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Abstract

For a finite undirected graph G on n vertices some continuous op-
timization problems taken over the n-dimensional cube are presented
and it is proved that their optimum values equal the independence
number of G.
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1 Introduction and Results

Let G be a finite simple and undirected graph on V (G) = {1, 2, ..., n} with
its edge set E(G). A subset I of V (G), such that the subgraph of G in-
duced by I is edgeless, is called an independent set of G, and the max-
imum cardinality of an independent set of G is named the independence
number α(G) of G. N(i) and di denote the set and the number of neigh-
bours of i ∈ V (G) in G, respectively, and let ∆(G) = max{di | i ∈ V (G)}
and Cn = {(x1, x2, ..., xn) | 0 ≤ xi ≤ 1, i = 1, 2, ..., n}. For events A
and B and for a random variable Z of an arbitrary random space, P (A),
P (A|B), and E(Z) denote the probability of A, the conditional probability
of A given B, and the expectation of Z, respectively. Since the computa-
tion of α(G) is difficult (INDEPENDENT SET is an NP-complete prob-
lem; see [6]), much work was done to establish bounds on α(G) (e.g., see
[1, 3, 4, 5, 8, 10, 12, 13, 14, 15, 16, 17]), to find efficient algorithms forming
a large independent set of G (e.g., see [2, 7, 8, 9, 10, 12]), or to replace the
combinatorial optimization problem to determine α(G) by a continuous one
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(e.g., see [9, 11]). The last approach leads to bounds on α(G) as well as to
efficient algorithms (e.g., see [8, 9]). In the present paper some new contin-
uous optimization problems taken over Cn are presented and it is proved
that their optimum values equal α(G). Theorem 1 gives a remarkable result
of T.S. Motzkin and E.G. Straus [11] and Theorem 2 is proved in [9].

Theorem 1.

α(G) = max
(0,0,...,0)6=(x1,x2,...,xn)∈Cn

( ∑
i∈V (G)

xi

)2

∑
i∈V (G)

x2
i +2

∑
ij∈E(G)

xixj

.

Theorem 2. α(G) = max
(x1,x2,...,xn)∈Cn

∑
i∈V (G)

(xi
∏

j∈N(i)
(1− xj)) .

A classical lower bound on α(G) due to Y. Caro and V.K. Wei [3, 17] is
given by the following theorem.

Theorem 3. α(G) ≥ ∑
i∈V (G)

1
1+di

.

The next Theorems 4, 5, 6, and 7 are the main results of the present paper.

Theorem 4. α(G) = max
(x1,x2,...,xn)∈Cn

eG(x1, x2, ..., xn), where

eG(x1, x2, ..., xn) =
∑

i∈V (G)

(
xi

1+
∑

j∈N(i)

xj

+
(1−xi)

∏
j∈N(i)

(1−xj)

1+
∑

j∈N(i)

∏
l∈N(j)\(N(i)∪{i})

(1−xl)

)
.

Theorem 5. α(G) = max
(x1,x2,...,xn)∈Cn

fG(x1, x2, ..., xn), where

fG(x1, x2, ..., xn) =
∑

i∈V (G)

(
xi +

(1−xi)
∏

j∈N(i)

(1−xj)

1+
∑

j∈N(i)

∏
l∈N(j)\(N(i)∪{i})

(1−xl)

)
− ∑

ij∈E(G)
xixj .

The following Theorem 6 looks more ”complicate”, but it is ”stronger” than
Theorem 4 and Theorem 5 (see Remark 1).

Theorem 6. α(G) = max
(x1,x2,...,xn)∈Cn

gG(x1, x2, ..., xn), where

gG(x1, x2, ..., xn) =
∑

i∈V (G)

(
(xi + 1−xi

1+
∑

j∈N(i)

∏
l∈N(j)\(N(i)∪{i})

(1−xl)

) ∏
j∈N(i)

(1− xj))
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+
∑

i∈V ′

xi(1−
∏

j∈N(i)

(1−xj))
2

1−
∏

j∈N(i)

(1−xj)+
∑

j∈N(i)

xj

and V ′ =
{
i ∈ V (G)| ∑

j∈N(i)
xj > 0

}
.

A ”weaker” (see Remark 1), but a more ”transparent” and (see Remark 2)
an ”algorithmically realizable” version of Theorem 5 is the following one.

Theorem 7. α(G) = max
(x1,x2,...,xn)∈Cn

hG(x1, x2, ..., xn), where

hG(x1, x2, ..., xn) =
∑

i∈V (G)
xi −

∑
ij∈E(G)

xixj.

2 Proofs

Throughout the proofs we will use the well-known fact that for a random
subset M of a given finite set N,

E(|M |) =
∑

y∈N
P (y ∈ M) =

|N |∑
k=0

kP (|M | = k).

Let I be a maximum independent set of G and let x∗i = 1 if i ∈ I and
x∗i = 0 if i /∈ I. Since (1 − x∗i )

∏
j∈N(i)(1 − x∗j ) = 0 for i ∈ V (G) and∑

ij∈E(G) x∗i x
∗
j = 0, we obtain

Lemma 1. α(G) = eG(x∗1, x∗2, ..., x∗n) = fG(x∗1, x∗2, ..., x∗n) = gG(x∗1, x∗2, ..., x∗n)
= hG(x∗1, x∗2, ..., x∗n).

With Lemma 1, it is clear that Theorem 7 follows from Theorem 5.

Now, let (x1, x2, ..., xn) be an arbitrary member of Cn. We form a set X ⊆
V (G) by random and independent choice of i ∈ V (G), where P (i ∈ X) = xi.
Let H1, H2, and H3 be the subgraph of G induced by the vertices of X, by
the vertices i ∈ X with N(i) ∩ X 6= ∅, and by the vertices i /∈ X with
N(i) ∩ X = ∅, respectively. Furthermore, let Y be a smallest subset of
V (H2) covering all edges of H2, i.e., the graph induced by V (H2) − Y is
edgeless, and let I1 and I3 be a maximum independent set of H1 and H3,
respectively. It can be seen easily that |Y | = |V (H2)|−α(H2), |Y | ≤ |E(H2)|
and that (X − Y ) ∪ I3 and I1 ∪ I3 are independent sets of G. Because of
these remarks and the property of the expectation to be an average value,
we have Lemma 2 as follows.
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Lemma 2. α(G) ≥ E(|X − Y |) + E(α(H3)), α(G) ≥ E(α(H1)) + E(α(H3)),
E(|X − Y |) = E(|X|)− E(|Y |) ≥ E(|X|)− E(|E(H2)|), and
E(|X − Y |) = E(|X|)− E(|V (H2)|) + E(α(H2)).

Lower bounds on E(α(H1)), E(α(H2)), and E(α(H3)) are given in Lemma 3.

Lemma 3. E(α(H1)) ≥
∑

i∈V (G)

xi

1+
∑

j∈N(i)

xj

,

E(α(H2)) ≥
∑

i∈V ′

xi(1−
∏

j∈N(i)

(1−xj))
2

1−
∏

j∈N(i)

(1−xj)+
∑

j∈N(i)

xj

, where V ′ = {i ∈ V (G)| ∑
j∈N(i)

xj > 0},

and

E(α(H3)) ≥
∑

i∈V (G)

(1−xi)
∏

j∈N(i)

(1−xj)

1+
∑

j∈N(i)

∏
l∈N(j)\(N(i)∪{i})

(1−xl)
.

Proof. For i ∈ V (G) define the random variable Z1
i with Z1

i = 1
1+k if i ∈ X

and |N(i) ∩X| = k ≥ 0, and Z1
i = 0 if i /∈ X. Using Theorem 3,

E(α(H1)) ≥ E(
∑

i∈V (G)
Z1

i ) =
∑

i∈V (G)
E(Z1

i )

=
∑

i∈V (G)

di∑
k=0

1
1+kP (i ∈ X and |N(i) ∩X| = k)

=
∑

i∈V (G)

di∑
k=0

1
1+kP (i ∈ X)P (|N(i) ∩X| = k)

=
∑

i∈V (G)
xi

di∑
k=0

1
1+kP (|N(i) ∩X| = k)).

For i ∈ V (G) we have
di∑

k=0
P (|N(i)∩X| = k) = 1. With Jensen’s inequality

m∑
l=1

τlφ(yl) ≥ φ(
m∑

l=1
τlyl) for any convex function φ and any τl ≥ 0 for l =

1, 2, ...,m with
m∑

l=1
τl = 1,

E(α(H1)) ≥
∑

i∈V (G)
xi

1

1+

di∑
k=0

kP (|N(i)∩X|=k)

=
∑

i∈V (G)

xi

1+
∑

j∈N(i)

xj

.

Now, let V ′ = {i ∈ V (G)| ∑
j∈N(i)

xj > 0}. For i ∈ V (G) let Z2
i be the

random variable with Z2
i = 1

1+k if i ∈ X and |N(i) ∩ X| = k ≥ 1, and
Z2

i = 0 otherwise. Then,
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E(α(H2)) ≥ E(
∑

i∈V (G)
Z2

i ) =
∑

i∈V (G)
E(Z2

i )

=
∑

i∈V (G)

di∑
k=1

1
1+kP (i ∈ X and |N(i) ∩X| = k)

=
∑

i∈V (G)

di∑
k=1

1
1+kP (i ∈ X)P (|N(i) ∩X| = k)

=
∑

i∈V (G)
xi

di∑
k=1

1
1+kP (|N(i) ∩X| = k).

P (|N(i) ∩ X| = 0) +
di∑

k=1
P (|N(i) ∩ X| = k) = 1 for i ∈ V (G) and with

µi = P (|N(i) ∩X| = 0) =
∏

j∈N(i)
(1− xj) and σik = P (|N(i) ∩X| = k),

E(α(H2)) ≥
∑

i∈V (G)
xi

di∑
k=1

1
1+kσik =

∑
i∈V (G),µi<1

xi

di∑
k=1

1
1+kσik

=
∑

i∈V ′
xi

di∑
k=1

1
1+kσik =

∑
i∈V ′

xi(1− µi)
di∑

k=1

σik
(1+k)(1−µi)

.

For λik = σik
1−µi

we have λik ≥ 0,
di∑

k=1
λik = 1 if i ∈ V ′, and again using

Jensen’s inequality,

E(α(H2)) ≥
∑

i∈V ′
xi(1− µi) 1

1+

di∑
k=1

kλik

=
∑

i∈V ′

xi(1−
∏

j∈N(i)

(1−xj))
2

1−
∏

j∈N(i)

(1−xj)+

di∑
k=1

kP (|N(i)∩X|=k)

=
∑

i∈V ′

xi(1−
∏

j∈N(i)

(1−xj))
2

1−
∏

j∈N(i)

(1−xj)+
∑

j∈N(i)

xj

.

Finally, let us consider the random variable Z3
i with Z3

i = 1
1+k if i ∈ V (H3)

and |N(i) ∩ V (H3)| = k ≥ 0, and Z3
i = 0 if i /∈ V (H3). Then

E(α(H3)) ≥ E(
∑

i∈V (G)
Z3

i ) =
∑

i∈V (G)
E(Z3

i )

=
∑

i ∈ V (G)
di∑

k=0

1
1+kP (i ∈ V (H3) and |N(i) ∩ V (H3)| = k)

=
∑

i∈V (G)

di∑
k=0

1
1+kP (i ∈ V (H3))P (|N(i) ∩ V (H3)| = k | i ∈ V (H3))

=
∑

i∈V (G)
((1− xi)

∏
j∈N(i)

(1− xj)
di∑

k=0

1
1+kP (|N(i) ∩ V (H3)| = k | i ∈ V (H3)))
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≥ ∑
i∈V (G)

((1− xi)
∏

j∈N(i)
(1− xj) 1

1+

di∑
k=0

kP (|N(i)∩V (H3)|=k | i∈V (H3))

)

=
∑

i∈V (G)
((1− xi)

∏
j∈N(i)

(1− xj) 1

1+
∑

j∈N(i)

∏
l∈N(j)\(N(i)∪{i})

(1−xl)
),

and Lemma 3 is proved.

Theorem 4, 5, and 6 follow with E(|X|) =
∑

i∈V (G)
xi, E(|E(H2)|)

=
∑

ij∈E(G)
xixj , E(|V (H2)|) =

∑
i∈V (G)

xi(1−
∏

j∈N(i)
(1− xj)), Lemma 1, 2, and 3.

3 Remarks

For φ, ψ ∈ {e, f, g, h} define φ ≤ ψ if φG(x1, x2, ..., xn) ≤ ψG(x1, x2, ..., xn)
for every graph G on n vertices and for every (x1, x2, ..., xn) ∈ Cn. We write
φ <> ψ if neither φ ≤ ψ nor ψ ≤ φ.

Remark 1. h ≤ f ≤ g, e ≤ g and e <> f .

Proof. We will use the following Lemma 4, which can be seen easily by
induction on r.

Lemma 4. For an integer r ≥ 1 and a1, a2, ..., ar ∈ [0, 1],
r∑

q=1
aq +

r∏
q=1

(1− aq) ≥ 1.

The inequality h ≤ f is obvious. To see f ≤ g, first notice that∑
i∈V (G)

xi −
∑

ij∈E(G)
xixj =

∑
i∈V (G)

xi(1 − 1
2

∑
j∈N(i)

xj). If
∑

j∈N(i)
xj = 0 for

an i ∈ V (G) then xi = xi(
∏

j∈N(i)
(1 − xj)) = xi(1 − 1

2

∑
j∈N(i)

xj). Hence,

with the abbreviation µi =
∏

j∈N(i)
(1 − xj) and ρi =

∑
j∈N(i)

xj for i ∈ V (G)

we have to show
∑

i∈V ′
(xi(µi + (1−µi)

2

1−µi+ρi
)) ≥ ∑

i∈V ′
(xi(1 − 1

2ρi)), where again

V ′ = {i ∈ V (G)| ∑
j∈N(i)

xj > 0}.

Using Lemma 4, even µi + (1−µi)
2

1−µi+ρi
≥ 1− 1

2ρi for all i ∈ V ′.

To prove e ≤ g, we have to show
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∑
i∈V (G)

xi

1+
∑

j∈N(i)

xj

≤ ∑
i∈V (G)

xi
∏

j∈N(i)
(1− xj) +

∑
i∈V ′

xi(1−
∏

j∈N(i)

(1−xj))
2

1−
∏

j∈N(i)

(1−xj)+
∑

j∈N(i)

xj

.

Since xi

1+
∑

j∈N(i)

xj

= xi
∏

j∈N(i)
(1−xj) if

∑
j∈N(i)

xj = 0, it is sufficient to establish

1
1+ρi

≤ µi + (1−µi)
2

1−µi+ρi
if

∑
j∈N(i)

xj > 0, what is verified easily.

For a cycle Cn on n vertices eCn(1
3 , 1

3 , ..., 1
3) < fCn(1

3 , 1
3 , ..., 1

3), eCn(2
3 , 2

3 , ..., 2
3)

> fCn(2
3 , 2

3 , ..., 2
3) and Remark 1 is proved.

With h ≤ f and e <> f it is clear that e ≤ h does not hold. It remains
open, whether h <> e or h ≤ e.

Theorems 1, 2, 4, 5, 6, and 7 are of that type that the independence number
α(G) of a graph G on n vertices equals the optimum value of a continuous
optimization problem O(G) to maximize a certain function φG over Cn.
Hence, φG(x1, x2, ..., xn) is a lower bound on α(G) for every (x1, x2, ..., xn) ∈
Cn. Let (x′1, x′2, ..., x′n) ∈ Cn be the solution of an arbitrary approximation
algorithm for O(G). How to find an independent set I of G in polynomial
time such that |I| ≥ φG(x′1, x′2, ..., x′n) ? In [8] and [9] efficient algorithms
forming I with |I| ≥ φG(x′1, x′2, ..., x′n) are given if O(G) is the optimization
problem of Theorem 1 or of Theorem 2. Remark 2 shows that this is also
possible if we consider the case φG = hG. In case φG = eG, φG = fG or
φG = gG the problem remains open, whether such an algorithm exists.

Remark 2. There is an O(∆(G)n)-algorithm with
INPUT: (x1, x2, ..., xn) ∈ Cn,
OUTPUT: an independent set I ⊆ V (G) with |I| ≥ ∑

i∈V (G)
xi−

∑
ij∈E(G)

xixj .

Proof. First we give the Algorithm:

1. For i = 1 to n do if
∑

j∈N(i) xj < 1 then xi := 1 else xi := 0.
2. For i = 1 to n do if (xi = 1 and

∏
j∈N(i)(1− xj) = 0) then xi := 0.

3. I := {i ∈ V (G) | xi = 1}.
STOP

It is obvious that the algorithm in an O(∆(G)n)-algorithm. For the input
vector (x1, x2, ..., xn) ∈ Cn set

∑
k∈V (G)

xk −
∑

kj∈E(G)
xkxj = a.
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After step 1, the current (x1, x2, ..., xn) is a 0-1-vector and
∑

k∈V (G)
xk −

∑
kj∈E(G)

xkxj ≥ a

because
∂

∂xi
(

∑
k∈V (G)

xk −
∑

kj∈E(G)
xkxj) = 1− ∑

j∈N(i)
xj , i.e.,

∑
k∈V (G)

xk −
∑

kj∈E(G)
xkxj

is multilinear.

In step 2,
∏

j∈N(i)
(1 − xj) = 0 if and only if there is at least one j ∈

N(i) such that xj = 1. With xi = 0 instead of xi = 1 the sum
∑

k∈V (G)
xk

decreases by 1 and the sum
∑

kj∈E(G)
xkxj decreases by at least 1, hence

∑
k∈V (G)

xk −
∑

kj∈E(G)
xkxj does not decrease.

After step 2,

xkxj = 0 for all kj ∈ E(G), |I| = ∑
k∈V (G)

xk =
∑

k∈V (G)
xk −

∑
kj∈E(G)

xkxj ≥ a

and Remark 2 is proved.
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