D}| \leq n-2$ then $r_2(\mathcal{H}) \geq 2$.

Proof. (1) It follows from the possibility to start at any vertex and to color \mathcal{H} alternatively by the colors 1 and 2 along the host tree T.

(2) Let $T = (X, \mathcal{E})$ be a host tree of the mixed hypertree \mathcal{H} . Since $|\mathcal{D}| \leq n-2$ in T there exists an edge $e = (x,y) \notin \mathcal{D}$. Starting with the vertices x,y we can construct two different colorings with two colors in the following way. First, put c(x) = c(y) = 1 and color all the other vertices alternatively along the tree T with the colors $2, 1, 2, \ldots$. Second, apply the same procedure starting with c(x) = 1 and c(y) = 2.

Theorem 2. A mixed hypertree $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ is uniquely colorable if and only if for every two vertices $x, y \in X$ there exists an (x, y)-invertor.

Proof. \Rightarrow Let c be the unique strict coloring of the mixed hypertree \mathcal{H} . We show that for any two vertices $x, y \in X$ there exists an (x, y)-invertor.

Suppose \mathcal{H} has two vertices $u, v \in X$ such that there is no (u, v)-invertor in \mathcal{H} . Consider the unique (u, v)-path in the host tree T of \mathcal{H} . The assumption implies that either in \mathcal{H} there is no \mathcal{D} -path connecting u and v or in

the sequence $u = x_1, x_2, \dots, x_p = v$ there exists a triple of pairwise different vertices x_j, x_{j+1}, x_{j+2} not belonging to C.

If there is no \mathcal{D} -path connecting u and v then by Theorem 1(2) \mathcal{H} has two different colorings with two colors. This contradicts to the unique colorability of mixed hypertree \mathcal{H} .

Assume that in the sequence $u=x_1,x_2,\ldots,x_p=v$ there exists a triple of pairwise different vertices x_j,x_{j+1},x_{j+2} such that $(x_j,x_{j+1},x_{j+2})\not\in\mathcal{C}$. Evidently, x_{j+1} is not pendant in T. Let T_1 and T_2 be two connected components obtained after deletion of vertex x_{j+1} from the host tree T.

There are two cases. (1) $c(x_j) = c(x_{j+2})$. From Theorem 1(1) it follows that the number of colors in the unique coloring c of \mathcal{H} is 2. Recolor the vertex x_{j+2} and all vertices on even distance from x_{j+2} in the component T_2 with the new color. The obtained coloring is a proper coloring of \mathcal{H} different from c, a contradiction.

(2) $c(x_j) \neq c(x_{j+2})$. Since $(x_j, x_{j+1}), (x_{j+1}, x_{j+2}) \in \mathcal{D}$ we have that $c(x_j) \neq c(x_{j+1}) \neq c(x_{j+2})$. Consequently, \mathcal{H} is colored with at least three colors. But according to Theorem 1 every mixed hypertree can be colored with two colors, a contradiction.

 \Leftarrow Assume that any two vertices $x,y \in X$ are joined by an (x,y)-invertor. Suppose \mathcal{H} has at least two strict colorings c_1 and c_2 . Then there exist two vertices, say x',y', such that $c_1(x')=c_1(y')$ but $c_2(x')\neq c_2(y')$. Consider (x',y')-invertor $x'=x_0,x_1,\ldots,x_k=y'$. From the definition of invertor follows that if k is even then in all possible colorings the vertices x' and y' have the same color. If k is odd then in all possible colorings the vertices x' and y' have distinct colors. Consider the unique (x',y')-path connecting the vertices x',y' on the host tree T. One can see that the parity of k coincides with the parity of length of the path. Moreover, it is true for any other (x',y')-invertor. Therefore, in all colorings either c(x')=c(y') or $c(x')\neq c(y')$, a contradiction.

Corollary 1. If \mathcal{H} is a uniquely colorable mixed hypertree then $\mathcal{D} = \mathcal{E}$.

Definition. Let $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ be a mixed hypergraph. The \mathcal{C} -edge $C \in \mathcal{C}$ is called *redundant* if $R(\mathcal{H}) = R(\mathcal{H}_1)$, where $\mathcal{H}_1 = (X, \mathcal{C} \setminus \{C\}, \mathcal{D})$.

In a uniquely colorable mixed hypertree $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ any \mathcal{C} -edge of size ≥ 4 is redundant because there is no invertor containing such \mathcal{C} -edge.

Theorem 3. In a uniquely colorable mixed hypertree $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ a \mathcal{C} -edge C of size 3 is redundant if and only if there exists a simple cyclic invertor containing C.

Proof. Let $C = (x_1, x_2, x_3)$ be the redundant C-edge. By definition $\mathcal{H}' = (X, C', \mathcal{D})$ where $C' = C \setminus \{C\}$ is a uniquely colorable mixed hypertree. Then for the vertices x_1 and x_3 in \mathcal{H}' there exisits an (x_1, x_3) -invertor: $x_1 = z_0, z_1, \ldots, z_k = x_3$. Construct the (x_1, x_1) -invertor in the following way: $x_1 = z_0, z_1, \ldots, z_k = x_3, x_2, x_1$. This invertor is a simple cyclic invertor of \mathcal{H} containing C.

Conversely, suppose that C-edge, $C = (x_1, x_2, x_3)$ is contained in some simple cyclic invertor $x_1 = z_0, z_1, \ldots, z_k = x_3, x_2, x_1$. Then the vertices x_1 and x_3 are joined by two different (x_1, x_3) -invertors: $(x_1, x_2, x_3) = C$ and $(x_1 = z_0, z_1, \ldots, z_k = x_3) = (x_1, x_3)'$ -invertor. In each (x, y)-invertor containing C replace this C-edge by $(x_1, x_3)'$ -invertor. Thus, $\mathcal{H}' = (X, \mathcal{C} \setminus \{C\}, \mathcal{D})$ is uniquely colorable, i.e., the C-edge C is redundant.

Let us have a mixed hypergraph $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$. Consider $X = X_1 \cup X_2 \cup \ldots \cup X_i$ any *i*-coloring of \mathcal{H} , $\chi(\mathcal{H}) \leq i \leq \bar{\chi}(\mathcal{H})$. Choose any X_j and construct touching graph $L_j = (X_j, V_j)$ in the following way: if some $C \in \mathcal{C}$ satisfies $C \cap X_j = \{x, y\}$ and $|C \cap X_k| \leq 1$, $k \neq j$, for some $x, y \in X_j$, then $(x, y) \in V_j$ (cf. pair graphs [3]).

Theorem 4. If a mixed hypertree $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ is uniquely colorable then in its 2-coloring the touching graphs L_1 and L_2 are connected.

Proof. By Theorem 1(2), Corollary 1 we obtain $|\mathcal{D}| = n - 1$, $\bar{\chi} = 2$ for each uniquely colorable mixed hypertree. If at least one touching graph is disconnected, then we can construct a new coloring of \mathcal{H} with 3 colors by assigning new color to the vertices of one component. This assures the proper coloring also of any \mathcal{C} -edge of size ≥ 4 .

Corollary 2. The minimal number of C-edges in any uniquely colorable mixed hypertree $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ is n-2.

Proof. Let \mathcal{H} be a uniquely colorable mixed hypertree. Consider its unique 2-coloring, say $X = X_1 \cup X_2$, and construct the touching graphs $L_1 = (X_1, V_1), L_2 = (X_2, V_2)$. The minimal number of edges in L_i to be connected is $|X_i| - 1$, and in this case each of L_i is a tree, i = 1, 2. Since every edge in L_i corresponds to some \mathcal{C} -edge of \mathcal{H} , we obtain that the minimal number of \mathcal{C} -edges is:

$$|X_1| - 1 + |X_2| - 1 = |X| - 2.$$

Corollary 3. In a uniquely colorable mixed hypertree $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ the number of redundant \mathcal{C} -edges is $|\mathcal{C}| - n + 2$.

Proof. Indeed, consider touching graphs L_i , and construct a spanning trees T_i , i = 1, 2. Each elementary cycle in L_i generates some simple cyclic invertor in \mathcal{H} . Therefore, each \mathcal{C} -edge of \mathcal{H} which has a size ≥ 4 or corresponds to some edge of L_i which is a chord with respect to T_i , is redundant. Hence, the assertion follows.

Remark. Redundant C-edge may become not redundant after deleting from C some another redundant C-edges.

Definition. A mixed hypertree $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ is called complete if every edge of the host tree T forms a \mathcal{D} -edge of \mathcal{H} , and every path on three vertices of T forms a \mathcal{C} -edge in \mathcal{H} .

Therefore, having the host tree T for the complete mixed hypertree $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ we obtain that $\mathcal{D} = \mathcal{E}$.

Denote by M the number of C-edges of a complete mixed hypertree $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$. Then

$$M = \sum_{\substack{x \in T \\ d(x) > 2}} \left(\begin{array}{c} d(x) \\ 2 \end{array} \right),$$

where d(x) is the degree of vertex x in the host tree T.

Examples show that for any k > 1 one can construct a mixed hypertree $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ with $|\mathcal{D}| = n - 1$, $n - 2 \le |\mathcal{C}| \le M$ and $\bar{\chi}(\mathcal{H}) = k$. Therefore these bounds on $|\mathcal{D}|$ and $|\mathcal{C}|$ are not sufficient for the mixed hypertrees to be uniquely colorable.

Proposition 1. A uniquely colorable mixed hypertree with |C| = n - 2 is a pseudo-chordal mixed hypergraph.

Proof. Since \mathcal{H} is uniquely colorable mixed hypertree and $|\mathcal{C}| = n - 2$ then it contains no redundant \mathcal{C} -edges and, moreover, all \mathcal{C} -edges have the size 3. It follows that there exists a pendant vertex, say x, of the host tree $T = (X, \mathcal{E})$ which belongs to precisely one \mathcal{C} -edge, say (x, y, z). The neighbourhood of x induces a complete \mathcal{D} -graph on 2 vertices, which itself is uniquely colorable. Consequently, the vertex x is simplicial in \mathcal{H} . Deleting the vertex x and \mathcal{C} -edge and \mathcal{D} -edge containing it, obtain \mathcal{H}' which

is uniquely colorable mixed hypertree with minimal number of C-edges. Indeed, if \mathcal{H}' would be not uniquely colorable, then two distinct colorings of \mathcal{H}' formed different colorings of \mathcal{H} because c(x) = c(z), a contradiction.

Remark. Redundant C-edges enlarge the neighbourhood of some vertices without affecting any coloring. Therefore, to recognise the pseudo-chordality we need to delete the redundant C-edges.

From the Theorem 4, Corollaries 2–4 and Proposition 1 we conclude that a uc-orderable mixed hypertree \mathcal{H} can be recognised by consecutive elemination of pendant vertices of \mathcal{D} -graph $\mathcal{H}_{\mathcal{D}}$ in special ordering by applying the following

Algorithm (uc-ordering).

Input: A mixed hypertree $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$, σ – n-dimensional empty vector.

Idea: Simultanious decomposition of $\mathcal{H}_{\mathcal{D}}$, spanning trees T_1 and T_2 of touching graphs L_1, L_2 , respectively, by pendant vertices.

Iterations:

- 1. If there is a vertex $x \in X$ belonging to none \mathcal{C} -edge of size 3 or \mathcal{D} -edge of size 2 then return **NON UC**. Otherwise remove from \mathcal{C} all elements of size ≥ 4 .
- 2. Color \mathcal{D} -graph $\mathcal{H}_{\mathcal{D}}$ with two colors.
- 3. Construct touching graphs L_1 and L_2 .
- 4. If L_i , i = 1, 2, is not connected then return **NON UC**.
- 5. For L_i construct spanning tree T_i , i = 1, 2.
- 6. i := 1.
- 7. While in T_i there exists a vertex x pendant in both T_i and $\mathcal{H}_{\mathcal{D}}$ then delete it from T_i and $\mathcal{H}_{\mathcal{D}}$ and include x in σ .
- 8. If at least one of T_1 and T_2 is not empty then go to 9. Otherwise return UC, σ -uc-ordering.
- 9. If i = 1 then assign i := i + 1, otherwise i := i 1. Go to 7.

Remark. All chords of graph L_i with respect to spanning tree T_i , i = 1, 2, correspond to redundant C-edges in \mathcal{H} . The trees T_1 and T_2 provide existence of unique (x, y)-invertor for any $x, y \in X$. The last assures at any step of the algorithm the existence of a vertex, say x, pendant in both $\mathcal{H}_{\mathcal{D}}$ and one

of T_1 or T_2 . Notice that not every elimination of pendant vertices generates a uc- ordering in $\mathcal{H}_{\mathcal{D}}$.

Example. Given the mixed hypertree \mathcal{H} with $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}, <math>\mathcal{C} = \{(0, 1, 2); (0, 1, 3); (0, 2, 3); (0, 3, 4); (0, 4, 5); (0, 5, 6); (0, 4, 6); (0, 2, 7); (0, 7, 8); (7, 8, 9); (9, 8, 10); (9, 10, 11); (9, 11, 12); (9, 10, 12); (9, 12, 13); (9, 13, 14); (9, 14, 15); (9, 13, 15)\}, and <math>\mathcal{D} = \{(0, 1); (0, 2); (0, 3); (0, 4); (0, 5); (0, 6); (0, 7); (7, 8); (8, 9); (9, 10); (9, 11); (9, 12); (9, 13); (9, 14); (9, 15)\}$, see the figures 1 and 2 (the \mathcal{C} -edges are depicted by triangles).

$$\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$$

Figure 1

Apply the algorithm. Each vertex of \mathcal{H} belongs to at least one \mathcal{D} -edge of size 2 and at least one \mathcal{C} -edge of size 3. Color $\mathcal{H}_{\mathcal{D}}$ with 2 colors. Denote by $X_1 = \{0, 8, 10, 11, 12, 13, 14, 15\}$ and $X_2 = \{1, 2, 3, 4, 5, 6, 7, 9\}$ two color classes of $\mathcal{H}_{\mathcal{D}}$. Construct the following touching graphs $L_1 = (X_1, V_1)$ and $L_2 = (X_2, V_2)$, where $V_1 = \{(0, 8); (8, 10); (10, 11); (10, 12); (11, 12); (12, 13); (13, 14); (13, 15); (14, 15)\}$ and $V_2 = \{(1, 2); (1, 3); (2, 3); (2, 7); (3, 4); (4, 5); (4, 6); (5, 6); (7, 9)\}$. Choose the respective trees T_1 and T_2 (Figure 3).

Consecutively applying the algorithm we obtain one of uc-orderings of \mathcal{H} : $\sigma = \{15, 14, 13, 11, 12, 10, 1, 5, 9, 6, 4, 3, 2, 8, 0, 7\}$. At the 7-th step of the algorithm, after including of vertex 10 in σ , we alternate the trees because T_1 has no pendant vertex which is also pendant in $\mathcal{H}_{\mathcal{D}}$. The next alternations of trees are made after adding to σ of vertices 2 and 0. From the above algorithm we have

Figure 2. $\mathcal{H}_{\mathcal{D}} = (X, \emptyset, \mathcal{D})$

Figure 3

Theorem 5. A mixed hypertree is uniquely colorable if and only if it is uc-orderable.

Therefore, combining the Theorems 2, 5 and relation between chromatic polynomial and chromatic spectrum [6, 7], we obtain the following

Theorem 6. Let $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ be a mixed hypertree. Then the following five statements are equivalent:

- (1) $R(\mathcal{H}) = (0, 1, 0, \dots, 0);$
- (2) $P(\mathcal{H}, k) = k(k-1);$
- (3) \mathcal{H} is uniquely colorable;
- (4) Every two vertices $x, y \in X$ are joined by an (x, y)-invertor;
- (5) \mathcal{H} is uc-orderable.

References

- [1] C. Berge, Hypergraphs: combinatorics of finite sets (North Holland, 1989).
- [2] C. Berge, Graphs and Hypergraphs (North Holland, 1973).
- [3] K. Diao, P. Zhao and H. Zhou, About the upper chromatic number of a co-hypergraph, submitted.
- [4] Zs. Tuza and V. Voloshin, *Uncolorable mixed hypergraphs*, Discrete Appl. Math. 99 (2000) 209–227.
- [5] Zs. Tuza, V. Voloshin and H. Zhou, Uniquely colorable mixed hypergraphs, submitted.
- [6] V. Voloshin, The mixed hypergraphs, Computer Science J. Moldova, 1 (1993) 45–52.
- [7] V. Voloshin, On the upper chromatic number of a hypergraph, Australasian J. Combin. 11 (1995) 25–45.
- [8] V. Voloshin and H. Zhou, *Pseudo-chordal mixed hypergraphs*, Discrete Math. **202** (1999) 239–248.

Received 16 April 1999 Revised 24 March 2000