Discussiones Mathematicae
Graph Theory 20 (2000) 71-79

SOME NEWS ABOUT THE INDEPENDENCE
NUMBER OF A GRAPH

JOCHEN HARANT

Department of Mathematics, Technical University of Ilmenau
D-9868/ Ilmenau, Germany

Abstract

For a finite undirected graph GG on n vertices some continuous op-
timization problems taken over the n-dimensional cube are presented
and it is proved that their optimum values equal the independence
number of G.
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1 Introduction and Results

Let G be a finite simple and undirected graph on V(G) = {1,2,...,n} with
its edge set E(G). A subset I of V(G), such that the subgraph of G in-
duced by I is edgeless, is called an independent set of GG, and the max-
imum cardinality of an independent set of G is named the independence
number a(G) of G. N(i) and d; denote the set and the number of neigh-
bours of i € V(G) in G, respectively, and let A(G) = max{d; | i € V(G)}
and C" = {(z1,22,...,2y) | 0 < x; < 1, i = 1,2,....,n}. For events A
and B and for a random variable Z of an arbitrary random space, P(A),
P(A|B), and £(Z) denote the probability of A, the conditional probability
of A given B, and the expectation of Z, respectively. Since the computa-
tion of a(G) is difficult (INDEPENDENT SET is an NP-complete prob-
lem; see [6]), much work was done to establish bounds on a(G) (e.g., see
[1, 3, 4, 5, 8, 10, 12, 13, 14, 15, 16, 17]), to find efficient algorithms forming
a large independent set of G (e.g., see [2, 7, 8, 9, 10, 12]), or to replace the
combinatorial optimization problem to determine a(G) by a continuous one
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(e.g., see [9, 11]). The last approach leads to bounds on «(G) as well as to
efficient algorithms (e.g., see [8, 9]). In the present paper some new contin-
uous optimization problems taken over C™ are presented and it is proved
that their optimum values equal a(G). Theorem 1 gives a remarkable result
of T.S. Motzkin and E.G. Straus [11] and Theorem 2 is proved in [9].

(5,

Theorem 1.

a(G) = max V() .
(0,0,...,0)#(z1,22,...,2n)EC™ Z z?+2 Z i
ieV(G) iJEB(G)
Theorem 2. a(G) = max > IT (1 —xy)).

(x1,32,,2n)EC™ 4V (G)  FEN(I)

A classical lower bound on «(G) due to Y. Caro and V.K. Wei [3, 17] is
given by the following theorem.

Theorem 3. a(G) > ﬁ.
i€V (G) '

The next Theorems 4, 5, 6, and 7 are the main results of the present paper.

Theorem 4. a(G) = max ea(z1,x2, ..., xy), where
(z1,22,....2n)EC™
(-=z) J[ (Q-=y)
T; JEN(3)
eq(T1,22,y ey Tp) = Y ( + .
iev(e) N+ > w1+ ) I1 (1)
JEN(4) JEN(E) LeN(G\(N (1)ufi})
Theorem 5. a(G) = max fa(x1, 2, ..., xy), where

(z1,%2,....2n)EC™
(l—xi) H (l—xj)
iEN (i
fG(xlyx%-",xn) = Z (1'1 + T Z I€ ﬁ) (1—131)) — Z Tixy.

ievie) JEN@IENGNN UL ijeB(G)

The following Theorem 6 looks more ” complicate”, but it is ”stronger” than
Theorem 4 and Theorem 5 (see Remark 1).

Theorem 6. a(G) = max 9 (1,22, ..., Tpn), where
(]31,.732,...7$n)6 n

1l—x;

L1, T, ey Tpy) = T; + 1—x;
96(1, 72 ) ieI;G) <( 4+ > [1 (1xl))j61]:fl(i)( )

JEN () LEN(H)\(N ()U{i})
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mi(lf H (1=;))?
JENG) and V' ={i e V(G)| ¥ =;>0}.

iev 1= ] (—zj)+ Y JEN (i)
JEN (i) JEN(4)

A "weaker” (see Remark 1), but a more ”transparent” and (see Remark 2)
an ”algorithmically realizable” version of Theorem 5 is the following one.

Theorem 7. a(G) = max ha(x1, 2, ..., 2y), where
(z1,72,...,zn)EC™
Z Tj — Z Tilj.

eV (G) ijeE(G)

ha(z1, 2, ..., Tp)

i

2 Proofs

Throughout the proofs we will use the well-known fact that for a random
subset M of a given finite set N,
||
E(M]) = > Plye M) = > kP(IM|=Fk).

yeEN k=0
Let I be a maximum independent set of G' and let zj = 1 if ¢+ € I and
zf = 0if i ¢ I. Since (1 — z7)[Ljenw(1 —25) = 0 for ¢ € V(G) and
>ijer(q) % x; =0, we obtain

Lemma 1. o(G) = eg(x7, 25, ...,x5) = fa(a], 25, ...,x)) = ga(x7, 25, ..., x})

With Lemma 1, it is clear that Theorem 7 follows from Theorem 5.

Now, let (x1,x2,...,Z,) be an arbitrary member of C™. We form a set X C
V(G) by random and independent choice of i € V(G), where P(i € X) = x;.
Let Hy, Ho, and H3 be the subgraph of G induced by the vertices of X, by
the vertices i € X with N(i) N X # (), and by the vertices i ¢ X with
N(i) N X = 0, respectively. Furthermore, let Y be a smallest subset of
V(H3) covering all edges of Hy, i.e., the graph induced by V(Hz2) — Y is
edgeless, and let I; and I3 be a maximum independent set of H; and Hj,
respectively. It can be seen easily that |Y| = |V (Hz)|—a(H2), |Y| < |E(H2)|
and that (X —Y) U I3 and I; U I3 are independent sets of G. Because of
these remarks and the property of the expectation to be an average value,
we have Lemma 2 as follows.
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Lemma 2. o(G) > E(|X —Y|) +E(a(Hi)), a(G) > E(a(H)) + E(a(H3)),
E(X =Y]) = E(X]) = &(IY]) = E(1X]) - E(|E(H2)]), and

E(IX =Y]) = E(1X]) — E(IV(H2)]) + E(a(Hz))-

Lower bounds on £(a(H1)), E(a(Hs2)), and £(a(Hz)) are given in Lemma 3.

Lemma 3. £(a(Hy)) > Y —2—,
ieve) 1+ Y

JEN (i)
z;(1— [] (1-=;))2
E(a(Hy)) > X JENT) , where V! ={i e V(G)| > z; > 0},
(alH2)) iev' 1= ] Q-2+ 37 25 t JENG) }
FEN(4) JEN(3)
and
(—z) [] (-ay)
E(a(Hs) > X2 —

iev(e) Y I1 (1=)
JEN() LENGNN (D)UY

Proof. Fori € V(G) define the random variable Z} with Z} = 14%19 itie X
and |[N(i) N X| =k >0, and Z} =0 if i ¢ X. Using Theorem 3,

Ela) 2 E( X Zh)= > &(Z))

1€V (Q) 1€V (G)
d;
= ¥ ¥ ggpPlieXand [ING)NX|=k)
1€V(G) k=0
d;
- ¥ ¥ {LP(ieX)P(NG)NX|=k)
i€V (G) k=0
d;
= Y o> L PING) N X| = k).
iE€V(G) k=0

d;
For i € V(G) we have > P(|N(i)NnX|=k)=1. With Jensen’s inequality
k=0
g To(y) > gb(in: miy;) for any convex function ¢ and any 77 > 0 for [ =
=1 =1

m
1,2,...mwith Y>3 =1,
=1

R T STy
i€V(G) 1+k§:j0kp(uv(i)m<|=k) e T s
Now, let V! = {i € V(G)| ¥ z; > 0}. Fori € V(G) let Z? be the
JEN(7)

random variable with Z? = IJ%k if i € X and IN(i) N X| = k > 1, and
Z? = 0 otherwise. Then,
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E(a(Ha)) > &( ZH = > &z
ieV(Q) ieV(Q)
d;
= ¥ p%kP(ieXand IN(G) N X| = k)
ieV(Q) k=1
d;
= 3 ﬁP(ieX)P(]N(i)ﬂX]:k)
ieV(Q) k=1
d;
= > w %c (IN() N X]| = k).
iEV(G) k=1

P(IN(i) N X| = 0) + dg P(N@) N X| =k) =1 for i € V(G) and with
=P(N@)NX|= 0)_: [T (1—=z;)and oy = P(IN(i) N X| = k),

JEN()
d; d; 1
E(a(Ha)) > ¥ @y o= > Ty 140k
€eV(G) k=1 ieV(Q),ui<l k=1
d;
= > x Z o= > wi(l—p) > #@_
i€V’ Zk— 1+k ‘ iev’ ' k=1 (1k)(1=pi)
d;
For N\, = 1‘1"5 we have N\ > 0, Xir. = 1if i € V', and again using
! k=1
Jensen’s inequality,
E(a(Ha)) > 3 ai(1l — pi) —5——
eV’ 1+Z KAk
k=1
z;(1— H (1—:vj))2 zi(1— H (1—acj))2
_ Z JEN(i) o JEN(4)
- d.; — .
iV’ ‘ % . _ ey’ 1— H (1—zj)+ Z x;
Z 17]’61;[(i)(17%)+kz=:1kP(‘N(l)mX‘_k) ' JEN(9) ’ JEN () ’

Finally, let us consider the random variable Z? with Z3 = H%k if i € V(Hs)
and |[N(i) NV (H3)| =k >0, and Z? =0 if i ¢ V(H3). Then

Ea(H3) 2 E( ¥ Z})= ¥ &(Z})

ieV(G) i€V (G)

—Yie V(@) é 2 P(i € V(Hy) and [N (i) NV (Hz)| = k)

= 5 SN LG € V(H)PUN() (1 V(Hs)| = k | i € V(Hy)
1€V(G) k=0

= S () I1 () 3 L PNG) V() = k| i € V(H)
i€V (Q) JEN(3) k=0
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> Y (l-w) I (1-2)— ! )
i€eV(G) JEN() 14+ kP(IN(@)NV (Hs)|=k | i€V (H3))
k=0
= > ((1—-z) I (11— L ,
ieV(G)(( )jeN(i)( i) IEIDY [1 (1—351))
JENG) LEN(H\(N (H)U{i})
and Lemma 3 is proved. [

Theorem 4, 5, and 6 follow with £(|X|) = > x;, E(|E(H2)))

1€V (Q)

= Y zzj, E(|V(H2))= > xi(1—-1I (1 —=;)), Lemma 1, 2, and 3.
iJEE(Q) ieV(@) JEN()
3 Remarks

FOI‘ ¢71/} € {67 fug7 h’} deﬁne ¢ S @b lf ¢G($1,$2, eeey fEn) S 7/1G(x1,$27 ‘--7$n)
for every graph G on n vertices and for every (1, z2, ..., z,) € C™. We write
¢ <> 1 if neither ¢ < 9 nor ¢ < ¢.

Remark 1. h< f<g,e<gande<>f.

Proof. We will use the following Lemma 4, which can be seen easily by

induction on 7.

Lemma 4. For an integer r > 1 and a1, ag, ...,a, € [0,1],

r r
>ag+ Il (1—aq) =1
q=1 q=1

The inequality h < f is obvious. To see f < g, first notice that
Z Ty — Z Ty = Z l’i(l —% Z xj). If Z Tj = 0 for

ieV(G) iJEE(G) ieV(G) JEN(3) JEN(3)
an i € V(G) then ; = z;( ] (1 —=2;)) = (1 —3 > ;). Hence,
JEN(2) JEN(2)
with the abbreviation p; = [] (1 —x;) and p; = Y z; fori € V(G)
JEN(2) , JEN(7)
we have to show > (x;(u; + %)) > 3 (2(1 — 3p;)), where again
eV’ L eV’

Vi={ieV(Q)| > x>0}
JEN()

Using Lemma 4, even p; + fi;“jr)j >1-— %pi for all i € V.

To prove e < g, we have to show
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i (1— [ (1—=5))2

—n <Y a1 (1—z)+ JEN() )
EV(G) I+ D0 T eV (G) ZjeN(i) & - I G—zp)+ > =
JEN(4) JEN(5) JEN(5)
Since —=—— =ux; [] (1—=zj)if Y x; =0, it is sufficient to establish
I+ > JEN() JEN()
JEN(i) )
%pi < i+ ﬁ/_j _f_)pl_ if > x; >0, what is verified easily.

JEN(i)

. 11 1 11 1 2 2 2
For a cycle C,, on n vertices ec, (3, 5, 3) < fCo (5,55 3)s €Cu(5: 55 5)

> fcn(%, %, - %) and Remark 1 is proved. [

With h < f and e <> f it is clear that e < h does not hold. It remains
open, whether h <> e or h <e.

Theorems 1, 2, 4, 5, 6, and 7 are of that type that the independence number
a(G) of a graph G on n vertices equals the optimum value of a continuous
optimization problem O(G) to maximize a certain function ¢g over C™.
Hence, ¢ (1, z2, ..., T,) is a lower bound on a(G) for every (z1,x2, ..., Tp) €
C™. Let (2}, 2}, ...,2])) € C™ be the solution of an arbitrary approximation

algorithm for O(G). How to find an independent set I of G in polynomial
time such that |I| > ¢g(2), x5, ...,x),) 7 In [8] and [9] efficient algorithms

T
forming I with |I| > ¢g(2), 25, ..., z])) are given if O(G) is the optimization
problem of Theorem 1 or of Theorem 2. Remark 2 shows that this is also
possible if we consider the case ¢g = hg. In case ¢ = eq, ¢a = fg or

¢G = gg the problem remains open, whether such an algorithm exists.

Remark 2. There is an O(A(G)n)-algorithm with
INPUT: (x1,x2,...,x,) € C™,

OUTPUT: an independent set I C V(G) with [I| > Y x;— > xzj.
eV (@) Ele)

Proof. First we give the Algorithm:
1. For i =1 ton do if ZjeN(i) xj <1 then z; :=1 else z; := 0.
2. Fori=1tondoif (z; =1 and [[;cn()(1 — 2;) = 0) then z; := 0.
3. I ={icV(G) |z =1}
STOP
It is obvious that the algorithm in an O(A(G)n)-algorithm. For the input
vector (z1,x2,...,2,) € C™ set

Y Tp— Y, Tpxj =a.

keV(Q) kjeE(Q)
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After step 1, the current (x1, o9, ..., z,) is a 0-1-vector and

Y. Tx— D, TpT;>a

keV(G) kj€E(G)

because

21( Yooz — Yy mpxy)=1— > oz, le, X xp— Y T
keV(Q) kjeE(GQ) JEN(3) keV(Q) kjeE(G)

is multilinear.

In step 2, [] (1 —x;) = 0 if and only if there is at least one j €

JEN (i)
N (i) such that z; = 1. With z; = 0 instead of x; = 1 the sum )
keV(G)
decreases by 1 and the sum ) @z, decreases by at least 1, hence
kjeE(GQ)
>, ®p,— >, w7, does not decrease.
keV(Q) kjeE(Q)

After step 2,
zpr; =0forall kj € E(G),|I|= > zr= > xr— > Tprj>a
keV(G) keV(G) ki€E(G)
and Remark 2 is proved. [
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