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Abstract

The strong isometric dimension of a reflexive graph is related to its
injective hull: both deal with embedding reflexive graphs in the strong
product of paths. We give several upper and lower bounds for the
strong isometric dimension of general graphs; the exact strong isomet-
ric dimension for cycles and hypercubes; and the isometric dimension
for trees is found to within a factor of two.
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1 Introduction and Preliminaries

We consider reflexive graphs, that is, graphs with a loop at every vertex
(the loops are not drawn in the figures). The distance between two vertices
x and y in a graph G is the length of a shortest path joining the two and
is denoted by dG(x, y). The reference to G will be dropped when there
is no risk of confusion. A graph G is an isometric subgraph of H if there
is a map f : V (G) → V (H) such that for all x, y ∈ V (G), dG(x, y) =
dH(f(x), f(y)). A graph G is a retract of a graph H if there are edge-
preserving maps g : G → H and f : H → G such that f ◦ g is the identity
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map on G. Isometric subgraphs are clearly induced subgraphs and a retract
is an isometric subgraph since walks are mapped to walks. In Figure 1, G is
an induced subgraph of both H and I (indicated by the larger circles) but
G is only an isometric subgraph of H, whereas in Figure 2, G is an isometric
subgraph of both H and I but is only a retract of I.

Figure 1. Graph G is an Isometric Subgraph of H but not of I.

Figure 2. G is an Isometric Subgraph of H and a Retract of I.

The concept of strong isometric dimension has two motivations. It is implicit
in the concept of an injective hull of a graph [6, 7, 10, 13]. The injective
hull of a graph G is the smallest supergraph H of G where H is an absolute
retract, i.e., H is a retract of a graph whenever it is an induced subgraph of
that graph. One way of finding the injective hull for a reflexive graph G is
to embed G in a strong product of paths then take the smallest retract of
the product that contains that image of G. Isbell [6] gives a construction for
the injective hull which proceeds via a metric space defined on functions.
The second motivation comes from the game of ‘cop and robber’ introduced
independently in [12] and [14]. The game rules are: given a connected
graph G, the cop chooses a vertex of G, then the robber chooses a vertex.
They then move alternately — each can move to an adjacent vertex or pass.
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(Passing is equivalent to moving along a loop.) The cop wins if he ever
occupies the same vertex as the robber; the robber wins if this situation
never occurs. In [12] and [14], the authors characterize those graphs in
which the cop has a winning strategy. These are called cop-win graphs. In
[12], it is shown that the strong product of two cop-win graphs is also cop-
win. Clearly, a finite path is a cop-win graph and thus the strong product
of any finite set of finite paths is cop-win. For an arbitrary graph G, one
can ask for the least number of cops, c(G), required to capture a robber (see
[1, 2, 9]). The embedding of G in a product of paths allows the ‘holes’ of
G to appear. These are structures which the robber can use to evade the
cops. Generally speaking, the greater the complexity of the ‘hole’ the more
options the robber has and therefore the more cops are needed to capture
the robber. However, the degrees of the vertices in a product of k paths are
bounded by 3k and so the size of the strong isometric dimension bounds the
possible complexity of the ‘holes’. We address this question in [5].

While it is true that the taking of an injective hull is categorically the
same as taking the Dedekind-MacNeille completion of an order, it is not true
that the strong isometric dimension of a graph is the equivalent concept to
that of dimension in ordered sets. In the ordered set situation, the order
is embedded in a product of chains, but the order is not isometric. The
corresponding idea would be to embed the order in a product of fences
(see [7]).

We write, a ' b if a is either equal or adjacent to b, a ∼ b if a is
adjacent to but not equal to b, and a ⊥ b if a is neither adjacent nor equal
to b. The strong product of a set of graphs {Gi : i = 1, 2, . . . , k} is the
graph ×k

i=1Gi whose vertex set is the Cartesian product of the V (Gi) and
there is an edge between ā = (a1, a2, . . . , ak) and b̄ = (b1, b2, . . . , bk) if and
only if ai ' bi for i = 1, 2, . . . , k. See Figure 3 for an example of K3 × P3.
The distance between ā = (a1, a2, . . . , ak) and b̄ = (b1, b2, . . . , bk) is therefore
given by d(ā, b̄) = max{d(ai, bi) : i = 1, 2, . . . k}. The Cartesian product of
{Gi : i = 1, 2, . . . , k} is the graph ×k

i=1Gi whose vertex set is the Cartesian
product of the V (Gi) and there is an edge between ā = (a1, a2, . . . , ak) and
b̄ = (b1, b2, . . . , bk) if and only if there is some j such that ai = bi for i 6= j
and aj ∼ bj . For other terms please see [3].
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Figure 3. The Strong Product of K3 and P3

The isometric dimension of a graph G has been defined as the least number
of paths needed so as to be able to isometrically embed G in the Cartesian
product of the paths, see [15]. This is not always possible unless there is
a relaxation of the isometry condition. In this paper, we are interested in
finding when a given graph is an isometric subgraph of the strong product
of paths. The strong isometric dimension of a graph G is the least number
k such that there is a set of k paths {P1, P2, . . . , Pk} with G an isometric
subgraph of ×k

i=1Pi. We denote this by idim(G) = k. One of our first results
is that if G is a finite, reflexive, connected graph then idim(G) exists.

Figure 4 shows that idim(C4) ≤ 2 and since C4 is not an induced sub-
graph of any path then idim(C4) = 2. Cycles require a lot of space, indeed,
in Lemma 28 we show that idim(Cn) = dn/2e. In contrast, the strong
product of n edges is the complete graph K2n , thus idim(Km) = dlog2 me.

If G is an isometric subgraph of H then idim(G) ≤ idim(H) but this
is not necessarily true if G is only an induced subgraph. It is also true that
idim(G×H) ≤ idim(G)+idim(H) but equality need not hold. For example,
idim(K3 × K5) = idim(K15) = 4 but idim(K3) + idim(K5) = 2 + 3.

A projection of H ⊆ ×k
i=1Gi onto Gi is a map πi : H → Gi defined as

πi(a1, a2, . . . , ak) = ai. A realizer of G is a set of paths {Pi : i = 1, 2, . . . , k}
with k = idim(G) and an edge-preserving map F : G → ×k

i=1Pi such that
F (G) is an isometric subgraph of ×k

i=1Pi. We will put ā = F (a). The
vertices of a path in the realizer will be a range of consecutive integers. This
will allow us to refer to the next and previous vertex along a path as πi(ā)+1
and πi(ā)− 1, respectively.
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Figure 4. An Isometric Embedding of C4 in P3 × P3.

We say that vertices a, b ∈ V (G) are separated by (H, f) if H is a graph and
f : G → H is an edge-preserving map where d(a, b) = d(f(a), f(b)). Often
the separating graph will be a path Pi from a realizer and the projection
onto Pi will be the corresponding map. In this case, we have d(a, b) =
d(πi(ā), πi(b̄)) and we say that a, b (ā, b̄) are separated in the ith coordinate.

In the next section, we show that for any finite, connected, reflexive
graph G, idim(G) exists. We also give upper and lower bounds for idim(G).
These bounds allow us to determine the strong isometric dimension of all
cycles and hypercubes. In Section 3, we show that if T is a tree with k leaves
then dlog2(k)e ≤ idim(T ) ≤ 2dlog2(k)e. This is done by subdividing and
contracting edges of T to give two extremal trees – a star and a tree whose
vertices have degree 1 or 3, both trees having k leaves. We pose several
problems in the last section.

2 Bounds on the Strong Isometric Dimension of
a Graph

Let G be a graph and let Pv = {v = v0, v1, . . . , vk} be an isometric path.
Let P ∗

v = {0, 1, . . . , k} be a path disjoint from G. The distance-retraction
map f∗v : G → P ∗

v is defined by f∗v (x) = d(v, x) if d(v, x) ≤ k else f∗v (x) = k.
Note the sense of direction with these maps.

We make use of distance-retraction maps so we first present some of
their properties.
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Lemma 21. Let Pv = {v = v0, v1, . . . , vk} be an isometric path of G. Then
P ∗

v is a retract of G, moreover v is separated by (P ∗
v , f∗v ) from x ∈ V (G) if

d(v, x) ≤ k.

Proof. Define g : P ∗
v → Pv by g(i) = vi and it is easy to verify that g is

edge-preserving. Also, if x ∼ y in G then |d(v, x) − d(v, y)| ≤ 1 and thus
f∗v (x) ' f∗v (y) so f∗v is edge-preserving. Now, f∗v maps G onto P ∗

v and f∗v ◦ g
is the identity map on P ∗

v . Therefore P ∗
v is a retract.

If d(v, x) = j ≤ k then d(f∗v (v), f∗v (x)) = j and thus v and x are
separated by (P ∗

v , f∗v ).

It is necessary to separate all pairs of vertices to find the strong isometric
dimension.

Lemma 22. If every pair of vertices in G is separated by at least one of
(P1, f1), (P2, f2), . . . , (Pk, fk) then idim(G) ≤ k.

Proof. Let H = ×k
i=1Pi and define the map F : V (G) → V (H) by

F (x) = (fi(x))k
i=1.

We claim that F (G) is an isometric subgraph of H. Consider vertices
v and w in V (G) with dG(v, w) = d. Since each fi is edge preserving,
dPi(fi(v), fi(w)) ≤ d for all i = 1, 2, . . . , k. Furthermore, since v and w are
separated by at least one path, dPi(fi(v), fi(w)) = d for some i. Therefore
dH(F (v), F (w)) = d and F (G) is an isometric subgraph of H.

The next result not only shows that the strong isometric dimension exists for
every finite, connected, reflexive graph but also gives the first upper bound.

Theorem 23. Let G be a finite, connected, reflexive graph, then idim(G) ≤
|V (G)|.
Proof. For each v ∈ V (G) let v′ be a vertex such that d(v, v′) is maximum.
Let Pv be a shortest path in G from v to v′. Clearly, Pv is isometric. Now
consider a pair of vertices v and w in V (G) with dG(v, w) = d. Since Pv

is a longest isometric path starting at v, l(Pv) ≥ dG(v, w). Hence, with
the distance-retraction map f∗v : G → P ∗

v to P ∗
v = {0, 1, . . . , l(Pv)} we

have dG(v, w) = dP ∗v (f∗v (v), f∗v (w)), and v and w are separated by (P ∗
v , f∗v ).

Hence, {(P ∗
v , f∗v ) : v ∈ V (G)} separate every pair of vertices in V (G) and,

by Lemma 22, idim(G) ≤ |V (G)|.
The construction in the previous result is inefficient. A slightly better result
is:
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Corollary 24. Let G be a finite, connected, reflexive graph, then idim(G) ≤
|V (G)| − diam(G).

Proof. Find {P ∗
v : v ∈ V (G)} as in the previous theorem. Now choose

a vertex x such that |P ∗
x | = diam(G) + 1. If v 6= x and v ∈ V (Px) then

eliminate P ∗
v from the collection of paths. This new collection of paths

also separates every pair of vertices in G. This follows since for any v, P ∗
v

separates v from V (G) \ {v} and also separates a and b for all a, b ∈ Pv.
Thus P ∗

x separates all pairs of vertices on Px; also if y ∈ Px and z 6∈ Px

then y and z are separated on P ∗
z . Thus the paths P ∗

y , y ∈ Px \ {x} are
unnecessary. Hence, by Lemma 22, idim(G) ≤ |V (G)| − diam(G).

This is best possible since idim(Cn) = dn/2e = |V (Cn)| − diam(Cn) where
the first equality is found in Lemma 28.

The idea of direction in the distance-retraction maps is generalized in
the next result which will be used later in evaluating the strong isometric
dimension of hypercubes and trees.

For any graph G we can obtain a directed graph from G by specifying
a direction on each edge of E(G). Such a directed graph is called an orien-
tation of G. If an orientation is placed on a subset of the edges of E(G) this
is called a sub-orientation of G.

Suppose we have a walk W = {v0, v1, . . . , vn}. We say an edge (vi−1vi) is
forward directed on W if vi−1 → vi, backward directed on W if vi−1 ← vi, and
undirected otherwise. Forward and backward directed edges on the closed
walk X = {v0, v1, . . . , vn = v0} are defined similarly. Define the edge-sum
of a (closed) walk to be the number of forward edges minus the number of
backward edges on that (closed) walk.

Lemma 25. Suppose G is a finite connected graph. Then idim(G) ≤ k
if and only if there is a set of k sub-orientations of G, {G1, G2, . . . , Gk},
such that for every pair of vertices in V (G) there is a directed isometric
path between them in at least one of the k sub-orientations, and for each
i ∈ {1, 2, . . . , k} the edge-sum of every cycle in Gi is zero.

Proof. Let idim(G) = k and let {P1, P2, . . . , Pk} be a realizer for G. For
1 ≤ i ≤ k, construct Gi as follows: for each edge ab ∈ E(G) let a → b if
πi(b̄) − πi(ā) = 1, let b → a if πi(b̄) − πi(ā) = −1, and leave ab undirected
otherwise.

Now consider a pair of vertices {x, y} in V (G). Let P (x, y) = {x =
x0, x1, . . . , xd = y} be an isometric path from x to y in G. Suppose that x
and y are separated in the ith coordinate and that πi(ȳ) > πi(x̄). Then, for
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all j = 1, 2, . . . , d, πi(x̄j) − πi(x̄j−1) = 1 and so xj−1 → xj . Hence, P (x, y)
is a directed isometric path from x to y in Gi.
Let C = {v0, v1, . . . , vn = v0} be a cycle in Gi for some i = 1, 2, . . . , k.
Obviously, πi(v̄n) − πi(v̄0) = (πi(v̄n) − πi(v̄n−1)) + (πi(v̄n−1) − πi(v̄n−2)) +
· · ·+ (πi(v̄1)− πi(v̄0)) = 0. That is, the edge-sum of C is zero.

To prove the other direction, suppose that {G1, G2, . . . , Gk} is a set of
sub-orientations of G such that for every pair of vertices in G there is a
directed path between them in at least one of the k sub-orientations and
for each i = 1, 2, . . . , k every cycle in Gi has edge-sum zero. This latter fact
implies that every closed walk in Gi has an edge-sum of zero. Therefore,
for any pair of vertices x, y ∈ V (Gi) the edge-sums of all walks from x to y
are equal.

Let d = diam(G) and let {P1, P2, . . . , Pk} be a set of disjoint paths
where for each i = 1, 2, . . . , k, Pi = {−d,−d+1, . . . , d}. We now define a set
of maps {f1, f2, . . . , fk} where fi : G → Pi. Choose a vertex v ∈ V (G) and
set fi(v) = 0 for 1 ≤ i ≤ k. Now for each vertex x ∈ V (G) and 1 ≤ i ≤ k, let
fi(x) equal the edge sum of any path from v to x in Gi. Choose any pair of
vertices x, y ∈ V (Gi). Then fi(y)−fi(x) is the edge sum of any path from x
to y. Since there is a path of length d(x, y) we have |fi(y)− fi(x)| ≤ d(x, y)
for all i = 1, 2, . . . , k. Since there is a directed path between x and y in Gi

for some i then |fi(y)− fi(x)| = d(x, y) for at least one value of i.
Finally, let F (x) = (fi(x))k

i=1. Then F (x) maps V (G) into ×k
i=1Pi.

Note that F is edge preserving and any pair of vertices x, y is separated on
Pi for those i in which there is a directed path between them in Gi. Hence,
by Lemma 22, idim(G) ≤ k.

In the case that G is a tree, the cycle condition is not required.

Corollary 26. Suppose T is a tree. Then idim(T ) ≤ k if and only if there
is a set of k orientations of T , {T1, T2, . . . , Tk}, such that for every pair of
vertices in V (T ) there is a directed path between them in at least one of the
k orientations of T .

Proof. This follows from the proof above except that when defining each
Ti let a → b if πi(b̄)− πi(ā) ≥ 0 and let a ← b otherwise.

We say that G has a diameter n-tuple if there exist n distinct vertices
a1, a2, . . . , an such that d(ai, ai+1) = diam(G), where addition is done mod-
ulo n. For convenience, a 2-tuple will be called a pair.
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The next result gives a good lower bound in many cases and allows us to
find the strong isometric dimension of cycles and hypercubes exactly. These
are given in the subsequent two lemmas.

Lemma 27. Let G be a graph which contains no diameter 4-tuples. If G
contains p disjoint diameter pairs then idim(G) ≥ p.

Proof. Let {Pi : i = 1, 2, . . . , k} be a realizer for G. Let the diameter
pairs be (ai, bi) for 1 ≤ i ≤ p. If two diameter pairs (ai, bi) and (aj , bj)
are separated in the same coordinate then they produce a diameter 4-tuple.
Thus, all pairs must be separated in distinct coordinates and so at least p
paths are required and idim(G) = k ≥ p.

Lemma 28. For n ≥ 4, idim(Cn) = dn/2e.
Proof. A cycle has no diameter 4-tuples. Let C = {c0, c1, . . . , cn−1}. There
are bn/2c distinct diameter pairs, specifically ci, ci+bn/2c, 0 ≤ i ≤ bn

2 c − 1.
Hence, by the previous lemma idim(Cn) ≥ bn/2c for all n ≥ 3. So for n
even we have idim(Cn) ≥ dn/2e.

In the case of odd cycles we can improve the lower bound by one. We
label the vertices as {c0, c1, . . . , c2m}. We may assume that c0 and cm are
separated by the first coordinate with c0 being mapped to 0 and cm to m.
Now ci, 0 ≤ i ≤ m, is mapped to i. Consider c1 and cm+1. They can not
be separated in the first coordinate and thus require a second coordinate.
Again, in the second coordinate the vertex ci, 1 ≤ i ≤ m + 1 is mapped
to i − 1. Inductively, consider cj and cm+j . These vertices can not be
separated in the first j − 1 coordinates, since cj is not mapped to 0 or m
in any of these coordinates. Thus they must be separated in say the jth

coordinate and cj+i is mapped to i for 0 ≤ i ≤ m.
For 0 ≤ j ≤ m−1, this is just making specific the proof of the preceding

lemma. We now continue. Consider cm and c2m. The m coordinates of cm

are completely specified and are m,m−1, . . . , 1. If only m coordinates were
to be used then this pair must be separated in the first coordinate and the
first coordinate of cm+i is m− i. Inductively again, consider cm+j and cj−1,
j < m. For cm+j only the j + 1st coordinate is m and none is 0. Thus,
this pair must be separated in the j + 1st coordinate. Therefore, the j + 1st

coordinate of cm+j+i is m− i. Finally, consider c2m. Now all its coordinates
are specified and are 0, 1, . . . , m − 1, and so are the coordinates of cm−1

specifically m − 1,m − 2, . . . , 0. But then the distance of the image of c2m

from cm−1 is less than m−1 which is impossible. Hence, another coordinate
is required to separate this pair and idim(Cn) ≥ dn/2e when n is odd.
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To show that idim(Cn) ≤ dn/2e, let C = {c1, c2, . . . , cn} and also let
{P1, P2, . . . , Pdn/2e} be the set of paths of C such that Pi = {ci, ci+1, . . .,
ci+bn/2c} for i = 1, 2, . . . , dn/2e. Also let f∗i be the distance retraction map
of G onto P ∗

i . We will now show that every pair of vertices is separated on
at least one of these paths.

Choose any two vertices ca and cb on C where 1 ≤ a < b ≤ n. If
a ≤ dn/2e then ca and cb are separated on the path P ∗

a . If dn/2e < a < b then
both ca and cb lie on the path Pdn/2e and are therefore separated on P ∗

dn/2e.
Hence, by Lemma 22, idim(Cn) ≤ dn/2e and we have idim(Cn) = dn/2e.

Let the upper girth of a graph G, denoted by ug(G), be the cardinality of
the longest isometric cycle in G. Since the strong isometric dimension of a
graph is at least as big as the strong isometric dimension of any isometric
subgraph the preceding result can be used to show:

Corollary 29. Let G be a finite, connected, reflexive graph, then idim(G) ≥
dug(G)/2e.

Lemma 210. Let Qk be the hypercube with 2k vertices. Then idim(Qk) =
2k−1.

Proof. Since Q2 = C4 by Lemma 28 we have idim(Q2) = 2. Furthermore,
Q2 has two diameter pairs.

Now, inductively, assume that Qk−1 has 2k−2 diameter pairs and that
idim(Qk−1) = 2k−2. Let Qk = Qk−12P2 where P2 = {a, b}. Then V (Qk) =
A ∪ B where A = {(v, a) = va : v ∈ V (Qk−1)} and B = {(v, b) = vb :
v ∈ V (Qk−1)}. Note that dQk

(xa, yb) = dQk−1
(x, y) + 1 and dQk

(xa, ya) =
dQk

(xb, yb) = dQk−1
(x, y).

If x and y are diameter pairs in Qk−1 then xa and yb are diameter pairs
in Qk, as are xb and ya. Hence, Qk has 2k−1 distinct diameter pairs. Since
Qk has no diameter 4-tuples then by Lemma 27, idim(Qk) ≥ 2k−1.

For each va ∈ A let Pva be the longest isometric path starting at va

and let f∗va
: Qk → P ∗

va
be the distance retraction map. Then each vertex

in A is separated from all vertices in A ∪ B by at least one of (P ∗
va

, f∗va
).

Furthermore, for any xb, yb ∈ B we have fxa(yb) − fxa(xb) = d(xa, yb) −
d(xa, xb) = d(x, y) + 1 − 1 = d(xb, yb). Hence, every pair of vertices in B
are separated on at least one path. Since every pair of vertices in V (Qk) are
separated on at least one Pva , by Lemma 22 we have idim(Qk) ≤ 2k−1 and
thus idim(Qk) = 2k−1.
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The last few lower bounds are based mainly on neighbourhood considera-
tions. They are in terms of the maximum degree ∆(G), the chromatic num-
ber χ(G) and the independence number of the neighbourhood of a vertex
β(N(v)). For our purposes we define βN (G) = max{β(N(v)) : v ∈ V (G)}.
Theorem 211. Let G be a finite, connected, reflexive graph. Then
(a) idim(G) ≥ dlog3(∆(G) + 1)e;
(b) idim(G) ≥ dlog2 βN (G)e;
(c) idim(G) ≥ dlog2(χ(G))e.

Throughout this proof let {P1, P2, . . . , Pk} be a realizer for G. Let F : G →
×k

i=1Pi be an isometric embedding of G in ×k
i=1Pi. Recall that we denote

by v̄ = (v1, v2, . . . , vk) the vertices of ×k
i=1Pi.

Proof of (a). Consider a vertex a ∈ F (G) such that ā = (a1, a2, . . . , ak).
For any x̄ ∈ N(ā) we have |πi(x̄)−πi(ā)| ≤ 1 for every i = 1, 2, . . . , k. Hence,
πi(x̄) ∈ {ai − 1, ai, ai + 1}. Since x̄ 6= ā, there are 3k − 1 possible vertices
onto which x may be mapped. Since each vertex in N(a) must be mapped
to a unique vertex in ×k

i=1Pi then |N(a)| ≤ 3k−1. Therefore, ∆(G) ≤ 3k−1
and thus k ≥ log3(∆(G) + 1).

Proof of (b). If idim(G) = 2 then it is easy to see that βN (G) ≤ 4.
Choose any ā ∈ F (G) and let ā = (a1, a2, . . . ak). Then for each x̄ ∈

N(ā), dPi(πi(x̄), πi(ā)) ≤ 1 for each i = 1, 2, . . . , k. If I ⊆ N(ā) is an
independent set then each pair of vertices in I must be separated by at least
two on some Pi.

We proceed by induction on k assuming that in a product of k−1 paths
βN (G) ≤ 2k−1.

Let I be an independent set in N(ā) with I = A∪B∪C where A = {x̄ :
π1(x̄) = a1− 1}, B = {x̄ : π1(x̄) = a1}, and C = {x̄ : π1(x̄) = a1 + 1}. Since
any two vertices of A ∪ B are not separated on P1 they must be separated
on at least one of the other k − 1 paths. Let R be the set of vertices in
×k

i=2Pi obtained from A∪B by dropping the first coordinate. Thus R is an
independent set and |R| = |A ∪ B|. By induction we have |A ∪ B| = |R| ≤
2k−1. Similarly, we have |B ∪ C| ≤ 2k−1. Thus, |A ∪B ∪ C| = |I| ≤ 2k.

Proof of (c). For each path Pi, i = 1, 2, . . . , k, in the realizer, let vi be an
end vertex of Pi. Consider vertices x, y ∈ ×k

i=1Pi. We wish to place x and
y in the same colour class if dPi(vi, πi(x)) ≡ dPi(vi, πi(y)) (mod 2) for every
i = 1, 2, . . . k. Hence, there are at most 2k colour classes. We must now show
that no two adjacent vertices have been placed in the same colour class.
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Suppose x and y are two adjacent vertices in ×k
i=1Pi. Then πi(x)

and πi(y) are adjacent in Pi for at least one i. Therefore, dPi(vi, πi(x)) −
dPi(vi, πi(y)) ≡ 1 (mod 2) for some i. Hence, x and y are in different colour
classes and χ(×k

i=1Pi) ≤ 2k. In fact, since ×k
i=1Pi contains the complete

graph K2k as a subgraph, χ(×k
i=1Pi) = 2k.

Since G is a subgraph of ×k
i=1Pi then χ(G) ≤ χ(×k

i=1Pi) and log2(χ(G)) ≤
log2(χ(×k

i=1Pi)) = k = idim(G).

Note that in the proof of part (b), we have that |A| + |B| ≤ 2k−1 and,
similarly, |B| + |C| ≤ 2k−1. Thus |A| + 2|B| + |C| ≤ 2k. Thus, for |I| =
|A| + |B| + |C| = 2k we must have |B| = 0. Therefore, an independent set
of this size is unique and is {(ai + εi)k

i=1 : εi = 1 or −1}.

3 The Strong Isometric Dimension of Trees

In this section, the strong isometric dimension of trees is bounded in terms
of the number of leaves. The main result gives the bounds and the proof
follows by showing that for every tree T there are two associated trees T1

and T2, obtained from T by contraction or subdivision of edges such that
idim(T1) ≤ idim(T ) ≤ idim(T2).

Theorem 31. Let T be a tree with k leaves. Then

dlog2 ke ≤ idim(T ) ≤ 2dlog2 ke.

The theorem is proved by a series of lemmas. The first result is the basic
manipulation technique giving us a means of associating with a tree two
other trees whose strong isometric dimension is easier to calculate.

If ab is an edge of T then T •ab denotes the tree after the edge has been
contracted.

Lemma 32. Let T be a tree and ab be any edge of T . Then
(a) idim(T • ab) ≤ idim(T ); and
(b) idim(T ∗) = idim(T ) where T ∗ is the graph obtained by subdividing the

edge ab.

The proof follows directly from Lemma 25. This result also holds for any
graph G and any cut edge ab. The proof, however, is more involved.

Proof of first inequality of Theorem 31. Let T = T0 be a tree
with k leaves. We apply Lemma 32 (a) to an interior edge of T and call the
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result T1. We continue this and produce a sequence of trees ending with Tj ,
a star with the same number of leaves as T0. From Theorem 211 (b), we
know that idim(Tj) = dlog2 ke. Since Tj has the same number of leaves as
T , we therefore have what we require, i.e.,

idim(T ) ≥ idim(T1) ≥ · · · ≥ idim(Tk) = dlog2 ke
Proof of second inequality of Theorem 31. We first construct
from T the required associated tree which has maximum degree three and
no vertices of degree two and whose isometric dimension is at least that of T .

Suppose T is a tree with maximum degree at least 4. Suppose there is
a vertex v such that N(v) = {v1, v2, . . . , vn} and n ≥ 4. Let T1 be the graph
obtained by removing the vertex v and adding the vertices x, y and the
edges {xv1, xv2, xy, yv3, . . . , yvn}. Note that deg(x) = 3 and deg(y) = n−1.
Since T = T1 • xy then from Lemma 32 (a), we have idim(T ) ≤ idim(T1).
We continue this producing a sequence of trees ending with Tj , a tree with
maximum degree three and thus

idim(T ) ≤ idim(T1) ≤ · · · ≤ idim(Tj).

Now suppose that Tj has a degree two vertex, v. Let Tj+1 = Tj • (vw) for
some vw ∈ E(T ). Note that by Lemma 32 (b), we have that idim(Tj+1) =
idim(Tj). We can continue this thereby obtaining a sequence of trees ending
with Tj+r such that

idim(Tj) = idim(Tj+1) = · · · = idim(Tj+r).

Hence, there is a tree T ′ = Tj+r with the same number of leaves as T such
that all vertices of T ′ are degree one or three and idim(T ′) ≥ idim(T ).

Suppose S is a tree such that all vertices have degree one or three.
Obviously, if S has only two leaves it is an edge and idim(S) = 1. Suppose
that S has four leaves. There is only one case to consider. We can find two
orientations of S such that there is a directed path between every pair of
vertices. Hence, idim(S) ≤ 2. (In fact, idim(S) = 2.)

Figure 5. The Orientations of the Associated Four-leaved Tree
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Lemma 33. Let S be a tree with 2n leaves, n ≥ 1 and all vertices of degree
one or three. Then there exists a degree three vertex, v, such that each
connected component of S \ {v} has at most 2n−1 leaves.

Proof. Suppose for every vertex, v ∈ V (S) there is one component in
S \{v} with more than 2n−1 leaves. Let x be a vertex such that the number
of leaves in that component is minimized. Let A, B, and C be the three
components of S \ {x} where A has more than 2n−1 leaves. Let y be the
vertex in A which is adjacent to x. Obviously, deg(y) = 3 since A contains
more than one vertex. Consider the components of S \ {y}. The component
containing x is simply B ∪ C ∪ {x}. Since A has greater than 2n−1 leaves,
B∪C∪{x} has less than 2n−1 leaves. Furthermore, the other two components
of S \{y}, together with y form A. Hence, each of these two components has
fewer leaves than A. This contradicts the choice of x. Hence, there exists
a vertex v such that the components of S \ {v} each contain at most 2n−1

leaves.

We now continue the proof and assume that if S is a tree with 2m leaves
where m ≤ n−1 and all vertices of degree one or three, then idim(S) ≤ 2m.

Now consider a tree S with 2n leaves and all vertices of degree one or
three. Let v be a vertex such that all components of S \ {v} have at most
2n−1 leaves. Each component has an associated tree with all vertices of
degree one or three. By induction, each of these associated trees has strong
isometric dimension at most 2n−2. Hence, by construction of the associated
tree, each component also has strong isometric dimension at most 2n − 2.
Then, by Corollary 26, each component has a set of 2n−2 orientations such
that each pair of vertices in that component has a directed path between
them in at least one of the orientations. Let A, B, and C be the three
components. The component A has orientations {A1, A2, . . . , A2n−2}. Let
the orientations of B and C be denoted similarly.

For i = 1, 2, . . . , 2n− 2 we can define the orientation Si as follows: if e
is an edge in A (respectively, B, C) assign e the same direction in Si as it
has in Ai (Bi, Ci). Direct the three edges incident with v arbitrarily.

For S2n−1 we wish to have directed paths from all the vertices in A to
v and from v to all the vertices in B ∪ C. This can be accomplished by
directing the edge connecting v with A toward v, and then for each edge
(xy) in E(A) direct x → y if d(v, x) > d(v, y) and y → x, otherwise. Then
direct the other two edges incident with v away from v and for each edge
(xy) in B ∪ C direct x → y.

For S2n we wish to have directed paths from all the vertices in A ∪ B



The Strong Isometric Dimension ... 37

to v and from v to all the vertices in C. This orientation is achieved in a
manner similar to the construction of S2n−1.

We now verify that there is a directed path between every pair of vertices
in at least one of these 2n orientations of S. Suppose we have two vertices
x, y such that both are in A (respectively, B,C). Obviously there is a path
between the two in one of the first 2n − 2 orientations of S. Suppose that
x ∈ A and y ∈ B ∪ C. Then there is a path from x to y in S2n−1. Suppose
x ∈ B and y ∈ C. Then there is a path from x to y in S2n. Finally, there
is a directed path between x ∈ A ∪ B ∪ C and v in both S2n−1 and S2n.
Hence, there is a directed path between every pair of vertices. Therefore,
by Corollary 26 idim(S) ≤ 2n.

To complete the proof, note that the given tree T with k leaves, where
2m−1 < k ≤ 2m, can be isometrically embedded in a tree S with 2m leaves
by adding the extra leaves at any interior vertex. There is also a tree S′

associated with S which only has vertices of degree one and degree three. We
know that idim(T ) ≤ idim(S), Lemma 32 part (b), gives that idim(S) ≤
idim(S′) and the preceding argument shows that idim(S′) ≤ 2m. Putting
this together we obtain the desired result:

idim(T ) ≤ 2dlog2 ke.

4 Problems
Both cycles and hypercubes have an strong isometric dimension of
d|V (G)|/2e.
Problem 41. Is there a graph G such that idim(G) > d|V (G)|/2e?
For a graph G it is easy to recognize when idim(G) ≤ 1. There is
also a polynomial time algorithm [4] which recognizes graphs for which
idim(G) = 2 and it also constructs the embedding. For Cn, it was easy
to determine that idim(Cn) = dn/2e even though product of paths has
dn/2edn/2e many vertices.

Problem 42. For a given k, what is the complexity of recognizing graphs
for which idim(G) ≤ k?

Is the upper bound for trees given in Theorem 31 the correct one? Both
binary trees and caterpillars have a strong isometric dimension of dlog2 te
where t is the number of leaves.

Problem 43. Is there a tree T such that idim(T ) > dlog2 te?
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