ABOUT UNIQUELY COLORABLE MIXED HYPERTREES

Angela Niculitsa*
Department of Mathematical Cybernetics
Moldova State University
Mateevici 60, Chişinău, MD-2009, Moldova
AND
Vitaly Voloshin ${ }^{\dagger}$
Institute of Mathematics and Informatics Moldovan Academy of Sciences
Academiei, 5, Chişinău, MD-2028, Moldova

Abstract

A mixed hypergraph is a triple $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ where X is the vertex set and each of \mathcal{C}, \mathcal{D} is a family of subsets of X, the \mathcal{C}-edges and \mathcal{D}-edges, respectively. A k-coloring of \mathcal{H} is a mapping $c: X \rightarrow[k]$ such that each \mathcal{C}-edge has two vertices with the same color and each \mathcal{D}-edge has two vertices with distinct colors. $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ is called a mixed hypertree if there exists a tree $T=(X, \mathcal{E})$ such that every \mathcal{D}-edge and every \mathcal{C}-edge induces a subtree of T. A mixed hypergraph \mathcal{H} is called uniquely colorable if it has precisely one coloring apart from permutations of colors. We give the characterization of uniquely colorable mixed hypertrees.

Keywords: colorings of graphs and hypergraphs, mixed hypergraphs, unique colorability, trees, hypertrees, elimination ordering.
1991 Mathematics Subject Classification: 05C15.

[^0]
1 Preliminaries

We use the standard concepts of graphs and hypergraphs from [1, 2] and updated terminology on mixed hypergraphs from $[4,5,6,7]$.

A mixed hypergraph is a triple $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ where X is the vertex set, $|X|=n$, and each of \mathcal{C}, \mathcal{D} is a family of subsets of X, the \mathcal{C}-edges and \mathcal{D}-edges, respectively.

A proper k-coloring of a mixed hypergraph is a mapping $c: X \rightarrow[k]$ from the vertex set X into a set of k colors so that each \mathcal{C}-edge has two vertices with the same color and each \mathcal{D}-edge has two vertices with different colors. The chromatic polynomial $P(\mathcal{H}, k)$ gives the number of different proper k-colorings of \mathcal{H}.

A strict k-coloring is a proper coloring using all k colors. By $c(x)$ we denote the color of vertex $x \in X$ in the coloring c. The maximum number of colors in a strict coloring of \mathcal{H} is the upper chromatic number $\bar{\chi}(\mathcal{H})$; the minimum number is the lower chromatic number $\chi(\mathcal{H})$.

If for a mixed hypergraph \mathcal{H} there exists at least one coloring, then it is called colorable. Otherwise \mathcal{H} is called uncolorable. Throughout the paper we consider colorable mixed hypergraphs.

If $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ is a mixed hypergraph, then the subhypergraph induced by $X^{\prime} \subseteq X$ is the mixed hypergraph $\mathcal{H}^{\prime}=\left(X^{\prime}, \mathcal{C}^{\prime}, \mathcal{D}^{\prime}\right)$ defined by setting $\mathcal{C}^{\prime}=\left\{C \in \mathcal{C}: C \subseteq X^{\prime}\right\}, \mathcal{D}^{\prime}=\left\{D \in \mathcal{D}: D \subseteq X^{\prime}\right\}$ and denoted by $\mathcal{H}^{\prime}=\mathcal{H} / X^{\prime}$.

The mixed hypergraph $\mathcal{H}=(X, \emptyset, \mathcal{D})(\mathcal{H}=(X, \mathcal{C}, \emptyset))$ is called ${ }^{\prime} \mathcal{D}$ hypergraph" ("C-hypergraph") and denoted by $\mathcal{H}_{\mathcal{D}}\left(\mathcal{H}_{\mathcal{C}}\right)$. If $\mathcal{H}_{\mathcal{D}}$ contains only \mathcal{D}-edges of size 2 then from the coloring point of view it coincides with classical graph ([2]). We call it \mathcal{D}-graph.

For each k, let r_{k} be the number of partitions of the vertex set into k nonempty parts (color classes) such that the coloring constraint is satisfied on each \mathcal{C} - and \mathcal{D} - edge. In fact r_{k} equals the number of different strict k-colorings of \mathcal{H} if we disregard permutations of colors. The vector $R(\mathcal{H})=$ $\left(r_{1}, \ldots, r_{n}\right)=\left(0, \ldots, 0, r_{\chi(\mathcal{H})}, \ldots, r_{\bar{\chi}(\mathcal{H})}, 0, \ldots, 0\right)$ is the chromatic spectrum of \mathcal{H}.

For the simplicity we assume that two strict k-colorings are considered the same if they can be obtained from each other by permutation of colors. In this case the number of different strict k-colorings coincides with $r_{k}(\mathcal{H})$. A mixed hypergraph \mathcal{H} is called a uniquely colorable (uc for short) [5] if it has just one strict coloring.

A mixed hypergraph $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ is called uc-orderable [5] if there exists the ordering of the vertex set X, say $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, with the following property: each subhypergraph $\mathcal{H}_{i}=\mathcal{H} / X_{i}$ induced by the vertex set $X_{i}=\left\{x_{i}, x_{i+1}, \ldots, x_{n}\right\}$ is uniquely colorable. The corresponding sequence x_{1}, \ldots, x_{n} will be called a uc-ordering of \mathcal{H}.

A sequence $x_{0}, x_{1}, \ldots, x_{t+1}$ of vertices is called a \mathcal{D}-path if $\left(x_{i}, x_{i+1}\right) \in \mathcal{D}$, $0 \leq i \leq t$. A mixed hypergraph $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ is called reduced if $|C| \geq 3$ for each $C \in \mathcal{C}$, and $|D| \geq 2$ for each $D \in \mathcal{D}$, and moreover, no one \mathcal{C}-edge (\mathcal{D}-edge) is included in another \mathcal{C}-edge (\mathcal{D}-edge).

As it follows from the splitting-contraction algorithm $[6,7]$ colorings properties of arbitrary mixed hypergraph may be obtained from some reduced mixed hypergraph. Therefore, throughout the paper we consider reduced mixed hypergraphs.

Let $\mathcal{C}(x)(\mathcal{D}(x))$ denote the set of \mathcal{C}-edges (\mathcal{D}-edges) containing vertex $x \in X$. Call the set

$$
N(x)=\{y: y \in X, y \neq x, \mathcal{C}(x) \cap \mathcal{C}(y) \neq \emptyset, \text { or } \mathcal{D}(x) \cap \mathcal{D}(y) \neq \emptyset\}
$$

the neighbourhood of the vertex x in a mixed hypergraph \mathcal{H}. In other words, the neighbourhood of a vertex x consists of those vertices which are contained in common \mathcal{C}-edges or \mathcal{D}-edges with x except x itself.

A vertex x is called simplicial [8] in a mixed hypergraph if its neighbourhood induces a uniquely colorable mixed subhypergraph. A mixed hypergraph $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ is called pseudo-chordal $[8]$ if there exists an ordering σ of the vertex set $X, \sigma=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, such that the vertex x_{j} is simplicial in the subhypergraph induced by the set $\left\{x_{j}, x_{j+1}, \ldots, x_{n}\right\}$ for each $j=1,2, \ldots, n-1$.

Definition [8]. A mixed hypergraph $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ is called a mixed hypertree if there exists a tree $T=(X, \mathcal{E})$ such that every \mathcal{C}-edge induces a subtree of T and every \mathcal{D}-edge induces a subtree of T.
Such a tree T is called further a host tree. The edge set of a host tree T is denoted by $\mathcal{E}=\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}, e_{i}=(x, y), x, y \in X, i=1,2, \ldots, n-1$.

2 Uniquely Colorable Mixed Hypertrees

Let $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ be an arbitrary mixed hypergraph.
Definition. A sequence of vertices of $\mathcal{H}, x=x_{0}, x_{1}, \ldots, x_{k}=y, k \geq 1$, is called (x, y)-invertor iff:
(1) $x_{i} \neq x_{i+1}, i=0,1, \ldots, k-1$;
(2) $\left(x_{i}, x_{i+1}\right) \in \mathcal{D}, i=0,1, \ldots, k-1$;
(3) if $x_{j} \neq x_{j+2}$ then $\left(x_{j}, x_{j+1}, x_{j+2}\right) \in \mathcal{C}, j=0,1, \ldots, k-2$.

In \mathcal{H} for two vertices $x, y \in X$ there may exist many (x, y)-invertors. The shortest (x, y)-invertor contains minimal number of vertices. Two (x, y)-invertors are different if they have at least one distinct vertex. A (x, y)-invertor with $x=y$ is called cyclic invertor.

Definition. In a mixed hypertree, a cyclic invertor is called simple if all \mathcal{C}-edges are different and every \mathcal{D}-edge appears consecutively precisely two times.

Let $\mu=\left(z_{0}, z_{1}, \ldots, z_{k}=z_{0}\right), k \geq 6$, be some simple cyclic invertor in a mixed hypertree. Without loss of generality assume that $z_{0} \neq z_{1} \neq z_{2} \neq z_{0}$. From the definition of simple cyclic invertor it follows that $z_{0} \neq z_{2} \neq \ldots \neq$ z_{k-2} and $z_{1}=z_{3}=\ldots=z_{k-1}=y$, where y is the center of some star in the host tree T.

Theorem 1. If $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ is a mixed hypertree then
(1) $\chi(\mathcal{H}) \leq 2$;
(2) if, in addition, $|\mathcal{D}| \leq n-2$ then $r_{2}(\mathcal{H}) \geq 2$.

Proof. (1) It follows from the possibility to start at any vertex and to color \mathcal{H} alternatively by the colors 1 and 2 along the host tree T.
(2) Let $T=(X, \mathcal{E})$ be a host tree of the mixed hypertree \mathcal{H}. Since $|\mathcal{D}| \leq n-2$ in T there exists an edge $e=(x, y) \notin \mathcal{D}$. Starting with the vertices x, y we can construct two different colorings with two colors in the following way. First, put $c(x)=c(y)=1$ and color all the other vertices alternatively along the tree T with the colors $2,1,2, \ldots$. Second, apply the same procedure starting with $c(x)=1$ and $c(y)=2$.

Theorem 2. A mixed hypertree $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ is uniquely colorable if and only if for every two vertices $x, y \in X$ there exists an (x, y)-invertor.

Proof. \Rightarrow Let c be the unique strict coloring of the mixed hypertree \mathcal{H}. We show that for any two vertices $x, y \in X$ there exists an (x, y)-invertor.

Suppose \mathcal{H} has two vertices $u, v \in X$ such that there is no (u, v)-invertor in \mathcal{H}. Consider the unique (u, v)-path in the host tree T of \mathcal{H}. The assumption implies that either in \mathcal{H} there is no \mathcal{D}-path connecting u and v or in
the sequence $u=x_{1}, x_{2}, \ldots, x_{p}=v$ there exists a triple of pairwise different vertices x_{j}, x_{j+1}, x_{j+2} not belonging to \mathcal{C}.

If there is no \mathcal{D}-path connecting u and v then by Theorem $1(2) \mathcal{H}$ has two different colorings with two colors. This contradicts to the unique colorability of mixed hypertree \mathcal{H}.

Assume that in the sequence $u=x_{1}, x_{2}, \ldots, x_{p}=v$ there exists a triple of pairwise different vertices x_{j}, x_{j+1}, x_{j+2} such that $\left(x_{j}, x_{j+1}, x_{j+2}\right) \notin \mathcal{C}$. Evidently, x_{j+1} is not pendant in T. Let T_{1} and T_{2} be two connected components obtained after deletion of vertex x_{j+1} from the host tree T.

There are two cases. (1) $c\left(x_{j}\right)=c\left(x_{j+2}\right)$. From Theorem 1(1) it follows that the number of colors in the unique coloring c of \mathcal{H} is 2 . Recolor the vertex x_{j+2} and all vertices on even distance from x_{j+2} in the component T_{2} with the new color. The obtained coloring is a proper coloring of \mathcal{H} different from c, a contradiction.
(2) $c\left(x_{j}\right) \neq c\left(x_{j+2}\right)$. Since $\left(x_{j}, x_{j+1}\right),\left(x_{j+1}, x_{j+2}\right) \in \mathcal{D}$ we have that $c\left(x_{j}\right) \neq c\left(x_{j+1}\right) \neq c\left(x_{j+2}\right)$. Consequently, \mathcal{H} is colored with at least three colors. But according to Theorem 1 every mixed hypertree can be colored with two colors, a contradiction.
\Leftarrow Assume that any two vertices $x, y \in X$ are joined by an (x, y) invertor. Suppose \mathcal{H} has at least two strict colorings c_{1} and c_{2}. Then there exist two vertices, say x^{\prime}, y^{\prime}, such that $c_{1}\left(x^{\prime}\right)=c_{1}\left(y^{\prime}\right)$ but $c_{2}\left(x^{\prime}\right) \neq c_{2}\left(y^{\prime}\right)$. Consider $\left(x^{\prime}, y^{\prime}\right)$-invertor $x^{\prime}=x_{0}, x_{1}, \ldots, x_{k}=y^{\prime}$. From the definition of invertor follows that if k is even then in all possible colorings the vertices x^{\prime} and y^{\prime} have the same color. If k is odd then in all possible colorings the vertices x^{\prime} and y^{\prime} have distinct colors. Consider the unique (x^{\prime}, y^{\prime})-path connecting the vertices x^{\prime}, y^{\prime} on the host tree T. One can see that the parity of k coincides with the parity of length of the path. Moreover, it is true for any other $\left(x^{\prime}, y^{\prime}\right)$-invertor. Therefore, in all colorings either $c\left(x^{\prime}\right)=c\left(y^{\prime}\right)$ or $c\left(x^{\prime}\right) \neq c\left(y^{\prime}\right)$, a contradiction.

Corollary 1. If \mathcal{H} is a uniquely colorable mixed hypertree then $\mathcal{D}=\mathcal{E}$.
Definition. Let $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ be a mixed hypergraph. The \mathcal{C}-edge $C \in \mathcal{C}$ is called redundant if $R(\mathcal{H})=R\left(\mathcal{H}_{1}\right)$, where $\mathcal{H}_{1}=(X, \mathcal{C} \backslash\{C\}, \mathcal{D})$.
In a uniquely colorable mixed hypertree $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ any \mathcal{C}-edge of size ≥ 4 is redundant because there is no invertor containing such \mathcal{C}-edge.

Theorem 3. In a uniquely colorable mixed hypertree $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ a \mathcal{C}-edge Cof size 3 is redundant if and only if there exists a simple cyclic invertor containing C.

Proof. Let $C=\left(x_{1}, x_{2}, x_{3}\right)$ be the redundant \mathcal{C}-edge. By definition $\mathcal{H}^{\prime}=$ $\left(X, \mathcal{C}^{\prime}, \mathcal{D}\right)$ where $\mathcal{C}^{\prime}=\mathcal{C} \backslash\{C\}$ is a uniquely colorable mixed hypertree. Then for the vertices x_{1} and x_{3} in \mathcal{H}^{\prime} there exisits an $\left(x_{1}, x_{3}\right)$-invertor: $x_{1}=$ $z_{0}, z_{1}, \ldots, z_{k}=x_{3}$. Construct the (x_{1}, x_{1})-invertor in the following way: $x_{1}=z_{0}, z_{1}, \ldots, z_{k}=x_{3}, x_{2}, x_{1}$. This invertor is a simple cyclic invertor of \mathcal{H} containing C.

Conversely, suppose that \mathcal{C}-edge, $C=\left(x_{1}, x_{2}, x_{3}\right)$ is contained in some simple cyclic invertor $x_{1}=z_{0}, z_{1}, \ldots, z_{k}=x_{3}, x_{2}, x_{1}$. Then the vertices x_{1} and x_{3} are joined by two different $\left(x_{1}, x_{3}\right)$-invertors: $\left(x_{1}, x_{2}, x_{3}\right)=C$ and $\left(x_{1}=z_{0}, z_{1}, \ldots, z_{k}=x_{3}\right)=\left(x_{1}, x_{3}\right)^{\prime}$-invertor. In each (x, y)-invertor containing C replace this \mathcal{C}-edge by $\left(x_{1}, x_{3}\right)^{\prime}$-invertor. Thus, $\mathcal{H}^{\prime}=(X, \mathcal{C} \backslash$ $\{C\}, \mathcal{D})$ is uniquely colorable, i.e., the \mathcal{C}-edge C is redundant.
Let us have a mixed hypergraph $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$. Consider $X=X_{1} \cup X_{2}$ $\cup \ldots \cup X_{i}$ any i-coloring of $\mathcal{H}, \chi(\mathcal{H}) \leq i \leq \bar{\chi}(\mathcal{H})$. Choose any X_{j} and construct touching graph $L_{j}=\left(X_{j}, V_{j}\right)$ in the following way: if some $C \in \mathcal{C}$ satisfies $C \cap X_{j}=\{x, y\}$ and $\left|C \cap X_{k}\right| \leq 1, k \neq j$, for some $x, y \in X_{j}$, then $(x, y) \in V_{j}$ (cf. pair graphs [3]).

Theorem 4. If a mixed hypertree $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ is uniquely colorable then in its 2 -coloring the touching graphs L_{1} and L_{2} are connected.

Proof. By Theorem 1(2), Corollary 1 we obtain $|\mathcal{D}|=n-1, \bar{\chi}=2$ for each uniquely colorable mixed hypertree. If at least one touching graph is disconnected, then we can construct a new coloring of \mathcal{H} with 3 colors by assigning new color to the vertices of one component. This assures the proper coloring also of any \mathcal{C}-edge of size ≥ 4.

Corollary 2. The minimal number of \mathcal{C}-edges in any uniquely colorable mixed hypertree $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ is $n-2$.

Proof. Let \mathcal{H} be a uniquely colorable mixed hypertree. Consider its unique 2-coloring, say $X=X_{1} \cup X_{2}$, and construct the touching graphs $L_{1}=\left(X_{1}, V_{1}\right), L_{2}=\left(X_{2}, V_{2}\right)$. The minimal number of edges in L_{i} to be connected is $\left|X_{i}\right|-1$, and in this case each of L_{i} is a tree, $i=1,2$. Since every edge in L_{i} corresponds to some \mathcal{C}-edge of \mathcal{H}, we obtain that the minimal number of \mathcal{C}-edges is:

$$
\left|X_{1}\right|-1+\left|X_{2}\right|-1=|X|-2 .
$$

Corollary 3. In a uniquely colorable mixed hypertree $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ the number of redundant \mathcal{C}-edges is $|\mathcal{C}|-n+2$.

Proof. Indeed, consider touching graphs L_{i}, and construct a spanning trees $T_{i}, i=1,2$. Each elementary cycle in L_{i} generates some simple cyclic invertor in \mathcal{H}. Therefore, each \mathcal{C}-edge of \mathcal{H} which has a size ≥ 4 or corresponds to some edge of L_{i} which is a chord with respect to T_{i}, is redundant. Hence, the assertion follows.

Remark. Redundant \mathcal{C}-edge may become not redundant after deleting from \mathcal{C} some another redundant \mathcal{C}-edges.

Definition. A mixed hypertree $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ is called complete if every edge of the host tree T forms a \mathcal{D}-edge of \mathcal{H}, and every path on three vertices of T forms a \mathcal{C}-edge in \mathcal{H}.

Therefore, having the host tree T for the complete mixed hypertree $\mathcal{H}=$ $(X, \mathcal{C}, \mathcal{D})$ we obtain that $\mathcal{D}=\mathcal{E}$.

Denote by M the number of \mathcal{C}-edges of a complete mixed hypertree $\mathcal{H}=$ $(X, \mathcal{C}, \mathcal{D})$. Then

$$
M=\sum_{\substack{x \in T \\ d(x) \geq 2}}\binom{d(x)}{2},
$$

where $d(x)$ is the degree of vertex x in the host tree T.
Examples show that for any $k>1$ one can construct a mixed hypertree $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ with $|\mathcal{D}|=n-1, n-2 \leq|\mathcal{C}| \leq M$ and $\bar{\chi}(\mathcal{H})=k$. Therefore these bounds on $|\mathcal{D}|$ and $|\mathcal{C}|$ are not sufficient for the mixed hypertrees to be uniquely colorable.

Proposition 1. A uniquely colorable mixed hypertree with $|\mathcal{C}|=n-2$ is a pseudo-chordal mixed hypergraph.

Proof. Since \mathcal{H} is uniquely colorable mixed hypertree and $|\mathcal{C}|=n-2$ then it contains no redundant \mathcal{C}-edges and, moreover, all \mathcal{C}-edges have the size 3. It follows that there exists a pendant vertex, say x, of the host tree $T=(X, \mathcal{E})$ which belongs to precisely one \mathcal{C}-edge, say (x, y, z). The neighbourhood of x induces a complete \mathcal{D}-graph on 2 vertices, which itself is uniquely colorable. Consequently, the vertex x is simplicial in \mathcal{H}. Deleting the vertex x and \mathcal{C}-edge and \mathcal{D}-edge containing it, obtain \mathcal{H}^{\prime} which
is uniquely colorable mixed hypertree with minimal number of \mathcal{C}-edges. Indeed, if \mathcal{H}^{\prime} would be not uniquely colorable, then two distinct colorings of \mathcal{H}^{\prime} formed different colorings of \mathcal{H} because $c(x)=c(z)$, a contradiction.

Remark. Redundant \mathcal{C}-edges enlarge the neighbourhood of some vertices without affecting any coloring. Therefore, to recognise the pseudo-chordality we need to delete the redundant \mathcal{C}-edges.

From the Theorem 4, Corollaries 2-4 and Proposition 1 we conclude that a uc-orderable mixed hypertree \mathcal{H} can be recognised by consecutive elemination of pendant vertices of \mathcal{D}-graph $\mathcal{H}_{\mathcal{D}}$ in special ordering by applying the following

Algorithm (uc-ordering).

Input: A mixed hypertree $\mathcal{H}=(X, \mathcal{C}, \mathcal{D}), \sigma$ - n-dimensional empty vector.
Idea: Simultanious decomposition of $\mathcal{H}_{\mathcal{D}}$, spanning trees T_{1} and T_{2} of touching graphs L_{1}, L_{2}, respectively, by pendant vertices.

Iterations:

1. If there is a vertex $x \in X$ belonging to none \mathcal{C}-edge of size 3 or \mathcal{D}-edge of size 2 then return NON UC. Otherwise remove from \mathcal{C} all elements of size ≥ 4.
2. Color \mathcal{D}-graph $\mathcal{H}_{\mathcal{D}}$ with two colors.
3. Construct touching graphs L_{1} and L_{2}.
4. If $L_{i}, i=1,2$, is not connected then return NON UC.
5. For L_{i} construct spanning tree $T_{i}, i=1,2$.
6. $i:=1$.
7. While in T_{i} there exists a vertex x pendant in both T_{i} and $\mathcal{H}_{\mathcal{D}}$ then delete it from T_{i} and $\mathcal{H}_{\mathcal{D}}$ and include x in σ.
8. If at least one of T_{1} and T_{2} is not empty then go to 9 . Otherwise return UC, σ-uc-ordering.
9. If $i=1$ then assign $i:=i+1$, otherwise $i:=i-1$. Go to 7 .

Remark. All chords of graph L_{i} with respect to spanning tree $T_{i}, i=1,2$, correspond to redundant \mathcal{C}-edges in \mathcal{H}. The trees T_{1} and T_{2} provide existence of unique (x, y)-invertor for any $x, y \in X$. The last assures at any step of the algorithm the existence of a vertex, say x, pendant in both $\mathcal{H}_{\mathcal{D}}$ and one
of T_{1} or T_{2}. Notice that not every elimination of pendant vertices generates a uc- ordering in $\mathcal{H}_{\mathcal{D}}$.

Example. Given the mixed hypertree \mathcal{H} with $X=\{0,1,2,3,4,5,6,7,8$, $9,10,11,12,13,14,15\}, \mathcal{C}=\{(0,1,2) ;(0,1,3) ;(0,2,3) ;(0,3,4) ;(0,4,5) ;$ $(0,5,6) ;(0,4,6) ;(0,2,7) ;(0,7,8) ;(7,8,9) ;(9,8,10) ;(9,10,11) ;(9,11,12)$; $(9,10,12) ;(9,12,13) ;(9,13,14) ;(9,14,15) ;(9,13,15)\}$, and $\mathcal{D}=\{(0,1)$; $(0,2) ;(0,3) ;(0,4) ;(0,5) ;(0,6) ;(0,7) ;(7,8) ;(8,9) ;(9,10) ;(9,11) ;(9,12)$; $(9,13) ;(9,14) ;(9,15)\}$, see the figures 1 and 2 (the \mathcal{C}-edges are depicted by triangles).

Figure 1
Apply the algorithm. Each vertex of \mathcal{H} belongs to at least one \mathcal{D}-edge of size 2 and at least one \mathcal{C}-edge of size 3 . Color $\mathcal{H}_{\mathcal{D}}$ with 2 colors. Denote by $X_{1}=\{0,8,10,11,12,13,14,15\}$ and $X_{2}=\{1,2,3,4,5,6,7,9\}$ two color classes of $\mathcal{H}_{\mathcal{D}}$. Construct the following touching graphs $L_{1}=\left(X_{1}, V_{1}\right)$ and $L_{2}=\left(X_{2}, V_{2}\right)$, where $V_{1}=\{(0,8) ;(8,10) ;(10,11) ;(10,12) ;(11,12) ;(12,13) ;$ $(13,14) ;(13,15) ;(14,15)\}$ and $V_{2}=\{(1,2) ;(1,3) ;(2,3) ;(2,7) ;(3,4) ;(4,5)$; $(4,6) ;(5,6) ;(7,9)\}$. Choose the respective trees T_{1} and T_{2} (Figure 3).

Consecutively applying the algorithm we obtain one of uc-orderings of $\mathcal{H}: \sigma=\{15,14,13,11,12,10,1,5,9,6,4,3,2,8,0,7\}$. At the 7 -th step of the algorithm, after including of vertex 10 in σ, we alternate the trees because T_{1} has no pendant vertex which is also pendant in $\mathcal{H}_{\mathcal{D}}$. The next alternations of trees are made after adding to σ of vertices 2 and 0 . From the above algorithm we have

Figure 2. $\mathcal{H}_{\mathcal{D}}=(X, \emptyset, \mathcal{D})$

$$
L_{1}=\left(X_{1}, V_{1}\right)
$$

$$
L_{2}=\left(X_{2}, V_{2}\right)
$$

$T_{1}=\left(X_{1}, \mathcal{E}_{1}\right)$

$$
T_{2}=\left(X_{2}, \mathcal{E}_{2}\right)
$$

Figure 3

Theorem 5. A mixed hypertree is uniquely colorable if and only if it is uc-orderable.

Therefore, combining the Theorems 2, 5 and relation between chromatic polynomial and chromatic spectrum [6, 7], we obtain the following

Theorem 6. Let $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$ be a mixed hypertree. Then the following five statements are equivalent:
(1) $R(\mathcal{H})=(0,1,0, \ldots, 0)$;
(2) $P(\mathcal{H}, k)=k(k-1)$;
(3) \mathcal{H} is uniquely colorable;
(4) Every two vertices $x, y \in X$ are joined by an (x, y)-invertor;
(5) \mathcal{H} is uc-orderable.

References

[1] C. Berge, Hypergraphs: combinatorics of finite sets (North Holland, 1989).
[2] C. Berge, Graphs and Hypergraphs (North Holland, 1973).
[3] K. Diao, P. Zhao and H. Zhou, About the upper chromatic number of a co-hypergraph, submitted.
[4] Zs. Tuza and V. Voloshin, Uncolorable mixed hypergraphs, Discrete Appl. Math. 99 (2000) 209-227.
[5] Zs. Tuza, V. Voloshin and H. Zhou, Uniquely colorable mixed hypergraphs, submitted.
[6] V. Voloshin, The mixed hypergraphs, Computer Science J. Moldova, 1 (1993) 45-52.
[7] V. Voloshin, On the upper chromatic number of a hypergraph, Australasian J. Combin. 11 (1995) 25-45.
[8] V. Voloshin and H. Zhou, Pseudo-chordal mixed hypergraphs, Discrete Math. 202 (1999) 239-248.

[^0]: *Partially supported by DAAD, TU-Dresden.
 ${ }^{\dagger}$ Partially supported by DFG, TU-Dresden.

