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e-mail: arocha@math.unam.mx
e-mail: bllano@math.unam.mx

Abstract

The mean value of the matching polynomial is computed in the fam-
ily of all labeled graphs with n vertices. We introduce the dominating
polynomial of a graph whose coefficients enumerate the dominating
sets for a graph and study some properties of the polynomial. The
mean value of this polynomial is determined in a certain special family
of bipartite digraphs.
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1 Introduction

The goal of this paper is to compute the average polynomials for the
well-known matching polynomial and the dominating polynomial in certain
classes of graphs. The matching polynomial first appeared in a paper by
Heilman and Lieb [7] as a thermodynamic partition function. For a very
interesting introduction to its combinatorial study as well as many of its
properties we refer the reader to [3] and [5]. The notion of domination in
graphs was introduced last century. This theory can be consulted in the
books by Ore [12] and Berge [2]. The paper [9] shows recent developments
of the theory and a large account of references on the topic.

Many graph parameters are intrinsically hard to compute (see for ex-
ample [4]). However, this does not mean that one can not obtain formulas
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for them in certain classes of graphs. The class of random graphs, for exam-
ple, is of particular interest. For instance, computing probabilistic moments
for the number of independent sets of vertices in a graph were proved to
be useful to compute the number of antichains in partially ordered sets
(see [1]).

Typically one has the following situation: Let P be a property of a set of
vertices (edges) of a graph G and denote by pk (G) the number of sets with
k vertices (edges) satisfying the property P. Then, introduce a generating
function, say, the polynomial p(G, t) =

∑
k pk (G) tk (or an exponential gen-

erating function) and ask for a ”closed formula” for this generating function
of a random graph. Is it possible to find out such a formula for a given
graph parameter? This is a difficult question and the answer would not be
necessarily affirmative. In the paper we consider this kind of problem for
matchings and dominating sets.

In the first part of the paper we calculate the so called average matching
polynomial in the class of all labelled graphs with n vertices. The subse-
quent sections are devoted to introduce here the dominating polynomial of
a graph: definition and basic properties. Finally, we determine the average
dominating polynomial in a certain class of bipartite digraphs.

For the terminology of graph theory used here, see [11].

2 Average Matching Polynomial

Consider a simple graph G = (V, E). Let M ⊆ E be a matching of the graph
G. If M is a matching, then any M ′ ⊂ M is a matching, too. For |V | = n, we
have that |M | ≤ n/2 and if the equality holds, then the matching is called
perfect. Let αk (G) denote the number of matchings of cardinality k (k ∈ N)
of a graph G and by convention, α0 (G) = 1. The matching polynomial is
defined by

α (G, t) =
[n/2]∑

k=0

(−1)k αk (G) tn−2k.

There are basic properties of the matching polynomial studied in [5]. We
recall some of these properties that will be used later in this paper.

Theorem 21. α (G, t) = α (G− e, t)− α (G− i− j, t) ,
where i, j ∈ V and e = {i, j} ∈ E.

Applying this theorem to the complete graph, we have the following result.
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Theorem 22. For the complete graph Kn,

α (Kn, t) = Hen (t) = 2−n/2Hn

(
t/
√

2
)

=
[n/2]∑

k=0

(−1)k n!
k!2k (n− 2k)!

tn−2k,

where

Hn (t) = (−1)n et2 dn

dtn
e−t2 and

Hen(t) = (−1)n et2/2 dn

dtn
e−t2/2

are the Hermite and the special Hermite polynomial, respectively.

Further information on Hermite polynomials can be found in [10].
Let Gn be the set of all labeled graphs with n vertices. We define

αn (t) = 2−(n
2)

∑

G∈Gn

α (G, t)

to be the mean value of the matching polynomial in the set Gn or the average
matching polynomial in Gn. If Gk

n denotes the set of all labeled graphs with
n vertices and k edges, then we can define the average matching polynomial
in this set by

αk
n (t) =

((n
2

)

k

)−1 ∑

G∈Gk

n

α (G, t) .(2.1)

It is not difficult to establish that

αn (t) = 2−(n
2)

(n
2)∑

k=0

((n
2

)

k

)
αk

n (t) .(2.2)

Lemma 23.

αk
n (t) =

[n/2]∑

j=0

(−1)j

(
k

j

)((n
2

)

j

)−1

αj (Kn) tn−2j .
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Proof. Applying the definition of the matching polynomial to (2.1), we
have that

αk
n (t) =

((n
2

)

k

)−1 ∑

G∈Gk

n

[n/2]∑

j=0

(−1)j αj (G) tn−2j

=
[n/2]∑

j=0

(−1)j

((n
2

)

k

)−1



∑

G∈Gk

n

αj (G)


 tn−2j .

We compute the sum in brackets. Let M(G, j) be the set of matchings of
cardinality j of G, then

∑

G∈Gk

n

αj (G) =
∑

G∈Gk

n

∑

M∈M(G,j)

1.(2.3)

But any matching of a graph G ∈ Gk
n is a matching of the complete graph

Kn, so the sum in the right of (2.3) is equal to

∑

M∈M(Kn,j)

∑

G∈Gk

n
M∈M(G,j)

1.(2.4)

The second sum of (2.4) is the number of graphs belonging to Gk
n which

contain a fixed matching with exactly j edges. Fixing this matching, from
the other

(n
2

) − j edges of Kn, we can choose the k − j missing edges of
G ∈ Gk

n in ((n
2

)− j

k − j

)

ways. Therefore, the expression (2.4) is equal to
((n

2)−j

k−j

)
αj (Kn) and

αk
n (t) =

[n/2]∑

j=0

(−1)j

((n
2

)

k

)−1((n
2

)− j

k − j

)
αj (Kn) tn−2j

=
[n/2]∑

j=0

(−1)j

(
k

j

)((n
2

)

j

)−1

αj (Kn) tn−2j

as desired.
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Theorem 24.

αn (t) = 2−nHn (t) =
[n/2]∑

j=0

(
−1

2

)j

αj (Kn) tn−2j .

Proof. Applying Lemma 2.3 to the relation (2.2), we obtain that

αn (t) = 2−(n
2)

(n
2)∑

k=0

((n
2

)

k

) [n/2]∑

j=0

(−1)j

(
k

j

)((n
2

)

j

)−1

αj (Kn) tn−2j

= 2−(n
2)

[n/2]∑

j=0

(−1)j

((n
2

)

j

)−1

αj (Kn) tn−2j




(n
2)∑

k=0

((n
2

)

k

)(
k

j

)
 .

Since
(n
2)∑

k=0

((n
2

)

k

)(
k

j

)
= 2(n

2)−j

((n
2

)

j

)
,

then

αn (t) =
[n/2]∑

j=0

(
−1

2

)j

αj (Kn) tn−2j

as was to be shown.

3 The Dominating Polynomial, Definition and
Properties

Let G = (V, E) be a simple graph and D ⊆ V. A set of vertices D is said
to be a dominating set if for every y ∈ V −D, there exists x ∈ D such that
{x, y} ∈ E. For any vertex x ∈ V , let N (x) denote the neighbourhood of x,
the set of all vertices adjacent to x. We write N [x] = N (x)∪{x} , the closed
neibourhood of x. With this notation, D ⊆ V is a dominating set if for every
y ∈ V −D, we have that N [y] ∩D 6= ∅. The family of all dominating sets
of a graph G is denoted by DG. Observe that V ∈ DG and if D ∈ DG and
D ⊂ D′, then D′ ∈ DG.

For any graph G, the number of dominating sets of cardinality k is
denoted by γk (G) . We define by

γ (G, t) =
n∑

k=1

γk (G) tn−k
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the dominating polynomial of the graph G, where n = |V | . We take (by
definition) γ0 (G) = 0.

For example, the dominating polynomials of the complete graph Kn and
the totally disconnected graph Kn are

γ (Kn, t) =
n∑

k=1

(
n

k

)
tn−k = (1 + t)n − tn and γ

(
Kn, t

)
= 1,

since every subset of vertices of Kn is a dominating set and there is only one
dominating set of Kn. If Φ denotes the empty graph, then γ (Φ, t) = 0 since
∅ ∈ DΦ.

Let
⋃n

i=1 Gi be a graph composed of disjoint subgraphs G1, G2, ..., Gn.

Theorem 31. γ (G1 ∪G2, t) = γ (G1, t) γ (G2, t) .

Proof. There are no edges between V (G1) and V (G2) , therefore D1 ⊆
V (G1) and D2 ⊆ V (G2) are dominating sets of G1 and G2 respectively if
and only if D1∪D2 is a dominating set of G1∪G2. It holds that |D1 ∪D2| =
|D1|+ |D2| . Then

γk (G1 ∪G2) =
∑

i+j=k

γi (G1) γj (G2) ,

which proves the theorem.

As a consequence, we have the following corollary.

Corollary 32. γ (
⋃n

i=1 Gi, t) =
∏n

i=1 γ (Gi, t) .

Let G1 + G2 be the sum of graphs G1 = (V1, E1) and G2 = (V2, E2) defined
as G1 + G2 = (V1 ∪ V2, E) , where

E = E1 ∪ E2 ∪ {{x, y} : x ∈ V1, y ∈ V2} .

Theorem 33. Let G1 = (V1, E1) and G2 = (V2, E2) be any graphs such that
|V1| = n1 and |V2| = n2. Then

γ (G1 + G2, t) = γ (Kn1+n2 , t)− tn2 [γ (Kn1 , t)− γ (G1, t)]
−tn1 [γ (Kn2 , t)− γ (G2, t)] .
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Proof. Let D be a dominating set of G1 +G2 such that |D| = k. We define
the following sets:

S1,2 = {D ⊆ V1 ∪ V2 : D ∩ V1 6= ∅ and D ∩ V2 6= ∅ } ,

S1,2 = {D ⊆ V1 : D is not a dominating set in G1} and
S1,2 = {D ⊆ V2 : D is not a dominating set in G2} .

With this notation, we have that

|S1,2| =
(

n1 + n2

k

)
−

∣∣∣S1,2

∣∣∣−
∣∣∣S1,2

∣∣∣ .

Therefore

γk (G1 + G2) =

(
n1 + n2

k

)
−

[(
n1

k

)
− γk (G1)

]
−

[(
n2

k

)
− γk (G2)

]
.

Multiplying by tn−k and summing for all k = 1, ..., n, the desired result is
established.

We have the following consequence of this theorem.

Corollary 34. The dominating polynomial of the complete n-partite graph
Km1,m2,...,mn = Km1 + Km2 + ... + Kmn :

γ (Km1,m2,...,mn , t) = (1 + t)m − tm −
n∑

i=1

tm−mi [(1 + t)mi − tmi − 1] ,

where m =
∑n

i=1 mi.

Consider now a digraph Γ = (U,A) , where U and A denote the set of
vertices and arcs, respectively. The sets of the ex-neighbourhood and in-
neighbourhood of a vertex x are denoted by N+ (x) and N− (x), respectively
and write N+ [x] and N− [x] for the respective closed neighbourhoods. We
say that D ⊆ U is a dominating set of Γ if for every vertex v ∈ U − D,
there exists u ∈ D such that (u, v) ∈ A, that is, N− [v] ∩D 6= ∅. From this
definition, observe that if D is a dominating set of Γ, then there exists (at
least one) u ∈ D such that N+ (u) 6= ∅. The dominating polynomial of a
digraph Γ is defined similarly as for graphs. The properties proved before
are valid in this case, too.
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Let us call a bipartite digraph Γ = (U1, U2, A) one-way if its arcs are all
directed from part U1 to part U2. In that follows we will use a particular
notion of dominating sets defined for one-way bipartite digraphs. Let us
consider subsets D ⊆ U1 and say that D is an OW-dominating set if for
every vertex v ∈ U2, there exists u ∈ D such that (u, v) ∈ A, that is,
N− [v]∩D 6= ∅. The family of OW-dominating sets of the one-way bipartite
digraph Γ is denoted by D→Γ . With these definitions, D→Γ ⊆ 2U1 . Observe
that if U1 = ∅, then γ (Γ, t) = 0 (there is no dominating set) and if U2 = ∅,
then γ (Γ, t) = (1 + t)n (n = |U1|) by convention.

Let G = (V, E) be a simple graph. We construct a one-way bipartite
digraph G̃ = (U1, U2, A) from the graph G such that U1 and U2 are disjoint
copies of the set V and

A = {(i, i) : i ∈ V } ∪ {(i, j) , (j, i) : {i, j} ∈ E} .

Lemma 35. γ (G, t) = γ
(
G̃, t

)
.

Proof. It is enough to show that DG = D→
G̃

. The relation DG ⊆ D→
G̃

is
evident. Conversely, suppose that there exists D ∈ D→

G̃
such that D /∈ DG.

Then for every y /∈ D we have that N−
G̃

[y] ∩D 6= ∅ and there exists y /∈ D

such that N [y] ∩D = ∅. But there exists x ∈ D such that (x, y) ∈ A and
by the construction of G̃, then {x, y} ∈ E, which is a contradiction.

Theorem 36. For any one-way bipartite digraph Γ = (U1, U2, A) and
i ∈ U1,

γ (Γ, t) = tγ (Γ− i, t) + γ
(
Γ−N+ [i] , t

)
.

Proof. The number of OW-dominating sets of cardinality k in Γ splits into
two parts:
(i) The number of OW-dominating sets of cardinality k not containing ver-
tex i, i.e., the number of OW-dominating sets of cardinality k in Γ − i =
(U1 − i, U2, A−A′) , where A′ = {(i, i)} ∪ {(i, j) : j ∈ U2} .

(ii) The number of OW-dominating sets containing vertex i. Let i ∈ D,
where D is a OW-dominating set and |D| = k. Delete vertex i and all
the vertices dominated by it. Then the number of OW-dominating sets of
cardinality k is equal to the number of those sets, but of cardinality k−1 in

Γ−N+ [i] =
(
U1 − i, U2 −N+ (i) , A−A′′

)
,
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where
A′′ = A′ ∪ {

(x, y) : x ∈ N− (y) , y ∈ N+ (i)
}

.

These sets can be chosen in γk−1 (Γ−N+ [i]) ways. Therefore

γk (Γ) = γk (Γ− i) + γk−1

(
Γ−N+ [i]

)
.

Multiplying this equality by tn−k and summing for all k = 1, ..., n, we obtain
the result.

Observe that Lemma 3.5 and Theorem 3.6 imply that the recurrence

γ (G, t) = tγ
(
G̃− i, t

)
+ γ

(
G̃−N+ [i] , t

)

holds for any graph G.

4 Average Dominating Polynomial

Let us consider the dominating polynomial γ (Γ, t) of an one-way bipartite
digraph Γ as a random variable, whose average value in the family Dn,m of
all labeled bipartite graphs with partite sets of size n and m respectively, is
defined by

γn,m (t) =
1

2nm

∑

Γ∈Dn,m

γ (Γ, t) .(4.1)

This polynomial is called the average dominating polynomial of the family
Dn,m.

Theorem 41.

γn,m (t) =
n∑

k=0

(
n

k

) (
1− 1

2n−k

)m

tk, n,m ≥ 1.

Proof. Let Γ = (U1, U2, A) ∈ Dn,m. Applying Theorem 3.6 to (4.1), we
obtain that

γn,m (t)=
t

2nm

∑

Γ∈Dn,m

γ (Γ−i, t) +
1

2nm

∑

Γ∈Dn,m

γ
(
Γ−N+ [i] , t

)
.(4.2)
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Observe that
∑

Γ∈Dn,m

γ (Γ− i, t) = 2m
∑

Γ∈Dn−1,m

γ (Γ, t) ,

since vertex i can be joined to each one-way bipartite digraph of Dn−1,m

in 2m ways. On the other hand, if |N+ (i)| = k, then the second sum in
the right of (4.2) runs through all labeled one-way bipartite digraphs of the
family Dn−1,m−k. The labels of the k vertices of N+ (i) ⊆ U2 can be chosen
in

(m
k

)
ways, there are no edges between them and these k vertices can be

joined to the n− 1 vertices of the set U1 in 2(n−1)k ways. Then

∑

Γ∈Dn,m

γ (Γ−N [i] , t) =
m∑

k=0

(
m

k

)
2(n−1)k

∑

Γ∈Dn−1,m−k

γ (Γ, t)

=
m∑

j=0

(
m

j

)
2(n−1)(m−j)

∑

Γ∈Dn−1,j

γ (Γ, t) .

Therefore

γn,m (t) =
t

2(n−1)m

∑

Γ∈Dn−1,m

γ (Γ, t)

+
1

2nm

m∑

j=0

(
m

j

)
2(n−1)(m−j)

∑

Γ∈Dn−1,j

γ (Γ, t)

and so

γn,m (t) = tγn−1,m (t) +
1

2m

m∑

j=0

(
m

j

)
γn−1,j (t) .(4.3)

Let us consider the following exponential generating function:

γ (x, y, t) =
∑

n≥0

∑

m≥0

γn,m (t)
xn

n!
ym

m!
,

where γ−1,m (t) = 0 and γn,0 (t) = (1 + t)n . Multiplying (4.3) by xnym/n!m!
and summing for all n,m ≥ 0, we have that
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∑

n≥0

∑

m≥0

γn,m (t)
xn

n!
ym

m!
= t

∑

n≥0

∑

m≥0

γn−1,m (t)
xn

n!
ym

m!

+
∑

n≥0

∑

m≥0

1
2m

xn

n!
ym

m!

m∑

j=0

(
m

j

)
γn−1,j (t) .

From this formula,

∂γ (x, y, t)
∂x

= tγ (x, y, t) + e
y
2 γ

(
x,

y

2
, t

)
,(4.4)

since

∑

n≥0

∑

m≥0

xn

n!

(y
2

)m

m!

m∑

j=0

(
m

j

)
γn−1,j (t)

=
∑

n≥0

∑

j≥0

xn

n!
γn−1,j (t)

∑

m≥j

(
m

j

)(y
2

)m

m!

=
∑

n≥0

∑

j≥0

xn

n!
γn−1,j (t)

(y
2

)j

j!

∑

m≥j

(y
2

)m−j

(m− j)!

= e
y
2 γ

(
x,

y

2
, t

)
.

Let us find the solution of the partial differential equation (4.4) in the fol-
lowing form

γ (x, y, t) = eyf (x, y, t) .(4.5)

Consequently,
∂f (x, y, t)

∂x
= tf (x, y, t) + f

(
x,

y

2
, t

)
.

If

f (x, y, t) =
∑

n≥0

∑

m≥0

fn,m (t)
xn

n!
ym

m!
,

then

fn,m (t) =
(

t +
1

2m

)
fn−1,m (t) =

(
t +

1
2m

)n−1

f1,m (t) .
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Computing f1,m (t) , we have from (4.5) that

γ1,m (t) =
m∑

j=0

(
m

j

)
f1,j (t) .

Since γ1,m (t) = 1/2m for m ≥ 1 and γ1,0 (t) = 1 + t, then

f1,m (t) = (−1)m
m∑

j=0

(−1)j

(
m

j

)
γ1,j (t) = (−1)m

(
t +

1
2m

)
.

Therefore
fn,m (t) = (−1)m

(
t +

1
2m

)n

and

γn,m (t) =
m∑

j=0

(−1)j

(
m

j

) (
t +

1
2j

)n

=
m∑

j=0

(−1)j

(
m

j

)
n∑

k=0

(
n

k

)
tk

(
1
2j

)n−k

=
n∑

k=0

(
n

k

)
tk

m∑

j=0

(−1)j

(
m

j

) (
1

2n−k

)j

=
n∑

k=0

(
n

k

) (
1− 1

2n−k

)m

tk

as desired.

Observe that the recurrence for the dominating polynomial is closed in the
family Dn,m. The problems of finding a recurrence relation for the domi-
nating polynomial which is closed in the family Gn, and the calculation of
the average polynomial in this family remain open. The same questions
can be posed for polynomials defined for other invariants of graphs, such as
minimal dominating sets, Kn-dominating sets (see [9]), vertex-coverings and
edge-coverings.
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