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ON CYCLICALLY EMBEDDABLE GRAPHS
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Abstract

An embedding of a simple graph G into its complement G is a
permutation σ on V (G) such that if an edge xy belongs to E(G), then
σ(x)σ(y) does not belong to E(G). In this note we consider some fami-
lies of embeddable graphs such that the corresponding permutation is
cyclic.
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1 Introduction

We shall use standard graph theory notation. We consider only finite, undi-
rected graphs of order n = |V (G)| and size |E(G)|. All graphs will be
assumed to have neither loops nor multiple edges. If a graph G has order n
and size m, we say that G is an (n,m)-graph.

Assume now that G1 and G2 are two graphs with disjoint vertex sets.
The union G = G1 ∪ G2 has V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪
E(G2). If a graph is the union of k (≥ 2) disjoint copies of a graph H, then
we write G = kH.

An embedding of G (in its complement G) is a permutation σ on V (G)
such that if an edge xy belongs to E(G), then σ(x)σ(y) does not belong
to E(G). In others words, an embedding is an (edge-disjoint) placement

(or packing) of two copies of G (of order n) into a complete graph Kn. If,
additionally, an embedding of G is a cyclic permutation we say that G is
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cyclically embeddable (CE for short). The aim of this note is to study some
families of CE graphs.

The following theorem was proved, independently, in [2], [3] and [8].

Theorem 1. Let G = (V,E) be a graph of order n. If |E(G)| ≤ n − 2 then

G can be embedded in its complement G.

The example of the star K1,n−1 shows that Theorem 1 cannot be improved
by raising the size of G.

The following theorem, proved in [9], has been used in the study of
embeddings of (n, n − 1) graphs.

Theorem 2. Let G = (V,E) be a graph of order n. If |E(G)| ≤ n − 2 then

there exists an embedding σ of G in its complement such that σ has no fixed

points, i.e. σ(x) 6= x for x ∈ V (G).

The above theorem cannot be improved by increasing the number of edges
as it is showed by the graph K1,2 ∪ K3.

However, Theorem 2 can be improved in other direction by specifying
the structure of the packing permutation. In particular we have the following
result proved first in [10].

Theorem 3. Let G = (V,E) be a graph of order n. If |E(G)| ≤ n− 2, then

there exists a cyclic embedding of G.

As we have seen, if |E(G)| = n − 1 then there are graphs that are not
embeddable and even in the case where a graph is embeddable, a fixed-point-
embedding does not necessarily exist. However, if we assume in addition that
G is a tree, we have the following result (cf. [11]).

Theorem 4. Let T be a tree of order n. If T 6= Sn then there exists a cyclic

embedding of G.

The general references for these and other packing problems are [1], [13] and
[12] (see also [14]).

We shall need some additional definitions in order to formulate the results.
Let G and H be two rooted graphs at u and x, respectively. The graph
of order |V (G)| + |V (H)| − 1 obtained from G and H by identifying u
with x will be called the touch of G and H and will be denoted by G · H.
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A similar operation consisting in the identification of a couple of vertices of
G, say (u1, u2) with a couple of vertices of H, say (x1, x2) will be called the
2-touch of G and H and will be denoted by G : H. The graph G : H is of
order |V (G)| + |V (H)| − 2. By definition, the edge say (u1, u2) belongs to
E(G : H) if u1u2 ∈ E(G) or x1x2 ∈ E(H).

Let σ be a cyclic permutation defined on of V (G). For u ∈ V (G), we
denote often the vertex σ(u) by u+ and σ−1(u) by u−. The edge uu+ is said
to be of length one (with respect to σ).

2 Some Lemmas

Lemma 5. Let G be a graph obtained from the graph H by removing a

pendent vertex. If G is CE then H is CE.

Proof. Denote by x the pendent vertex of H and consider the graph G =
H − {x}. By the assumptions, there exists a cyclic permutation σ ′ of V (G)
that is an embedding of G. Let σ′ = (a1a2 . . . an). Without loss of generality
we may assume that a1x belongs to E(H). Observe that at least one of the
edges a1a2 or a1an does not belong to E(G). Suppose that a1a2 ∈ E(G).
Then a1an /∈ E(G) and it is easy to see that the cyclic permutation on V (H)
defined by σ = (a1xa2 . . . an) is an embedding of H. If a1an ∈ E(G) then we
put σ = (a1a2 . . . anx).

Lemma 6. Let H be a graph with at least one isolated vertex v and let

G = H − {v, x} be a graph obtained from the graph H by removing v and

another vertex x. If G has an isolated vertex and is CE then H is CE.

Proof. Let us consider the graph G = H − {x, v}. Denote by σ ′ an cyclic
embedding of G and let σ′ = (a1a2 . . . an−1). Without loss of generality
we may assume that a1 is an isolated vertex of G. It is easy to see that
the cyclic permutation on V (H) defined by σ = (a1a2 . . . an−1xv) is an
embedding of G.

Lemma 7. Let G and H be two CE graphs. Then G ∪ H is CE.

Proof. Denote by α = (a1a2 . . . an) an cyclic embedding of G and by
β = (b1b2 . . . bk) an cyclic embedding of H. An cyclic embedding σ of G∪H
can by defined as follows: σ(a1) = b2, σ(b1) = a2 and σ(v) = α(v) for
v ∈ V (G) − a1 and σ(v) = β(v) for v ∈ V (H) − b1.
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Lemma 8. Let G and H be two CE graphs rooted at u and x, respectively.

Then the graph G · H is CE.

Proof. Denote by α and β the cyclic embeddings of G or H, respectively.
Assume first that the edge uu+ does not belong to E(G). A cyclic embedding
of G · H can by defined as follows: σ(x) = σ(u) = u+, σ(u−) = x+ and
σ(v) = α(v) for v ∈ V (G) − u− and σ(v) = β(v) for v ∈ V (H) − x. If
uu+ ∈ E(G) then uu− /∈ E(G) and we can repeat the above construction
with α replaced by α−1.

Remark. A similar result holds also if ”cyclically embeddable” is replaced
by ”embeddable” (see [6]).

Lemma 9. Let G and H be two CE graphs such that the vertices v, u of

G and x, y of H are consecutive with respect to the cyclic embeddings of G
and H, respectively. Suppose that the edges uu+ and xx− as well as the

edges yy+ and vv− are not simultaneously present. Then the graph G : H
obtained by identifying u with x and v with y is CE.

Proof. Denote by α and β the cyclic embeddings of G or H, respectively.
A cyclic embedding of G : H can by defined as follows: σ(x) = σ(u) = u+,
σ(y) = σ(v) = y+ and σ(v) = α(v) for v ∈ V (G) − v and σ(v) = β(v) for
v ∈ V (H) − x.

Remark. Observe that the condition that the edges uu+ and xx− as well
as the edges yy+ and vv− are not simultaneously present is in particular
fulfilled if uv is an edge of G or xy is an edge of H.

3 Some Families of CE Graphs

31. Trees and (n, n − 2)-graphs

By Theorems 3 and 4 all (n, n − 2)-graphs as well as all non-star trees are
cyclically embeddable.

32. Cycles

It is easy to see that neither C3 nor C4 are embeddable. The cycle C5 is
embeddable but not cyclically. The aim of this subsection is to prove that
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Theorem 10. Let Cn be the cycle of order n. If n ≥ 6 then there exists a

cyclic embedding of Cn.

Proof. The cycles C6, C7, C8, and C9 are drawn in Figure 1 in such a way
that the corresponding cyclic embeddings are easy to guess as a ”rotation”.
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Figure 1. Cyclic embeddings of C6, C7, C8, and C9.

Since for n ≥ 10 the cycle Cn can be considered as a subgraph of the
graph Cn−4 : C6 where the 2-touch is realized by identifying two edges
of lengths one (with respect to the corresponding cyclic embeddings), the
remaining part of the theorem follows from Lemma 9. Observe that each Ci

for i ≥ 6 has a cyclic embedding with at least three edges of length one, so
the above construction can be continued. Figure 2 provides an example of
this construction for the cycle C10.
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Figure 2. 2-touch of two cycles C6 and the resulting cyclic embedding of C10.

33. Unicyclic Graphs

Let now G be a unicyclic graph that is the connected (n, n)-graphs. If the
unique cycle of G is of length greater than or equal to six then G is CE
because of Lemma 5.

So, consider the case where the unique cycle of G is of length five.
Observe first that the graph C5 ∪ K1 is not cyclically embeddable. This
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implies that the graph of order six obtained from C5 by adding one pendent
edge is not cyclically embeddable. There are four unicyclic graphs of order
seven obtained from C5 by adding two new edges (see below).
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All these graphs are CE as it is showed in the next figure.
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Consider now the unicyclic graphs based on C4. It is known (cf. [5]) and
easy to verify that the graph of order 4 + k, k ≥ 1, obtained by identifying
a vertex of the cycle C4 with the center of a star K1,k is not embeddable.
Within three graphs given below, two first graphs are embeddable but not
cyclically and the third one is CE.
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So, we have to verify five (7, 7)-graphs obtained from C4 by adding three
new edges. All these graphs are CE as it follows from the figure below.
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Finally, consider the unicyclic graphs based on C3. It is known (cf. [5]) that
the following graphs are not embeddable.
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It is easy to see that the graph A of order five obtained from the cycle C3 by
adding two independent pendent edges is not CE. There are three unicyclic
graphs of order six obtained from A by adding one new edge. All these
graphs are CE (see below).
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It remains to verify the existence of the cyclic embedding of three graphs
obtained from nonembeddable graphs. These embeddings exist as it is shown
in the figure below.
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The considerations of this subsection can be formulated in the following way.

Theorem 11. The unicyclic graphs that are embeddable are also cyclically

embeddable except for five graphs given below.
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