Problems Column

Discussiones Mathematicae
Graph Theory 19 (1999) 251-252

ON DISTANCE EDGE COLOURINGS OF A CYCLIC MULTIGRAPH

Zdziseaw Skupień
Faculty of Applied Mathematics
University of Mining and Metallurgy AGH
al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: skupien@uci.agh.edu.pl

We shall use the distance chromatic index defined by the present author in early nineties, cf. [5] or [4] of 1993. The edge distance of two edges in a multigraph M is defined to be their distance in the line graph $L(M)$ of M. Given a positive integer d, define the d^{+}-chromatic index of the multigraph M, denoted by $q^{(d)}(M)$, to be equal to the chromatic number χ of the d th power of the line graph $L(M)$,

$$
q^{(d)}(M)=\chi\left(L(M)^{d}\right) .
$$

Then the colour classes are matchings in M with edges at edge distance larger than d apart.

Call C to be a cyclic multigraph if C consists of a cycle on n vertices with possibly more than one edge between two consecutive vertices.

The following problem was presented in [6].
Problem. Given an integer $d \geq 2$ and a cyclic multigraph C, find (or estimate) $q^{(d)}(C)$, the d^{+}-chromatic index of C.

In other words, generalize the following formula due to Berge [1] for the ordinary chromatic index $\left(q=q^{1}\right)$

$$
q(C)= \begin{cases}\max \left\{\Delta(C),\left\lceil\frac{e(C)}{\left\lfloor\frac{n}{2}\right\rfloor}\right\rceil\right\} & \text { for odd } n, \\ \Delta(C) & \text { for even } n,\end{cases}
$$

where $\Delta(C)$ and $e(C)$ are the maximum degree among vertices and the size of C, respectively.

Remarks 1. 2^{+}-chromatic index $q^{(2)}$ is known under the name strong chromatic index, estimations of $q^{(2)}(C)$ being studied in $[2,3]$.
2. In [5] it is proved that

$$
q^{(d)}\left({ }^{p} C_{n}\right)=\left\{\begin{array}{cl}
p n & \text { if } n \leq 2 d+1 \\
{\left[\frac{p n}{\left\lfloor\frac{n}{d+1}\right\rfloor}\right\rceil} & \text { if } n \geq d+1
\end{array}\right.
$$

where ${ }^{p} C_{n}$ is the cyclic multigraph C with all edge multiplicities equal to p.
3. Let M be a loopless multigraph whose underlying graph is a forest. Then $q^{(d)}(M)$, the d^{+}-chromatic index of M, can be seen to be equal to the diameter- d cluster (or diameter- d edge-clique) number of M (i.e., the density of the d th power, $L(M)^{d}$, of the line graph of $\left.M\right)$. This extends the known corresponding results on a tree [5] and on $q^{(2)}(M)$ in [2].

References

[1] C. Berge, Graphs and Hypergraphs (North-Holland, 1973).
[2] P. Gvozdjak, P. Horák, M. Meszka and Z. Skupień, Strong chromatic index for multigraphs, Utilitas Math., to appear.
[3] P. Gvozdjak, P. Horák, M. Meszka and Z. Skupień, On the strong chromatic index of cyclic multigraphs, Discrete Appl. Math., to appear.
[4] Z. Skupień, Some maximum multigraphs and chromatic d-index, in: U. Faigle and C. Hoede, eds., 3rd Twente Workshop on Graphs and Combinatorial Optimization, (Fac. Appl. Math. Univ. Twente) Memorandum No. 1132 (1993) 173-175.
[5] Z. Skupień, Some maximum multigraphs and edge/vertex distance colourings, Discuss. Math. Graph Theory 15 (1995) 89-106.
[6] Z. Skupień, Problem 4, (on the list of problems presented at workshop:) Cycles and Colourings held at Stará Lesná, Slovakia, September 10-15, 1995.

Received 21 March 1999
Revised 13 September 1999

