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Abstract

In this paper we show that methods for recognizing Cartesian graph
bundles can be generalized to weighted digraphs. The main result is an
algorithm which lists the sets of degenerate arcs for all representations
of digraph as a weighted directed Cartesian graph bundle over simple
base digraphs not containing transitive tournament on three vertices.
Two main notions are used. The first one is the new relation ~δ∗ defined
among the arcs of a digraph as a weighted directed analogue of the
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has at most one predecessor and at most one successor.
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1 Introduction
Graph bundles [11, 12] generalize the notion of covering graphs and graph
products. They can be defined with respect to arbitrary graph products.
Various problems on graph bundles were studied recently, including edge
coloring, maximum genus, isomorphism classes and chromatic numbers [7,
8, 9, 10, 11]. Here we shall consider the problem of recognition of Cartesian
graph bundles.

It is well known that finite connected graphs enjoy unique factorization
under the Cartesian multiplication [15]. There are polynomial algorithms
for recognition of product graphs with respect to some of the products,
including the Cartesian product (see [4] and the references there). Proofs of
the unique factorization theorem and a polynomial algorithm for recognition
of directed Cartesian product graphs are given in [3, 20]. On the other hand,
a graph may have more than one representation as a graph bundle. Natural
questions therefore are to find all possible representations of a graph as a
graph bundle or to decide whether a graph has at least one representation
as a nontrivial graph bundle. A polynomial algorithm for recognition of
Cartesian product bundles over triangle free base is known [6]. Recently,
an algorithm for recognition of Cartesian graph bundles which works for
bundles with K4 \ e-free base was put forward [17, 18, 19]. Here we shall
generalize the ideas of [6] to obtain an algorithm for recognition of directed
graph bundles with weighted vertices. Our motivation was the fact that it
is possible to recognize graph bundle with respect to the strong product by
recognizing a corresponding weighted Cartesian graph bundle [21].

We will restrict our attention to cases where fibres are connected. This
decision is based on the following two facts. First, if the fibres are totally
disconnected, then the graph bundle is a covering graph and it is known that
deciding whether a graph is a covering graph is NP-hard [1]. Second, if the
graph is a Cartesian graph bundle over a disconnected fibre, then there is a
representation of this graph as a graph bundle over a connected fibre [10].

The paper is organized as follows. We begin with several definitions
and some easily proved facts in Section 2. In Section 3 the new relation
~δ∗ is defined as weighted directed analogue of the relation δ∗. Instead of
2-convexity, half-convexity is presented and the main theorem is proved in
Sections 4 an 5. In the last section we present a polynomial algorithm
which finds all representations of a digraph as a Cartesian graph bundle
provided the base digraphs do not contain the transitive tournament on
three vertices TT3.
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2 Weighted Graph Bundles

We call directed edges arcs and denote them either by uv or u → v, for
u, v ∈ V (G). In this paper by digraph we mean a directed graph with
weighted vertices if not explicitly stated otherwise. If G has undirected
edges, we will replace each undirected edge {u, v} by two arcs uv and vu. The
weight function on G will be denoted by cG : V (G) → IR+. A digraph is thus
defined by a triple G = (V, A, cG). By introducing the trivial weight function
cG(v) = 1(v) = 1 we get (unweighted) digraphs G = (V,A) = (V,A, 1).
Furthermore, if u → v ∈ A implies v → u ∈ A for all A, G = (V, A) is
clearly equivalent to an undirected graph. The results of this paper therefore
generalize those of [6] and are also valid for unweighted digraphs.

We will assume that the digraphs are weakly connected. (Or, equiva-
lently, that the underlying undirected graph G is connected.) If G is not
weakly connected, then we may find graph bundle representations of each
connected components. However, in order to combine the representations
of more than one connected component we have to decide whether the fi-
bres on different weakly connected components are isomorphic. As there
is no known polynomial algorithm for graph isomorphism, recognition of
graph bundles (with respect to any product) is at least as hard as the graph
isomorphism problem.

Furthermore, G ∼= H will denote weighted graph isomorphism, i.e., the
existence of a bijection b : V (G) → V (H) with cH(b(v)) = cG(v) for all v ∈
V (G) and such that there is an arc v1 → v2 in G if and only if b(v1) → b(v2)
is an arc in H.

Definition 1. The Cartesian product G2H of digraphs G and H is the
digraph with

V (G2H) = V (G)× V (H) and
A(G2H) = {(v1, w1) → (v2, w2) : (v1 → v2 ∈ A(G) and w1 = w2)
or (v1 = v2 and w1 → w2 ∈ A(H))}.

The weight function is cG2H (v, w) = cG(v)cH(w).

Definition 2. Let B,F and G be weighted digraphs. G is a (weighted di-
rected Cartesian) graph bundle with fibre F over the base B if there is a
mapping p: G → B which satisfies the following conditions:

(1) It maps adjacent vertices of G to adjacent or identical vertices in B.
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(2) Arcs are mapped to arcs (preserving the direction) or collapsed to
vertices.

(3) For each vertex v ∈ V (B), p−1(v) ∼= F , and for each arc e ∈ A(B),
p−1(e) ∼= ~K22F . By ~K2 we denoted a graph isomorphic to an arc.

(4) If for x → y ∈ A(G), p(x → y) ∈ A(B), then:

cG(x)
cB(p(x))

=
cG(y)

cB(p(y))
.

(5) If for x → y ∈ A(G), p(x → y) = z ∈ V (B), then for any arc z → u
∈ A(B) and the corresponding lifted isomorphism m : p−1(z) → p−1(u):

cG(x)
cG(m(x))

=
cG(y)

cG(m(y))
.

(See Figure 1.)
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Figure 1. Definition of weighted directed Cartesian graph bundle

We say an arc e is degenerate if p(e) is a vertex. Otherwise we call it
nondegenerate. A factorization of a digraph G is a collection of spanning
subgraphs Hi of G such that the arc set of G is partitioned into the arc
sets of the digraphs Hi. In other words, the set A(G) can be written as a
disjoint union of the sets A(Hi). The projection p induces a factorization
of G into the digraph consisting of isomorphic copies of the fibre F and the
digraph G̃ consisting of all nondegenerate arcs. This factorization is called
the fundamental factorization. It can be shown that the restriction of p to G̃
is a covering projection of digraphs; see for instance [11] or [12] for details.
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We wish to remark that the weighted graph bundles studied in [16] are not
defined in the same way as here.

For any degenerate arc e = x → y, cG(y)
cG(x) can be understood as the

weight of the corresponding arc in F . Similarly, for y = m(x), cG(y)
cG(x) can be

seen as a weight of a nondegenerate arc of G or, alternatively, the weight of
an arc p(x) → p(y) of B or the weight of the lifted isomorphism m.

3 Relation ~δ?

The equivalence relation ~δ? is defined among the arcs of a graph. This
relation is a weighted directed analogue of the relation δ? which was first
used in the proof of the unique factorization theorem for Cartesian product
graphs [15] and later as a starting relation in one of the first algorithms for
factoring a graph with respect to the Cartesian product [2]. The algorithm
for recognition of Cartesian graph bundles over triangle free bases of [6] is
based on δ? as well.

Definition 3. An induced subgraph on four vertices which underlying undi-
rected subgraph induce a cycle, is called chordless square. Let xi,j , i, j
∈ {0, 1} denote the vertices in chordless square, where vertices with both
different coordinates are not connected. A chordless square is called weights
and directions consistent chordless square if for any i, j, k ∈ {0, 1}
(1) xi,j → xi,k ∈ A(G) ⇒ x1−i,j → x1−i,k ∈ A(G) and

xi,j → xk,j ∈ A(G) ⇒ xi,1−j → xk,1−j ∈ A(G) (see Figure 2) and

(2)
cG(xi,j)
cG(xi,k)

=
cG(x1−i,j)
cG(x1−i,k)

and
cG(xi,j)
cG(xk,j)

=
cG(xi,1−j)
cG(xk,1−j)

,

(or equivalently, there exist constants a0, a1, b0, b1 such that
c(xi,j) = aibj).

t t

tt

t t

tt

-

6
-

6

(a)

-

-

t

t t

t

(b) (c)

µ µ

ªª

µ I
R
µ

ªR
I
ª

Figure 2. Directions consistent chordless squares
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We now define an auxiliary binary relation ~δ.

Definition 4. For any e, f ∈ A(G) we set e ~δ f if at least one of the
following conditions is satisfied:
(1) e and f are opposite arcs of a unique weights and directions consistent

chordless square.
(2) e and f are incident and there is no weights and directions consistent

chordless square spanned on e and f .
(3) e, f ∈ {u → v, v → u}. (In other words, e ~δ f either if e = f or if e and

f connect the same pair of vertices, in opposite directions).
By ~δ? we denote the transitive closure of ~δ.

Since ~δ is symmetric, ~δ? is an equivalence relation.
Note that by definition any pair of incident arcs which belong to dis-

tinct ~δ?-equivalence classes span a unique weights and directions consistent
chordless square. We say that ~δ? has the square property. Furthermore, any
equivalence relation R ⊇ ~δ also has the square property.

Let R have the square property and let e be an arc. For any arc f not
in the same class as e and incident to e we can define a translation of e
along f , Tf (e), to be the (unique) opposite arc of the weights and directions
consistent chordless square spanned by the arcs e and f .

Equivalence classes of R will be denoted by Greek letters, possibly equip-
ped by indexes. In particular, the class containing the arc ei will be denoted
by ϕi. We are mainly interested in nontrivial equivalence relations R, i.e.,
equivalence relations having at least two equivalence classes.

The following two facts can be easily shown for relation ~δ?.

Lemma 1. Each vertex in a weakly connected digraph G is incident to at
least one arc of each ~δ? class.

Proof. (sketch) Assume the vertex v is in the underlying graph at distance
at least k to the closest arc e of the class ϕ. Take a shortest path in the
underlying graph from v to e and use the last arc of this path to find an arc
of class ϕ which is of distance k − 1 to v (in underlying graph), which is a
contradiction.

Lemma 2. If the arc u → v is in class ϕ1, then for any other ~δ?-class
ϕ2 6= ϕ1, the vertices u and v have the same (in- and out-) ϕ2-degree, and
~δ? induces a bijection between the ϕ2-arcs incident to u and ϕ2-arcs incident
to v.

Proof. Follows directly from definition.
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4 Half-Convexity

Let R be an equivalence relation on the arc set A(G) of a weakly connected
digraph G and let ϕ be an equivalence class of R. Denote by Gϕ the span-
ning subgraph of G containing the arcs of ϕ and let Gϕ(v) be the weakly
connected component of Gϕ that contains v ∈ V (G).

We define a digraph Bϕ without parallel arcs and a projection pϕ : G →
Bϕ by the following rules:

(1) Let the vertex set of Bϕ be V (Bϕ) = {Gϕ(v) : v ∈ V (G)}.
(2) For each vertex v ∈ V (G) let pϕ(v) = Gϕ(v) and

for each arc e = u → v ∈ A(G) \ ϕ let pϕ(u → v) = Gϕ(u) → Gϕ(v).
(3) There are no other arcs in Bϕ except those forced by rule no. 2.

By definition let the weight of a vertex Gϕ(v) be the minimum weight
cB(Gϕ(v)) = min cG(v) over all v ∈ Gϕ(v).

Note that Bϕ may have loops and directed 2-cycles, even if G has not.
On the other hand, Bϕ by definition has no parallel arcs.

Clearly, Bϕ has no loops if and only if each weakly connected component
of Gϕ is an induced subgraph of G. In this case Bϕ is a simple digraph, i.e.,
digraph without loops and parallel arcs.

In the algorithms for recognition of Cartesian graph products and graph
bundles it is possible to use convexity properties. For example, it is well
known that layers of a Cartesian product graph must be convex subgraphs
in the product graph (see, for example [5]) and fibres of a Cartesian graph
bundle are 2-convex subgraphs [6]. A subgraph H of a graph G is k-convex,
if for every pair of vertices of distance ≤ k in G, every shortest path is in H.
The usual convexity is the same as ∞-convexity and a subgraph is induced
if and only if it is 1-convex.

A natural generalization of this notion to digraphs would be to expect
all directed shortest paths of length at most k to be in H. However, this
may not hold for fibres of a Cartesian graph bundle, as the following example
shows (see Figure 3).

What we need is that nondegenerate arcs define unique isomorphisms be-
tween neighboring fibres. Therefore
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Figure 3. Fibre which is not 2-convex

Definition 5. A weakly connected subgraph H is half-convex in G if it is
an induced subgraph in G and there is no obstruction of type 1 or type 2,
see Figure 4.
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Figure 4. Definition of half-convexity. Obstructions

For general H, H is half-convex in G if and only if each of its weakly con-
nected components is half-convex.
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Let R be an equivalence relation on A(G) and let ϕ be an equivalence class
of R. We say ϕ is half-convex if Gϕ is half-convex. Furthermore, we define
R to be half-convex if each equivalence class of R is half-convex. R is weakly
half-convex if at least one equivalence class of R is half-convex.

Any half-convex subgraph H clearly has the following property: For any two
vertices u, v ∈ V (H) there is no vertex w ∈ V (G) \ V (H) such that w → v
and w → u are both arcs in G, and there is no vertex w ∈ V (G) \ V (H)
such that v → w and u → w are both arcs in G.

It may be interesting to note that if H is 2-convex in G then H is half-
convex in G. Recall that G denotes the underlying graph of G. On the other
hand, H being half-convex in G does not imply H 2-convex in G.

5 Fibres are Half-Convex

Note that half-convexity of equivalence class ϕ implies Bϕ is a simple di-
graph, because ϕ and hence Gϕ are half-convex and therefore each weakly
connected component of Gϕ is an induced subgraph.

Lemma 3. Let R be a weakly half-convex equivalence relation on A(G) with
the square property and let ϕ be a half-convex equivalence class of R. Let
e = u → v be an arc from A(G)\ϕ. Then e induces a unique isomorphism α
between Gϕ(u) and Gϕ(v). Furthermore, there is a constant k = k(e) such
that for any vertex w ∈ Gϕ(u), cG(α(w)) = kcG(w).

Proof. Define the set of arcs Me connecting Gϕ(u) to Gϕ(v) as follows:
(1) e ∈ Me,
(2) if e

′ ∈ Me, f ∈ A(Gϕ(u)) then Tf (e
′
) ∈ Me,

(3) if e
′ ∈ Me, f ∈ A(Gϕ(v)) then Tf (e

′
) ∈ Me,

where Tf (e) is the translation of e along f . Since ϕ is half-convex, Me is a
matching. Because Gϕ(u) and Gϕ(v) are weakly connected, Me is a perfect
matching on Gϕ(u) ∪ Gϕ(v) and hence defines a 1-1 map α : V (Gϕ(u)) →
V (Gϕ(v)). By Lemma 2 we can verify that α : Gϕ(u) → Gϕ(v) is a local
isomorphism which in turn implies that it is an isomorphism.

Since any two incident arcs e′ = x → y ∈ Me and x → x′ or x′ → x =
f ∈ A(Gϕ(u)) span a weights and directions consistent chordless square

cG(α(x))
cG(x)

=
cG(α(x′))

cG(x′)
.
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Because Gϕ(u) and Gϕ(v) are weakly connected, for any w ∈ Gϕ(u) there is
a sequence of weights and directions consistent chordless squares connecting
u → v and w → α(w) which implies

cG(v)
cG(u)

=
cG(α(u))

cG(u)
=

cG(α(w))
cG(w)

.

Hence there is a constant k such that

k = k(e) =
cG(v)
cG(u)

=
cG(α(w))

cG(w)

for any w ∈ Gϕ(u).

Theorem 1. Let G be any digraph and R any nontrivial weakly half-convex
equivalence relation having the square property with ϕ being a half-convex
equivalence class of R. Then (G, pϕ, Bϕ) is a Cartesian graph bundle.

Proof. First, it is easy to see that Bϕ is simple digraph, because ϕ and
hence Gϕ are half-convex and therefore each weakly connected component
of Gϕ is an induced subgraph.

Second, we have to show that all p−1(x) are isomorphic and that p−1(e)
induce isomorphisms between fibres.

It is enough to show that for each e = a → b ∈ A(Bϕ), p−1(e) is a per-
fect matching which induces an isomorphism between two weakly connected
components Gϕ(u) and Gϕ(v) such that p(u) = a and p(v) = b. Since p−1(e)
is Me of the previous lemma, p−1(e) induces an isomorphism between fibres.

Now we show the consistency of weights. By Lemma 3 any arc e = x → y
from A(G) \ ϕ induces a unique isomorphism α between Gϕ(x) and Gϕ(y)
(which maps vertices with minimum weights from Gϕ(x) to vertices with
minimum weights from Gϕ(y)) and there is a constant

k = k(e) =
cBϕ(Gϕ(y))
cBϕ(Gϕ(x))

=
cBϕ(p(y))
cBϕ(p(x))

such that for any vertex w ∈ Gϕ(x), cG(α(w)) = kcG(w). Since y = α(x)

cG(y) = kcG(x) =
cBϕ(p(y))
cBϕ(p(x))

cG(x)

and therefore
cG(x)

cBϕ(p(x))
=

cG(y)
cBϕ(p(y))

.
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Finally, for any arc e = x → y, x ∈ Gϕ(y) = u ∈ V (Bϕ) and for any
arc u → v or v → u ∈ A(Bϕ) and the corresponding isomorphism α :
Gϕ(y) → p−1(v) there is a constant k such that for any vertex w ∈ Gϕ(x),
cG(α(w)) = kcG(w), by Lemma 3. Therefore

1
k

=
cG(x)

cG(α(x))
=

cG(y)
cG(α(y))

.

Finally, all Gϕ(v) are isomorphic because G is weakly connected.

The theory developed so far can now be used for representing digraph G as
a graph bundle. We start with ~δ? and then glue some equivalence classes
together as long as the resulting equivalence relation R does not satisfy the
conditions of the theorem. Unfortunately, this approach does not recognize
all graph bundles. As an example construct a bundle with directed cycle as
a fibre and over a directed triangle in Figure 5 as base. From construction
it follows that the triangle in base can not be a directed 3-cycle. In the
language of tournaments, the forbidden configuration in the base digraph is
the transitive tournament on three vertices, following [14] denoted by TT3.
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Figure 5. The unsolved configuration over TT3 in base
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Note that a directed K3,3 does not provide a counterexample, in contrast
to the undirected case. (By a directed K3,3 we mean a graph bundle with
underlying graph K3,3 without 2-loops.)

In general, if (G, p, B) is a graph bundle whose simple base digraph B
has no TT3, then each ~δ? equivalence class either contains only degenerate
arcs or only nondegenerate arcs.

Lemma 4. Let (G, p, B) be a graph bundle whose simple base digraph B has
no TT3. Then each ~δ? equivalence class contains either only degenerate arcs
or only nondegenerate arcs. In particular, ~δ? is not trivial.

Proof. Let R1 be the union of ~δ? classes containing degenerate arcs and
let R2 be the union of ~δ? classes containing nondegenerate arcs. We claim
that R1 and R2 have empty intersection. Assume there is a ~δ? equivalence
class containing a degenerate arc e′ and a nondegenerate arc f ′. Then there
must be a pair e, f of arcs such that e is degenerate, f is nondegenerate
and e~δf .

We have two different cases to consider. First, if e and f are incident
then by definition of graph bundle there must be a unique weights and
directions consistent chordless square spanned by e and f since two adjacent
fibres induce a Cartesian product with ~K2. But this is in contradiction
with e~δf .

The second case occurs when e and f are opposite arcs of a weights
and directions consistent chordless square. Then it is easily seen that there
must be a TT3 in the base; see Figure 5. Therefore no ~δ? class can contain
both degenerate and nondegenerate arcs if there is no TT3 in the simple
base digraph.

Remark. The relation ~δ? may not fail also on some graph bundles with
TT3 in base. A more precise characterization of the graph bundles, not
recognized by the present approach is the following: There must be a TT3

in the base digraph and the composition of the three isomorphisms between
fibres over that TT3 (which is an automorphism on one copy of fibre) must
map at least one vertex to one of its neighbors.

Let R be any equivalence relation with the square property defined
among arcs of G and let H be a subgraph of G. We define the half-convex
R-closure C(H,R) as the subset ρ of the arcs set A(G), such that ρ is the
minimal union of equivalence classes of R that satisfies the following two
conditions:
(1) A(H) ⊆ ρ and
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(2) ρ is half-convex in G.
In order to justify the above definition we must show that the half-convex
closure is well defined. It suffices to prove that the intersection of half-convex
subgraphs is half-convex.

If ϕ is a set of arcs, then the half-convex R closure of ϕ is, by definition,
C(H,R), where H is the subgraph with arc set A(H) = ϕ and the vertices
of H are the endpoints of its arcs.

Lemma 5. If two subgraphs C1 and C2 are half-convex, then the intersection
C1 ∩ C2 is half-convex.

Proof. Let u, v ∈ C1∩C2. If u → v is in A(G), then the arc u → v must be
in both C1 and C2, since C1 and C2 are induced subgraphs in G. Assume u
and v have a common (forward or backward) neighbor. More precisely, by
a forward neighbor we mean a vertex w such that u → w and v → w, and
by a backward neighbor a vertex x such that x → u and x → v. In either
case, the common neighbor has to be both in C1 and in C2 because C1 and
C2 are half-convex.

Corollary 1. C(H, R) = ∩Ci, the intersection of all Ci for which H ⊆ Ci

and the arcs of Ci are a weakly connected component of a digraph induced
on a union of R-equivalence classes.

Corollary 2. C(H, R) is a weakly connected component of a digraph induced
on a union of R-equivalence classes.

From the above facts we also infer that the following algorithm computes
the half-convex R-closure C(H, R).

Algorithm CLOSURE
Input: H: a connected subgraph of G
Output: C: half-convex R-closure of H
C:= H
repeat

(*R-closure*)
while there is an arc e = uv with exactly one endpoint in C

which is in relation R with some arc of C do
C := C ∪ {u, v, e}

(*half-convex closure*)
Obstructions:= ∅
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for all pairs of vertices x and y ∈ C do:
if x → y ∈ A(G) then Obstructions:= Obstructions ∪{x → y}
if y → x ∈ A(G) then Obstructions:= Obstructions ∪{y → x}
if ∃z : z → x ∈ A(G) and z → y ∈ A(G) then

Obstructions:= Obstructions ∪{z, z → x, z → y}
if ∃z : x → z ∈ A(G) and y → z ∈ A(G) then

Obstructions:= Obstructions ∪{z, x → z, y → z}
C := C ∪ Obstructions

until Obstructions=∅;
C is the half-convex R-closure of H

Note that there are some obvious improvements of this algorithm. For exam-
ple, if a pair of vertices x, y was checked once and the arcs were added, then
there is no need to check the pair x, y again. Here we only want to give a
simple algorithm with polynomial running time and a straightforward proof
of correctness. A faster algorithm for computing a convex closure relative
to an equivalence relation will be given elsewhere [13].

Lemma 6. Let G be a graph bundle whose simple base digraph contains
no TT3 and let ϕ be any equivalence class of ~δ? containing only degenerate
arcs. If ρ := C(ϕ,~δ?) 6= A(G), then G is a graph bundle with fibres being the
weakly connected components of Gρ.

Proof. Since each weakly connected component of Gρ is an induced sub-
graph of G, every arc of A(G) \ ρ has its endpoints in distinct weakly con-
nected components of Gρ. The equivalence relation with two equivalence
classes {ρ,A(G)\ρ} is weakly half-convex. Therefore, by Lemma 3, all pairs
of weakly connected components of Gρ are pairwise isomorphic.

Lemma 7. Let G be a graph bundle with fibre F . Assume each equivalence
class of ~δ? contains either only degenerate or nondegenerate arcs and let γ
be any equivalence class of ~δ?. If a weakly connected component of the di-
graph determined by γ is contained in a fibre, then also the weakly connected
component of the half-convex closure C(γ,R) is contained in a fibre. In par-
ticular, the digraph determined by the 2-convex closure of γ has at least two
weakly connected components.

Proof. We show that if a weakly connected component of an arbitrary
subgraph H ⊂ G is contained in a fibre, then also the weakly connected
component of the half-convex closure is contained in the same fibre. Since
the argument is valid for each weakly connected component of H, we may



Recognizing Weighted Directed Cartesian Graph Bundles 53

assume, without loss of generality, that H is weakly connected. Let H be
a weakly connected subgraph of a fibre F1. Let H ′ be obtained from H by
a step of the algorithm CLOSURE. At each step either arcs or stars are
added. (Stars here are digraphs with a central node and leaves and with all
arcs directed either to or from the center.)

(1) If an arc was added, then this arc must also be in F1 because fi-
bres are induced subgraphs. Furthermore, any other arc of the same ~δ?-
equivalence class adjacent to a vertex of H ′ must be in F1. If not, then this
~δ?-equivalence class would contain both degenerate and nondegenerate arcs
which we have assumed not to be the case.

(2) If a star (with a new vertex v 6∈ F1) was added to H, then we have
a vertex v in another fibre, say F2, adjacent to a pair of vertices of H and
hence of F1. But since G is a graph bundle a vertex cannot have more than
one neighbor in another fibre. Hence, no vertex not belonging to F1 can be
added and H ′ must also be a subgraph of F1.

Thus all obstructions are in F and the arcs of the obstructions degenerate.
Since each class of ~δ? contains by assumption either only degenerate or only
nondegenerate arcs, the ~δ? closure contains only degenerate arcs.

6 The Algorithm

If there is a simple digraph B with no TT3, such that (G, p, B) is a graph
bundle for some p, we can now give a polynomial algorithm which finds
representations of G.

Algorithm BUNDLE
Input: G: digraph without loops
Output: C: set of degenerate arcs of some bundle representation
compute ~δ?

if the number of ~δ? equivalence classes > log2 n then
return(“G is not a graph bundle over a TT3-free simple base.”)

else begin
for all unions of equivalence classes ϕ of ~δ? do

if C := C(ϕ,~δ?) 6= A(G) then return(C)
end-for

end-else
if no representation found then

return(“G is not a graph bundle over a TT3-free simple base.”)
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Theorem 2. Let G be a digraph which can be represented as a graph bundle
over TT3-free simple base. Then algorithm BUNDLE lists C(ϕ,~δ?), the sets
of degenerate arcs of (G, pϕ, Gϕ), for all representations of G as a graph
bundle.

Proof. We first discuss the correctness and time complexity of the block
inside the for loop. For any representation over a TT3-free simple base, the
equivalence classes of the relation ~δ? contain either only degenerate or only
nondegenerate arcs by Lemma 4. Let ϕ be an equivalence class of ~δ? with
degenerate arcs. Each weakly connected component must be contained in
one fibre and by Lemmas 6 and 7 the closure C(ϕ,~δ?) is the set of degenerate
arcs for a representation of G as a graph bundle.

The number of iterations of the for loop is not more than 2N , where
N is the number of equivalence classes of ~δ?. If G is a Cartesian graph
bundle, then the relation ~δ? can have at most log2 n equivalence classes.
(This fact was noted in [2] for Cartesian product graphs. Essentially the
same argument is valid for graph bundles, too.)

Hence we can compute the half-convex R closures of all unions of R
equivalence classes and therefore list all representations of G as a graph
bundle in polynomial time.

Remark. In [6], it is claimed that by computing the closures of all δ? equiv-
alence classes, we can find all minimal representations of Cartesian graph
bundle G over triangle free base. Minimal representation means there is
no representation such that its fibres would be proper subsets of minimal
representation fibres. Using the observation that the number of equivalence
classes of the relation is at most log2 n, the algorithm of [6] finds all repre-
sentations, too.

We finally briefly discuss a possible generalization of the algorithm given
here. By adaptation of results in [17] and [19], one would obtain a method
for disabling of ~δ on induced subgraphs with underlying undirected graph
K3,3 \ e, which would give an algorithm for recognizing weighted directed
Cartesian graph bundles over more general base digraphs.
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[21] J. Žerovnik, On Recognition of Strong Graph Bundles, accepted, Math.
Slovaca.

Received 8 January 1999
Revised 16 March 2000

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

