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Bernardyńska 13, 20–950 Lublin, POLAND

e-mail: elazuka@antenor.pol.lublin.pl
e-mail: zuraw@antenor.pol.lublin.pl

Abstract

We show that the problem of finding the family of all so called
the locally reducible factors in the binary de Bruijn graph of order k
is equivalent to the problem of finding all colourings of edges in the
binary de Bruijn graph of order k − 1, where each vertex belongs to
exactly two cycles of different colours. In this paper we define and
study such colouring for the greater class of the de Bruijn graphs in
order to define a class of so called regular factors, which is not so
difficult to construct. Next we prove that each locally reducible factor
of the binary de Bruijn graph is a subgraph of a certain regular factor
in the m-ary de Bruijn graph.
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1 Introduction

The binary de Bruijn graph of order k is a directed Euler graph with 2k

vertices and 2k+1 edges, in which for each vertex exactly two edges are
incident into and exactly two edges are incident out of. Because of numer-
ous applications the de Bruijn graphs have been studied in many papers,
most of which deal with the problem of constructing Hamiltonian cycles [3]
which are used to design and analyse cryptographic systems [2], [4], [5], [8].
Most frequently known algorithms for finding the Hamiltonian cycles in the
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de Bruijn graph construct such the cycles by joining the cycles of one from
among its maximal subgraphs consisting of vertex disjoint cycles. Such sub-
graphs are called factors. The efficiency of the algorithm is determined both
by a choice of a suitable factor and by a way of joining its cycles. Therefore it
is necessary to see connections between the factors. In the paper [7] a certain
order in the family of the factors of the de Bruijn graph was studied. Here
the factors forming the Hamiltonian cycles are the maximal elements and
locally reducible factors defined in [11] are the minimal elements. The lo-
cally reducible factors are sufficient to determine, by means of the algorithm
presented in [9], all the Hamiltonian cycles. On the other hand, in the de
Bruijn graph of order k the cycles of the locally reducible factors are de-
termined by the cycles of the de Bruijn graph of order k − 1 in such a way
that a sequence of succeding vertices of each cycle in the locally reducible
factor is a sequence of succeding edges in a certain cycle of the de Bruijn
graph of order k− 1. The construction of all locally reducible factors in the
de Bruijn graph of order k and next of all maximal chains (according to
the order considered in [7]) containing a certain factor forming the Hamilto-
nian cycle in this graph allow to give a detailed description of its structure.
It is very important for the mentioned problem of the construction and the
analysis of the cryptographic systems [8]. However finding the effective way
to construct all the locally reducible factors remains an open problem.

The problem of finding the family of all the locally reducible factors in
the binary de Bruijn graph of order k is equivalent to the the problem of
finding all colourings of edges in the binary de Bruijn graph of order k − 1,
where each vertex belongs to exactly two cycles of different colours. In this
paper we define and study such colouring for the greater class of the de
Bruijn graphs in order to define a class of so called regular factors, which is
not so difficult to construct. Next we prove that each locally reducible factor
of the binary de Bruijn graph is a subgraph of a certain regular factor in
the de Bruijn graph with the vertices from the set {0, 1, . . . , m− 1}k, where
m > 1. There exist important circumstances confirming that it is sufficient
to consider the factors of the de Bruijn graph for m = 4 to obtain all of the
regular factors of order k proving the locally reducible factors of order k.
Unfortunately we are not able to prove or refute this hypothesis.

2. The de Bruijn Graph and its Factors

The m-ary de Bruijn graph of order k is a directed graph B
(m)
k with elements
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of {0, 1, . . . , m−1}k as the vertices, where exactly m edges are incident out of
a vertex (v1, v2, . . . , vk) and each of them is incident into one of the vertices
(v2, . . . , vk, 0), . . . , (v2, . . . , vk,m−1). Moreover exactly m edges are incident
into a vertex (v1, v2, . . . , vk) and each of them is incident out of one of the
vertices (0, v1, . . . , vk−1), . . . , (m− 1, v1, . . . , vk−1). As the edge incident out
of the vertex (v′, v2, . . . , vk) into the vertex (v2, . . . , vk, v

′′) can be identified
with (v′, v2, . . . , vk, v

′′) ∈ {0, 1, . . . , m − 1}k+1 and conversely, then B
(m)
k+1 is

the edge graph of B
(m)
k .

Figure 2.1. The graphs B
(2)
2 and B

(3)
2

Let Zm = {0, 1, . . . ,m−1} and let Ck
(m) denote the family of all such functions

ϕ: Zk
m → Zm that

if a 6= b then ϕ(a, x2, . . . , xk) 6= ϕ(b, x2, . . . , xk)(2.1)

for any elements a and b from Zm and for (x2, . . . , xk) ∈ Zk−1
m . Each

function from Ck
(m) is called a feedback function. Each ϕ ∈ Ck

(m) determines

the maximal subgraph B
(m)
k [ϕ] of B

(m)
k composed of disjoint directed cycles

in which an arbitrary edge is incident out of a vertex (v1, v2, . . . , vk) into
a vertex (v2, . . . , vk, ϕ(v1, v2, . . . , vk)). The graph B

(m)
k [ϕ] is said to be the

factor of B
(m)
k corresponding to ϕ.

Since B
(m)
k is the edge graph of B

(m)
k−1, then each cycle G of B

(m)
k [ϕ]

corresponds to a subgraph G′ of B
(m)
k−1 in such a way that the edges of G′ are
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the vertices of G. The graph G′ is an Euler graph because it forms a closed
walk in B

(m)
k−1. It is called the projection of the cycle G onto the graph B

(m)
k−1.

For an arbitrary ϕ ∈ Ck
(m) we shall consider the family B•

k[ϕ] of the

projections of all cycles of the factor B
(m)
k [ϕ] onto B

(m)
k−1. This family is called

the decomposition of the graph B
(m)
k−1 determined by the factor B

(m)
k [ϕ]. In

order to mark the decomposition B•
k[ϕ] of B

(m)
k−1 we colour the edges of B

(m)
k−1

with the colours from the set {1, 2, . . . , t} in the following way:

(2.2) the edges of B
(m)
k−1 which form the projection of a cycle of B

(m)
k [ϕ], are

coloured with the same colour,

(2.3) if the projections of the different cycles of B
(m)
k [ϕ] have a common ver-

tex then the edges of these projections are coloured with the different
colours.

The graph B
(m)
k−1 the edges of which are coloured according to the rules

described above with the minimal number of colours, is called an undirected
projection of the factor B

(m)
k [ϕ] onto the graph B

(m)
k−1. If exactly t colours

have been used to form the undirected projection of B
(m)
k [ϕ] onto B

(m)
k−1,

then such a projection is called t-chromatic, while the number t is called the
chromatic number of the projection. Of course t ≥ m and each factor may
have many undirected projections (with the same chromatic number) which
depend on the way of the colouring of the edges in the cycles.

There may exist many factors determining the same decomposition.
Their number depends on how many different closed Euler walks may be
obtained in each graph forming the family B•

k[ϕ]. As an example we can
consider the family of the factors composed of the Hamiltonian cycles. Each
of them corresponds to the decomposition consisting of the only one element,
namely the graph B

(m)
k−1. There exist also factors of B

(m)
k which determine the

decompositions of B
(m)
k−1 uniquely. It occurs if and only if there exists exactly

one closed Euler walk in each graph from the family B•
k[ϕ]. For instance, it

is fullfilled by the factors the projections of which contain only the cycles.
They are called locally reducible factors and the corresponding functions
— locally reducible functions [11]. If the projection of the locally reducible
factor B

(m)
k [ϕ] is t-chromatic then the function ϕ is called t-reducible.

Theorem 2.1. A feedback function ϕ is locally reducible if and only if no
cycle of the factor B

(m)
k [ϕ], which contains a vertex (v1, v2, . . . , vk), does not

contain such a vertex (ṽ1, v2, . . . , vk) that v1 6= ṽ1.
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Proof. The projection of the cycle of the factor B
(m)
k [ϕ] which contains a

vertex (x1, . . . , xk) is the subgraph of B
(m)
k−1 which has the edge (x1, . . . , xk)

incident into the vertex (x2, . . . , xk). The projections of the cycles con-
taining the vertices (v1, v2, . . . , vk) and (ṽ1, v2, . . . , vk) respectively, have the
common vertex (v2, . . . , vk) in the graph B

(m)
k−1. Thus, if v1 6= ṽ1 then they

are the cycles if and only if the projected cycles are different.

Figure 2.2. The factor B
(2)
4 [ϕ] and its undirected projection onto the graph B

(2)
3 ,

where ϕ(x1, x2, x3, x4) = x1 + x2 + x3 + x4 in GF (2)

If ϕ is a t-reducible function, then each t-chromatic, undirected projection
of B

(m)
k [ϕ] onto B

(m)
k−1 determines the family {ϕ1, ϕ2, . . . , ϕt}, which consists

of the partial functions from Zk−1
m to Zm satisfying the following condition

(2.4) the edge (e1, . . . , ek) of B
(m)
k−1 is of the colour i ∈ {1, . . . , t} if and only

if the equality ϕi(e1, . . . , ek−1) = ek holds.

It is called a colouring family of B
(m)
k−1 determined by the locally reducible

function ϕ.

Theorem 2.2. A family {ϕ1, . . . , ϕt} of partial functions from Zk−1
m to Zm

is the colouring family determined by a locally reducible function if and only
if it is the minimal (considering a number of elements) family satisfying the
following conditions:

(2.5) if (x1, . . . , xk−1) ∈ Dom(ϕi), then (x2, . . . , xk−1, ϕi(x1, . . . , xk−1)) ∈
Dom(ϕi),
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(2.6) if for a 6= b the condition {(a, x2, . . . , xk−1), (b, x2, . . . , xk−1)} ⊆
Dom(ϕi) holds, then ϕi(a, x2, . . . , xk−1) 6= ϕi(b, x2, . . . , xk−1),

(2.7) for each x ∈ Zk−1
m such a maximal family (considering the relation ⊆)

Fx ⊆ {ϕ1, . . . , ϕt} that

x ∈
⋂

ξ∈Fx

Dom(ξ)

consists of exactly m elements and for any different functions ξ′ and
ξ′′ from Fx it is true that ξ′(x) 6= ξ′′(x).

Proof. Necessity. Let us assume that {ϕ1, . . . , ϕt} is a colouring family,
which colours B

(m)
k−1, determined by a locally reducible function ϕ.

In order to prove (2.5) let us note that according to (2.2) if an edge
(e1, e2, . . . , ek) of B

(m)
k−1 is of the colour i, then one of the edges of the form

(e2, . . . , ek, e
′) has also the same colour. It follows from (2.4) that

ek = ϕi(e1, . . . , ek−1) and e′ = ϕi(e2, . . . , ek)

which imply (e2, . . . , ek−1, ϕi(e1, . . . , ek−1)) ∈ Dom(ϕi).
In order to prove (2.6) let us consider an arbitrary edge (e0, e1, . . . , ek−1)

of B
(m)
k−1 which is incident into a vertex (e1, . . . , ek−1). According to (2.4)

there exists a function ϕi satisfying the equality ek−1 = ϕi(e0, e1, . . . , ek−2).
Furthermore, it follows from the condition (2.3) that for none of other edges
(ẽ0, e1, . . . , ek−1) incident into the vertex (e1, . . . , ek−1) this equality holds
and this way the condition (2.6) is proved.

The condition (2.7) results from the fact that exactly m edges are in-
cident into each vertex, so there exist exactly m cycles of different colours
which contain this vertex.

The condition (2.7) and the t-reducibility of ϕ imply that the correspon-
dence between the edges incident out of a fixed vertex of B

(m)
k−1 (according to

the condition (2.4)) and one of the functions from {ϕ1, . . . , ϕt} is one-to-one.
And so we have that the considering family is minimal.

Sufficiency. Let us consider an arbitrary minimal family {ϕ1, . . . , ϕt}
which satisfies the conditions (2.5), (2.6) and (2.7). We colour the edges
of B

(m)
k−1 in the following way: the edge (e1, . . . , ek−1, ek) incident out of the

vertex (e1, . . . , ek−1) is of the colour i if and only if ek = ϕi(e1, . . . , ek−1).
It follows from (2.7) that each from among m edges incident out of this ver-
tex has different colour. From (2.6) we have that each from among m edges
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incident into this vertex is of different colour, which according to the condi-
tion (2.5) is one of m colours colouring the edges which are incident out of.
Therefore each vertex of B

(m)
k−1 belongs to m cycles of different colours and

the graph coloured in this way is an undirected projection of B
(m)
k [ϕ] onto

the graph B
(m)
k−1, where

ϕ(x1, x2, . . . , xk) =





ϕ1(x2, . . . , xk), if (x1, . . . , xk−1) ∈ Dom(ϕ1)
and xk = ϕ1(x1, . . . , xk−1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ϕt(x2, . . . , xk), if (x1, . . . , xk−1) ∈ Dom(ϕt)

and xk = ϕt(x1, . . . , xk−1).

(2.8)

That completes the proof of this theorem.

A minimal family {ϕ1, . . . , ϕt} of partial functions from Zk−1
m to Zm, which

satisfies the conditions (2.5), (2.6) and (2.7) mentioned in Theorem 2.2, is
called a colouring family.

For an arbitrary colouring family {ϕ1, . . . , ϕt} the symbol ex{ϕ1, . . . , ϕt}
will denote the function ϕ ∈ Ck

(m) defined by the condition (2.8), called the
extension of the colouring family {ϕ1, . . . , ϕt}.

Corollary 2.1. If a partial functions ϕ1, . . . , ϕt form the colouring family
then the function ex{ϕ1, . . . , ϕt} is locally reducible.

The above corollary allows for constructing the locally reducible function in
the case if the colouring family is given. Unfortunately no simple algorithm
is known for finding the colouring family unless its elements are the total
functions. We shall study this special case in the next part of the paper.

3. Regular Functions

In some cases the functions ϕ1, ϕ2, . . . , ϕt forming a colouring family might
be total functions. Then the function ϕ = ex{ϕ1, . . . , ϕt} is called a regular
function, its factor B

(m)
k [ϕ] — a regular factor and the functions ϕ1, ϕ2, . . . , ϕt

are called components of ϕ.

Theorem 3.1. A locally reducible function ex{ϕ1, . . . , ϕt} is regular if and
only if t = m.
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Proof. Necessity. For each vertex of B
(m)
k−1 there are exactly m edges inci-

dent into and exactly m edges incident out of this vertex. Since the function
ϕ = ex{ϕ1, . . . , ϕt} is regular, the colouring family {ϕ1, . . . , ϕt} consists of
only total functions. For any vertex of B

(m)
k−1 each of them colours exactly one

edge from among m edges incident into and exactly one edge from among m
edges incident out of this vertex. Thus the equation m = t must be satisfied.

Sufficiency. The condition t = m concerning ϕ = ex{ϕ1, . . . , ϕt} means
that each of its components is total, so ϕ is a regular function.

Example 3.1. We shall prove that the function ϑ:Zk
m → Zm definied by

the condition
ϑ(x1, . . . , xk) = x1

is m-reducible for each m > 1, so it is a regular fuction. In order to prove
this we consider a function f : Zk

m → Zm such that f(x1, x2, . . . , xk) is the
residual of the division of the sum x1 +x2 + · · ·+xk by m. Let us note that

f(x1, x2, . . . , xk) = f(x2, . . . , xk, x1) = f(x2, . . . , xk, ϑ(x1, x2, . . . , xk))

and it follows from this equality that f is the function determining the
same colour for all vertices of the same cycle in B

(m)
k [ϑ]. On the other

hand, for each (x1, x2, . . . , xk) ∈ Zk
m, if x̃1 ∈ Zm \ {x1} then we have the

inequality f(x1, x2, . . . , xk) 6= f(x̃1, x2, . . . , xk). Then f restricted to the set
{(0, x2, . . . , xk), (1, x2, . . . , xk), . . . , (m−1, x2, . . . , xk)} is one-to-one function
in Zm. Therefore the cycles which contain the vertices (x1, x2, . . . , xk) and
(x̃1, x2, . . . , xk) respectively, have the different colours. Finally, the function
f defines an undirected, m-chromatic projection of B

(m)
k [ϑ] onto B

(m)
k−1 in

which each vertex of B
(m)
k−1 belongs to one from among m cycles of different

colours. Then ϑ is a regular function.

The construction of regular functions is not too difficult because the family
{ϕ1, . . . , ϕm} formed by the functions from the set Ck−1

(m) is the colouring
family if and only if for each x ∈ Zk−1

m the following condition holds

if i 6= j, then ϕi(x) 6= ϕj(x).(3.1)

It can be written in another form as B
(m)
k−1 =

⋃

τ∈{ϕ1,...,ϕm}
B

(m)
k−1[τ ].
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Then the definition of the function ϕ = ex{ϕ1, . . . , ϕm} is of the form

ϕ(x1, x2, . . . , xk) =





ϕ1(x2, . . . , xk), if xk = ϕ1(x1, . . . , xk−1),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ϕm(x2, . . . , xk), if xk = ϕm(x1, . . . , xk−1).

There may exist the different colouring families which define the same reg-
ular function. Such a situation is showed in Figure 3.1, and the following
theorem states the connection between these families.

Figure 3.1. The illustration of Theorem 3.2: the graph B
(4)
1 coloured by the fam-

ilies {δ1, δ2, δ3, δ4} and {δ′1, δ′2, δ′3, δ′4} respectively, and its disconnected subgraph
B

(4)
1 [δ1] ∪B

(4)
1 [δ2]

Theorem 3.2. For any colouring families {ϕ1, . . . , ϕm} and {ψ1, . . . , ψm}
which colour the graph B

(m)
k−1, if ex{ϕ1, . . . , ϕm} = ex{ψ1, . . . , ψm} then the

equality {ϕ1, . . . , ϕm} = {ψ1, . . . , ψm} holds if and only if for any functions
ϕ′ and ϕ′′ from {ϕ1, . . . , ϕm} the graph B

(m)
k−1[ϕ

′] ∪B
(m)
k−1[ϕ

′′] is connected.

Proof. Necessity. We shall prove that if for a regular function δ there exists
a colouring family {δ1, δ2, . . . , δm} such that the graph B

(m)
k−1[δ1] ∪ B

(m)
k−1[δ2]



14 E.  Lazuka and J. Żurawiecki

is not connected, then there also exists a colouring family {δ′1, δ′2, . . . , δ′m}
such that

{δ1, δ2, . . . , δm} 6= {δ′1, δ′2, . . . , δ′m}
and

ex{δ1, δ2, . . . , δm} = ex{δ′1, δ′2, . . . , δ′m}.
Let us assume that the graph B

(m)
k−1[δ1] ∪ B

(m)
k−1[δ2] is not connected and

consider the subset D of the set {0, 1}k−1 consisting of the vertices of one
of the components of B

(m)
k−1[δ1] ∪ B

(m)
k−1[δ2]. Of course D 6= {0, 1}k−1, so we

only need to put

δ′1(x) =

{
δ1(x) for x ∈ {0, 1}k−1 \D,
δ2(x) for x ∈ D,

δ′2(x) =

{
δ2(x) for x ∈ {0, 1}k−1 \D,
δ1(x) for x ∈ D,

and δ′3 = δ3, . . . , δ
′
m = δm to receive the colouring family we have looked for.

Sufficiency. We shall prove that if for any regular function δ there exists
the colouring family {δ1, δ2, . . . , δm} such that each graph from among the
graphs of the form B

(m)
k−1[δ1]∪B

(m)
k−1[δ

′] for δ′ ∈ {δ2, . . . , δm} is connected, then
{δ1, δ2, . . . , δm} is the only family (with reference to the order) colouring the
graph B

(m)
k−1 corresponding to the function δ.

Let us consider any colouring family {δ′1, . . . , δ′m} for which the equality

ex{δ1, δ2, . . . , δm} = ex{δ′1, δ′2, . . . , δ′m}

holds. If we assume {δ1, δ2, . . . , δm} 6= {δ′1, δ′2, . . . , δ′m} then there exist the
positive integers i and j and also the nonempty, proper subset D of Zk−1

m

such that

δi(x) = δ′j(x) for x ∈ Zk−1
m \D and δi(x) 6= δ′j(x) for x ∈ D.

It means that the cycles of the factors B
(m)
k−1[δi] and B

(m)
k−1[δ

′
j ] with the vertices

from the set Zk−1
m \D are identical, however other cycles of these factors are

different. Without loss of generality we can assume that D is the minimal set
of this property, i.e. there does not exist the colouring family which defines
the set smaller than D in the above way. Let δs be such a function from
the set {δ2, . . . , δm} that the factors B

(m)
k−1[δs] and B

(m)
k−1[δ

′
s] have a common
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cycle formed by the vertices from D. The assumption that D is minimal
causes that all cycles of both factors, which have the vertices from D, are
identical. It means next that in the graph B

(m)
k−1[δ1] ∪ B

(m)
k−1[δs] all vertices

of each cycle having at least one vertex from D, are also the elements of D.
Finally it lets us draw the conclusion that the graph we have considered is
not connected.

Figure 3.2. The graph B
(4)
1 uniquely coloured by the family {δ1, δ2, δ3, δ4}

In the case m = 2, which was examined in detail in [10], the regular functions
were called elementary functions. The theory of such functions is particu-
larly simple. Let us namely note that for each function ψ ∈ Ck−1

(2) there exists
exactly one function ψ̄ such that

ψ̄(x) 6= ψ(x) for x ∈ {0, 1}k−1.
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Therefore we can denote the regular function ex{ψ, ψ̄} by the symbol exψ or
exψ̄. Moreover it is true that

exψ(x1, . . . , xk) = ψ(x1, . . . , xk−1) + ψ(x2, . . . , xk) + xk in GF (2).(3.2)

For instance, if ψ(x1, . . . , xk−1) = x1 + x2 + · · ·+ xk−1, then
exψ(x1, . . . , xk−1) = (x1 + x2 + · · ·+ xk−1) + (x2 + x3 + · · ·+ xk) + xk = x1.

And so the function ϑ ∈ Ck
(2) defined by the equality ϑ(x1, x2, . . . , xk) = x1

is the regular function.
For k = 3 the only regular functions are ϕ1(x1, x2, x3) = x1 + x2 + x3

and ϕ2(x1, x2, x3) = x1. For k = 4 all regular functions can be formed with
the use of the operation ex to each function from any family consisting of
eight functions from C3

(2) which does not contain both ψ and ψ̄.
If we identify the function ϕ with a certain polynomial from the ring

GF (2)[x1, . . . , xk], then we can give the criterion which lets us decide if ϕ is
the regular function or not.

Theorem 3.3 ([10], Theorem 6.3). A feedback function ϕ defined by the
equality

ϕ(x1, . . . , xk) = x1 + x2f2(x3, . . . , xk) + · · ·+ xk−1fk−1(xk) + xkfk + fk+1

is regular if and only if the following conditions hold:
(i) fk+1 = 0,
(ii) f2(x1, . . . , xk−2) + · · ·+ fk−1(x1) + fk = 0 for all (x1, . . . , xk−1)

∈ {0, 1}k−1.
For instance, if ϕ(x1, x2, x3, x4, x5) = x1 +x2(x3 +x4)+x3(x4 +x5)+x4 +x5

then f2(x1, x2, x3) = x1+x2 = f3(x1, x2) and f4(x1) = f5 = 1. It means that
the function ϕ is regular. A very simple criterion for the locally reducible
functions to be regular can be obtained for the binary linear functions.

If ϕ(x1, . . . , xk) = x1 + c2x2 + · · ·+ ckxk then ϕ is the regular function if
and only if in GF (2) the equality c2+· · ·+ck = 0 holds, i.e., if the polynomial
representing the function ϕ is of an odd number of nonzero coefficients. This
condition is satisfied by the function ϑ(x1, x2, . . . , xk) = x1.

The regular functions will be used to study a general case of the locally
reducible functions. First we have to define a subfactor.

The subgraph of a factor B
(m)
k [ϕ] which is a factor of B

(t)
k will be called

a t-subfactor of B
(m)
k [ϕ] or a subfactor if the value of the parameter t is

defined by the preceding assumptions. In particular a 2-subfactor is called
a binary subfactor.
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Figure 3.3. The illustration of Theorem 3.2: the connectivity of the subgraphs of
the graph B

(4)
1 , where δ1, δ2, δ3 and δ4 are defined in Figure 3.2
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Theorem 3.4. If a locally reducible function % ∈ Ck
(2) is m-reducible for

m ≥ 4, then there exists such a regular function δ ∈ Ck
(m) that B

(2)
k [%] is the

subfactor of B
(m)
k [δ].

Figure 3.4. The factor B
(3)
2 [ϑ] for ϑ ∈ C2

(3) defined by the equality ϑ(x1, x2) = x1;

the edges and the vertices of the binary subfactor B
(2)
2 [ϑ] are marked by the con-

tinuous lines while the other edges and vertices of B
(3)
2 [ϑ] are marked by the dotted

lines

Proof. We assume that % is the m-reducible function and {%1, . . . , %m} is
an arbitrary family colouring the graph B

(2)
k−1 which corresponds to %. We

will construct the family {%∗1, . . . , %∗m} consisting of such functions from Ck−1
(m)

that
%∗i (x) = %i(x) for x ∈ Dom(%i), where i ∈ {1, . . . , m},

with
%∗i (x) 6= %∗j (x), if i 6= j.

Then B
(2)
k [%] will be a subfactor of B

(m)
k [ex{%∗1, . . . , %∗m}].

Let us consider an arbitrary sequence (0, x2, . . . , xk−1) ∈ {0, 1}k−1.
Then exactly such two functions ξ1 and ξ2 from {%1, . . . , %m} exist that

(0, x2, . . . , xk−1) ∈ Dom(ξ1) ∩Dom(ξ2).

We can assume without loss of generality that ξ1 = %1 and ξ2 = %2. There
are four possible cases:

(a) (1, x2, . . . , xk−1) ∈ Dom(%1) \Dom(%2),
(b) (1, x2, . . . , xk−1) ∈ Dom(%2) \Dom(%1),
(c) (1, x2, . . . , xk−1) ∈ Dom(%1) ∩Dom(%2),
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(d) (1, x2, . . . , xk−1) /∈ Dom(%1) ∪Dom(%2).
They are presented in the tables in Figure 3.5, where a ∈ {0, 1} and the
symbol ∗ means that the value of the corresponding function is undefined.

It is easy to see that if m > 3 then in each case we have considered
there exists the family {%∗1, . . . , %∗m} which consists of the functions from
Ck−1

(m) satisfying the above conditions.

Using the notations from Theorem 3.4, if m = 3 then {%∗1, . . . , %∗m} exists if
and only if for each (0, x2, . . . , xk−1) only (a) or (b) are the possible cases.
Of course the case (d) is not possible while the case (c) is presented in the
below table.

x %1(x) %2(x) %3(x)
(0, x2, . . . , xk−1) a ā ∗
(1, x2, . . . , xk−1) ā a ∗
(2, x2, . . . , xk−1) ∗ ∗ ∗

Theorem 3.5. Let % ∈ Ck
(2). If there exists such a regular function δ ∈ Ck

(m)

that B
(2)
k [%] is a subfactor of B

(m)
k [δ], then the function % is t-reducible for

t ≤ m.

Proof. Let us assume that % ∈ Ck
(2) and the factor B

(m)
k [%] is the subfactor of

the factor B
(m)
k [δ], where δ is a regular function from Ck

(m). Of course % is the
locally reducible function. Let {δ∗1, . . . , δ∗m} be the family of the components
of the function δ. For arbitrary i ∈ {1, . . . ,m} and x ∈ {0, 1}k−1 let us put

δi(x) =

{
δ∗i (x), if δ∗i (x) ∈ {0, 1},
undefined, otherwise.

The family {δ1, . . . , δm} can be the colouring family of the function % be-
cause it satisfies the conditions (2.5)–(2.7) of Theorem 2.2, but it does not
have to be the minimal family. Therefore for an arbitrary colouring family
{%1, . . . , %t} of the locally reducible function % the inequality t ≤ m must be
satisfied.
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Table a

x %1(x) %2(x) %3(x) · · · %i(x) · · · %m(x)
(0, x2, · · · , xk−1) a a ∗ · · · ∗ · · · ∗
(1, x2, · · · , xk−1) a ∗ ∗ · · · a · · · ∗
(2, x2, · · · , xk−1) ∗ ∗ ∗ · · · ∗ · · · ∗

· · · · · · · · · · · · · · · · · · · · · · · ·
(m− 1, x2, · · · , xk−1) ∗ ∗ ∗ · · · ∗ · · · ∗

Table b

x %1(x) %2(x) %3(x) · · · %i(x) · · · %m(x)
(0, x2, · · · , xk−1) a a ∗ · · · ∗ · · · ∗
(1, x2, · · · , xk−1) ∗ a ∗ · · · a · · · ∗
(2, x2, · · · , xk−1) ∗ ∗ ∗ · · · ∗ · · · ∗

· · · · · · · · · · · · · · · · · · · · · · · ·
(m− 1, x2, · · · , xk−1) ∗ ∗ ∗ · · · ∗ · · · ∗

Table c

x %1(x) %2(x) %3(x) · · · %i(x) · · · %m(x)
(0, x2, · · · , xk−1) a a ∗ · · · ∗ · · · ∗
(1, x2, · · · , xk−1) a a ∗ · · · ∗ · · · ∗
(2, x2, · · · , xk−1) ∗ ∗ ∗ · · · ∗ · · · ∗

· · · · · · · · · · · · · · · · · · · · · · · ·
(m− 1, x2, · · · , xk−1) ∗ ∗ ∗ · · · ∗ · · · ∗

Table d

x %1(x) %2(x) · · · %i(x) · · · %j(x) · · · %m(x)
(0, x2, · · · , xk−1) a a · · · ∗ · · · ∗ · · · ∗
(1, x2, · · · , xk−1) ∗ ∗ · · · a · · · a · · · ∗
(2, x2, · · · , xk−1) ∗ ∗ · · · ∗ · · · ∗ · · · ∗

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
(m− 1, x2, · · · , xk−1) ∗ ∗ · · · ∗ · · · ∗ · · · ∗

Figure 3.5. The illustration of the proof of Theorem 3.4
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