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Abstract

A mixed hypergraph is a triple H = (X,C,D) where X is the
vertex set and each of C, D is a family of subsets of X, the C-edges and
D-edges, respectively. A k-coloring of H is a mapping ¢ : X — [k]
such that each C-edge has two vertices with the same color and each
D-edge has two vertices with distinct colors. H = (X,C, D) is called
a mixed hypertree if there exists a tree T' = (X, &) such that every
D-edge and every C-edge induces a subtree of T. A mixed hypergraph
‘H is called uniquely colorable if it has precisely one coloring apart
from permutations of colors. We give the characterization of uniquely

colorable mixed hypertrees.
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1 Preliminaries

We use the standard concepts of graphs and hypergraphs from [1, 2| and
updated terminology on mixed hypergraphs from [4, 5, 6, 7].

A mized hypergraph is a triple H = (X,C, D) where X is the vertex set,
|X| = n, and each of C, D is a family of subsets of X, the C-edges and
D-edges, respectively.

A proper k-coloring of a mixed hypergraph is a mapping ¢ : X — [k]
from the vertex set X into a set of k colors so that each C-edge has two ver-
tices with the same color and each D-edge has two vertices with different co-
lors. The chromatic polynomial P(H, k) gives the number of different proper
k-colorings of H.

A strict k-coloring is a proper coloring using all k colors. By c¢(z) we
denote the color of vertex x € X in the coloring ¢. The maximum number
of colors in a strict coloring of H is the upper chromatic number x(H); the
minimum number is the lower chromatic number x(H).

If for a mixed hypergraph H there exists at least one coloring, then it is
called colorable. Otherwise H is called uncolorable. Throughout the paper
we consider colorable mixed hypergraphs.

If H = (X,C, D) is a mixed hypergraph, then the subhypergraph induced
by X’ C X is the mixed hypergraph H' = (X’,C’,D’) defined by setting
C={CecC:CCX'},D ={DeD:DC X'} and denoted by
H =H/X'.

The mixed hypergraph H = (X,0,D) (H = (X,C,0)) is called "D-
hypergraph” (”C-hypergraph”) and denoted by Hp (H¢). If Hp contains
only D-edges of size 2 then from the coloring point of view it coincides with
classical graph ([2]). We call it D-graph.

For each k, let r; be the number of partitions of the vertex set into k
nonempty parts (color classes) such that the coloring constraint is satisfied
on each C- and D- edge. In fact r; equals the number of different strict
k-colorings of H if we disregard permutations of colors. The vector R(H) =
(71, 5m0) = (0, ., 0,7y (3)s - - s (15 0, - - -, 0) is the chromatic spectrum
of H.

For the simplicity we assume that two strict k-colorings are considered
the same if they can be obtained from each other by permutation of colors.
In this case the number of different strict k-colorings coincides with rx(H).
A mixed hypergraph H is called a uniquely colorable (uc for short) [5] if it
has just one strict coloring.
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A mixed hypergraph H = (X,C, D) is called uc-orderable [5] if there exists
the ordering of the vertex set X, say X = {x1,z9,...,x,}, with the follow-
ing property: each subhypergraph H; = H/X; induced by the vertex set

X; = {xi,xit1,...,2,} is uniquely colorable. The corresponding sequence
Z1,-..,Ty Will be called a uc-ordering of 'H.
A sequence g, 1, . . ., x4 of vertices is called a D-path if (z;, z;4+1) € D,

0 < i < t. A mixed hypergraph H = (X,C, D) is called reduced if |C| > 3
for each C € C, and |D| > 2 for each D € D, and moreover, no one C-edge
(D-edge) is included in another C-edge (D-edge).

As it follows from the splitting-contraction algorithm [6, 7] colorings
properties of arbitrary mixed hypergraph may be obtained from some
reduced mixed hypergraph. Therefore, throughout the paper we consider
reduced mixed hypergraphs.

Let C(z)(D(x)) denote the set of C-edges (D-edges) containing vertex
x € X. Call the set

N@)={y: ye X, y#z, C(x)NC(y) #0, or D(z)ND(y) # 0}

the neighbourhood of the vertex x in a mixed hypergraph H. In other words,
the neighbourhood of a vertex x consists of those vertices which are con-
tained in common C-edges or D-edges with x except x itself.

A vertex z is called simplicial [8] in a mixed hypergraph if its
neighbourhood induces a uniquely colorable mixed subhypergraph. A mixed
hypergraph H = (X,C,D) is called pseudo-chordal [8] if there exists an
ordering o of the vertex set X, o = (x1,22,...,2y), such that the vertex x;
is simplicial in the subhypergraph induced by the set {x}, z;41,...,2,} for
each j =1,2,...,n—1.

Definition [8]. A mixed hypergraph H = (X,C,D) is called a mized hy-
pertree if there exists a tree T' = (X, £) such that every C-edge induces a
subtree of T' and every D-edge induces a subtree of T'.

Such a tree T is called further a host tree. The edge set of a host tree T is
denoted by £ = {e1,e2,...,en_1}, i = (2,y), z,y e X, i=1,2,...,n— L.

2 Uniquely Colorable Mixed Hypertrees
Let H = (X,C, D) be an arbitrary mixed hypergraph.

Definition. A sequence of vertices of H, x = xg,x1,...,2x =y, k > 1, is
called (z,y)-invertor iff:
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(1) xi%xi-l-l’i:()?l?"'uk_l;
(2) (:ﬁi,xiJrl)ED,iZO,l,...,k}—l;
(3) if T #* Zjyo then (a;j,:z:j+1,xj+2) €eC,j=0,1,...,k—2.

In H for two vertices z,y € X there may exist many (x,y)-invertors.
The shortest (z,y)-invertor contains minimal number of vertices. Two
(x,y)-invertors are different if they have at least one distinct vertex.
A (x,y)-invertor with z = y is called cyclic invertor.

Definition. In a mixed hypertree, a cyclic invertor is called simple if all
C-edges are different and every D-edge appears consecutively precisely two
times.

Let = (20,21,.--,2k = 20), k > 6, be some simple cyclic invertor in a
mixed hypertree. Without loss of generality assume that zg # 21 # 29 # 29.
From the definition of simple cyclic invertor it follows that zg £ 2o # ... #
zk—o and 21 = 23 = ... = z,_1 = Yy, where y is the center of some star in the
host tree T'.

Theorem 1. If 'H = (X,C, D) is a mized hypertree then
(1) x(H) <2;
(2) if, in addition, |D| < n —2 then ro(H) > 2.

Proof. (1) It follows from the possibility to start at any vertex and to
color ‘H alternatively by the colors 1 and 2 along the host tree T

(2) Let T = (X,&) be a host tree of the mixed hypertree H. Since
|ID| < n—2in T there exists an edge e = (z,y) ¢ D. Starting with the
vertices x,y we can construct two different colorings with two colors in the
following way. First, put ¢(x) = ¢(y) = 1 and color all the other vertices
alternatively along the tree T with the colors 2, 1,2,.... Second, apply the
same procedure starting with ¢(z) =1 and ¢(y) = 2. |

Theorem 2. A mized hypertree H = (X,C, D) is uniquely colorable if and
only if for every two vertices xz,y € X there ezists an (z,y)-invertor.

Proof. = Let ¢ be the unique strict coloring of the mixed hypertree H.
We show that for any two vertices z,y € X there exists an (z, y)-invertor.
Suppose H has two vertices u,v € X such that there is no (u, v)-invertor
in H. Consider the unique (u,v)-path in the host tree T of H. The assump-
tion implies that either in H there is no D-path connecting u and v or in
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the sequence v = x1, x2,...,x, = v there exists a triple of pairwise different
vertices T, Z;41,xj+2 not belonging to C.

If there is no D-path connecting v and v then by Theorem 1(2) H
has two different colorings with two colors. This contradicts to the unique
colorability of mixed hypertree H.

Assume that in the sequence v = x1, 2, ..., 2, = v there exists a triple
of pairwise different vertices x;, 241,212 such that (xj, 211, 242) & C.
Evidently, x;41 is not pendant in 7. Let T} and 75 be two connected com-
ponents obtained after deletion of vertex z;1 from the host tree T'.

There are two cases. (1) ¢(z;) = ¢(zj4+2). From Theorem 1(1) it follows
that the number of colors in the unique coloring ¢ of H is 2. Recolor the
vertex x ;42 and all vertices on even distance from x ;42 in the component 75
with the new color. The obtained coloring is a proper coloring of H different
from ¢, a contradiction.

(2) e(xj) # c(xj2). Since (zj,zj41), (Tj41,2j42) € D we have that
c(xj) # c(xjy1) # c(xj42). Consequently, H is colored with at least three
colors. But according to Theorem 1 every mixed hypertree can be colored
with two colors, a contradiction.

< Assume that any two vertices xz,y € X are joined by an (z,y)-
invertor. Suppose H has at least two strict colorings ¢; and ¢o. Then there
exist two vertices, say 2/,y/, such that ¢1(2) = ¢1(y') but ca(2') # co(y/).
Consider (2/,y")-invertor ' = xg,1,...,2x = 3. From the definition of
invertor follows that if k£ is even then in all possible colorings the vertices
2’ and gy’ have the same color. If k is odd then in all possible colorings
the vertices #’ and y' have distinct colors. Consider the unique (2, y)-path
connecting the vertices 2/, y’ on the host tree T. One can see that the parity
of k coincides with the parity of length of the path. Moreover, it is true for
any other (2/,y’)-invertor. Therefore, in all colorings either ¢(z') = ¢(y') or
c(z") # ¢(y'), a contradiction. ]

Corollary 1. If H is a uniquely colorable mized hypertree then D = £.

Definition. Let H = (X,C, D) be a mixed hypergraph. The C-edge C € C
is called redundant if R(H) = R(H1), where H; = (X,C\ {C}, D).

In a uniquely colorable mixed hypertree H = (X,C, D) any C-edge of size
> 4 is redundant because there is no invertor containing such C-edge.

Theorem 3. In a uniquely colorable mixzed hypertree H = (X,C, D) a C-edge
Cof size 3 is redundant if and only if there exists a simple cyclic invertor
containing C'.
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Proof. Let C = (x1,x2,23) be the redundant C-edge. By definition H' =
(X,C’, D) where C' = C\ {C} is a uniquely colorable mixed hypertree. Then
for the vertices z1 and z3 in H’ there exisits an (z1,x3)-invertor: x; =
20,21,...,2k = x3. Construct the (x1,x1)-invertor in the following way:
T1 = 20,%1,...,2k = T3,T9,T1. This invertor is a simple cyclic invertor of
‘H containing C'

Conversely, suppose that C-edge, C' = (x1,x2,x3) is contained in some
simple cyclic invertor =1 = zg,21,...,2k = T3,T2,T1. Then the vertices
z1 and x3 are joined by two different (x1,xs)-invertors: (x1,x2,23) = C
and (x1 = 20,21,...,2k = x3) = (21, 23) -invertor. In each (z,y)-invertor
containing C' replace this C-edge by (z1,z3)-invertor. Thus, H' = (X,C\
{C}, D) is uniquely colorable, i.e., the C-edge C' is redundant. ]

Let us have a mixed hypergraph H = (X,C,D) . Consider X = X; U X3
U...U X; any i-coloring of H, x(H) < ¢ < x(H). Choose any X; and
construct touching graph L; = (X, V;) in the following way: if some C' € C
satisfies C N X; = {z,y} and [C N Xy| <1, k # j, for some z,y € X, then
(x,y) € Vj (cf. pair graphs [3]).

Theorem 4. If a mized hypertree H = (X,C, D) is uniquely colorable then
in its 2-coloring the touching graphs L1 and Lo are connected.

Proof. By Theorem 1(2), Corollary 1 we obtain |D| =n — 1, x = 2 for
each uniquely colorable mixed hypertree. If at least one touching graph
is disconnected, then we can construct a new coloring of H with 3 colors
by assigning new color to the vertices of one component. This assures the
proper coloring also of any C-edge of size > 4. [

Corollary 2. The minimal number of C-edges in any uniquely colorable
mized hypertree H = (X,C,D) is n — 2.

Proof. Let 'H be a uniquely colorable mixed hypertree. Consider its
unique 2-coloring, say X = X; U Xa, and construct the touching graphs
Li = (X1,V1), Ly = (X2,V32). The minimal number of edges in L; to be
connected is | X;| — 1, and in this case each of L; is a tree, i« = 1,2. Since
every edge in L; corresponds to some C-edge of H, we obtain that the
minimal number of C-edges is:

1X1| —1+|Xo| —1=]X] - 2.
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Corollary 3. In a uniquely colorable mized hypertree H = (X,C,D) the
number of redundant C-edges is |C| —n + 2.

Proof. Indeed, consider touching graphs L;, and construct a spanning trees
T;, 1 = 1,2. Each elementary cycle in L; generates some simple cyclic invertor
in H. Therefore, each C-edge of H which has a size > 4 or corresponds to
some edge of L; which is a chord with respect to 7T;, is redundant. Hence,
the assertion follows. (]

Remark. Redundant C-edge may become not redundant after deleting from
C some another redundant C-edges.

Definition. A mixed hypertree H = (X,C,D) is called complete if every
edge of the host tree T' forms a D-edge of H, and every path on three vertices
of T forms a C-edge in H.

Therefore, having the host tree T for the complete mixed hypertree H =
(X,C,D) we obtain that D = £.

Denote by M the number of C-edges of a complete mixed hypertree H =

(X,C,D) . Then
d(x)

zeT
d(z)>2
where d(z) is the degree of vertex z in the host tree T.

Examples show that for any k > 1 one can construct a mixed hypertree
H=(X,C,D)with |[D| =n—1, n—2 <|C| < M and x(H) = k. Therefore
these bounds on |D| and |C| are not sufficient for the mixed hypertrees to
be uniquely colorable.

Proposition 1. A uniquely colorable mized hypertree with |C| =n —2 is a
pseudo-chordal mized hypergraph.

Proof. Since H is uniquely colorable mixed hypertree and |C| = n — 2
then it contains no redundant C-edges and, moreover, all C-edges have the
size 3. It follows that there exists a pendant vertex, say x, of the host
tree T = (X, &) which belongs to precisely one C-edge, say (x,y,z). The
neighbourhood of x induces a complete D-graph on 2 vertices, which itself
is uniquely colorable. Consequently, the vertex x is simplicial in H. Delet-
ing the vertex z and C-edge and D-edge containing it, obtain H’' which
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is uniquely colorable mixed hypertree with minimal number of C-edges.
Indeed, if H" would be not uniquely colorable, then two distinct colorings of
H' formed different colorings of H because c¢(z) = ¢(z), a contradiction. =

Remark. Redundant C-edges enlarge the neighbourhood of some vertices
without affecting any coloring. Therefore, to recognise the pseudo-chordality
we need to delete the redundant C-edges.

From the Theorem 4, Corollaries 2—4 and Proposition 1 we conclude that a
uc-orderable mixed hypertree H can be recognised by consecutive elemina-
tion of pendant vertices of D-graph Hp in special ordering by applying the
following

Algorithm (uc-ordering).

Input: A mixed hypertree H = (X,C, D) , 0 — n-dimensional empty vector.

Idea: Simultanious decomposition of Hp, spanning trees 77 and Tb of
touching graphs L, Lo, respectively, by pendant vertices.
Iterations:

1. If there is a vertex x € X belonging to none C-edge of size 3 or D-edge
of size 2 then return NON UC. Otherwise remove from C all elements
of size > 4.

Color D-graph Hp with two colors.

Construct touching graphs L and Ls.

If L;, i =1,2, is not connected then return NON UC.

For L; construct spanning tree T;, i = 1, 2.

7= 1.

While in T; there exists a vertex x pendant in both 7; and Hp then
delete it from T; and Hp and include z in o.

NS e N

8. If at least one of 17 and T is not empty then go to 9. Otherwise return
UC, o-uc-ordering.

9. If ¢ = 1 then assign ¢ := ¢+ 1, otherwise i :=¢ — 1. Go to 7.

Remark. All chords of graph L; with respect to spanning tree T;, i = 1,2,
correspond to redundant C-edges in H. The trees T} and T3 provide existence
of unique (z,y)-invertor for any x,y € X. The last assures at any step of
the algorithm the existence of a vertex, say x, pendant in both Hp and one
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of T1 or T,. Notice that not every elimination of pendant vertices generates
a uc- ordering in Hp.

Example. Given the mixed hypertree H with X = {0,1 ,3 4,5,6,7,8
0,10, 11,12, 13, 14, 15}, C = {(0,1,2): (0,1,3); (0,2,3); (0,3,4); (0,4,5
(0,5,6); (0,4,6): (0,2,7); (0,7,8); (7,8,9); (9,8,10); (9,10, 11) (9,11,12
(9,10,12); (9,12, 13); (9, 13, 14); (9, 14,15); (9, 13, 15)}, and D = {(0, 1
(0,2); (0,3); (0,4); (0,5); (0,6); (0,7); (7,8); (8,9); (9, 10); (9, 11); (9,12
(9,13); (9,14);(9,15)}, see the figures 1 and 2 (the C-edges are depicted by
triangles).

)
);
);
);
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oo
—_
—

e *10

Figure 1

Apply the algorithm. Each vertex of H belongs to at least one D-edge of
size 2 and at least one C-edge of size 3. Color Hp with 2 colors. Denote by
X; = {0, 8, 10, 11, 12, 13, 14, 15} and X5 = {1, 2, 3, 4, 5, 6,7, 9} two color
classes of Hp. Construct the following touching graphs L; = (X1, V1) and
Ly = (X2, V4), where Vi = {(0,8); (8,10); (10, 11); (10, 12); (11,12); (12, 13);
(13,14); (13,15); (14,15)} and Vo = {(1,2); (1,3); (2,3); (2,7); (3,4); (4,5);
(4,6); (5,6); (7,9)}. Choose the respective trees T} and T (Figure 3).

Consecutively applying the algorithm we obtain one of uc-orderings of
H: o ={15,14,13,11,12,10,1,5,9,6,4,3,2,8,0,7}. At the 7-th step of the
algorithm, after including of vertex 10 in o, we alternate the trees because T}
has no pendant vertex which is also pendant in Hp. The next alternations
of trees are made after adding to o of vertices 2 and 0. From the above
algorithm we have
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Theorem 5. A mized hypertree is uniquely colorable if and only if it is
uc-orderable.

Therefore, combining the Theorems 2, 5 and relation between chromatic
polynomial and chromatic spectrum [6, 7], we obtain the following

Theorem 6. Let H = (X,C,D) be a mized hypertree. Then the following
five statements are equivalent:

1) R(H)=(0,1,0,...,0);

P(H,k) = k(k —1);

H is uniquely colorable;

Every two vertices z,y € X are joined by an (x,y)-invertor;

‘H is uc-orderable.
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