A NOTE ON KERNELS AND SOLUTIONS IN DIGRAPHS

Matúš Harminc
Department of Geometry and Algebra
Faculty of Science, P.J. Šafárik University
Jesenná 5, 04154 Košice, Slovakia
e-mail: harminc@duro.upjs.sk
AND
Roman Soták
Center of applied informatics
Faculty of Science, P.J. Šafárik University
Park Angelinum 9, 04154 Košice, Slovakia

Abstract

For given nonnegative integers k, s an upper bound on the minimum number of vertices of a strongly connected digraph with exactly k kernels and s solutions is presented.

Keywords: kernel of digraph, solution of digraph.
1991 Mathematics Subject Classification: 05C20.

Kernels (solutions) are vertex subsets of digraphs that are studied in [2, $3,5,8]$. The decision problem of the existence of a kernel in a digraph is known to be NP-complete (see e.g. the book [4]). The number of kernels (solutions) was investigated in the papers $[1,7,9]$. In [6] the first author has shown that for given nonnegative integers k, s there are infinitely many pairwise nonisomorphic strongly connected digraphs with no pair of opposite arcs that have exactly k kernels and s solutions. An upper bound on the minimum number of vertices of those digraphs is also presented there. In the following a better upper bound is established.

1. Preliminaries

An ordered pair $D=(V, A)$ is said to be a digraph whenever V is a nonempty set (vertices of D) and $A(\operatorname{arcs}$ of $D)$ is a subset of the set of ordered pairs of elements V such that $\overrightarrow{v v} \notin A$ for each $v \in V$, and if $u, v \in V$ then $\overrightarrow{u v} \in A$ implies $\overrightarrow{v u} \notin A$.

A set of vertices $W \subseteq V$ is called independent if for every pair of vertices $u, v \in W$ neither $\overrightarrow{u v}$ nor $\overrightarrow{v u}$ is present in the digraph. $W \subseteq V$ is absorbent if for each $u \in V-W$ there exists $\overrightarrow{u v} \in A$ with $v \in W$ and dominant if for each $v \in V-W$ there exists $\overrightarrow{u v} \in A$ with $u \in W$. A set $W \subseteq V$ is a kernel of D if W is independent and absorbent and W is a solution of D if W is independent and dominant.

As usual, a digraph is strongly connected, if for every $u, v \in V$ there exists a sequence $\overrightarrow{u a_{1}}, \overrightarrow{a_{1} a_{2}}, \overrightarrow{a_{2} a_{3}}, \ldots, \overrightarrow{a_{k} v}$ in A. Let \mathcal{G} denote the class of all finite strongly connected digraphs.

2. Results

Let $\mathcal{G}_{(k, s)}$ denote the set of all strongly connected digraphs with k kernels and s solutions. It is known (see [6], Theorem 2.6) that the set $\mathcal{G}_{(k, s)}$ is infinite whenever k and s are nonnegative integers. A digraph belonging to $\mathcal{G}_{(k, s)}$ with the minimum number of vertices is called a minimum digraph of $\mathcal{G}_{(k, s)}$. The number of vertices of a minimum digraph of $\mathcal{G}_{(k, s)}$ will be denoted by $k \star s$. The following assertions were proved:

Proposition 1 ([6] 1.1, 1.2, 2.7). Let k, s be nonnegative integers. Then
(i) $k \star s=s \star k$,
(ii) $0 \star 0=3, \quad 0 \star 1=1 \star 0=5, \quad 0 \star 2=2 \star 0=6$,
(iii) $1 \star 1=2 \star 2=4, \quad 1 \star 2=2 \star 1=5$,
(iv) if $k>1$ then $k \star 0 \leq 4 k$ and $k \star 1 \leq 4 k+1$, and
(v) $k \star s \leq 4(k+s)-7$ whenever $k>1$ and $s>1$.

Let k, s be positive integers. By part (i) of the previous proposition $k \leq s$ can be supposed without loss of generality. Define a digraph $D_{(k, s)}$ as follows. Denote by T and U two disjoint copies of an acyclic tournament with s vertices such that $t_{1}, t_{2}, \ldots, t_{s}$ are the vertices of $T, u_{1}, u_{2}, \ldots, u_{s}$ are the vertices of $U, \overrightarrow{t_{i} t_{j}}$ (resp. ${\overrightarrow{u_{i} u_{j}}}_{j}$) are the arcs of T (of U) for $i, j \in\{1,2, \ldots, s\}$ whenever $i<j$. Take T, U, two new vertices v, w and add the following arcs: $\overrightarrow{t_{i} u_{j}}$ and ${\overrightarrow{u_{i} t}}_{j}$ for $i, j \in\{1,2, \ldots, s\}$ whenever $i>j$,
$\overrightarrow{t_{i} v}, \overrightarrow{v u_{i}}, \overrightarrow{u_{i} w}$ for every $i \in\{1,2, \ldots, s\}$,
$\overrightarrow{w t_{i}}$ for $i \leq k, \overrightarrow{t_{i} w}$ for $k<i \leq s$ and $\overrightarrow{w v}$.
Proposition 2. The digraph $D_{(k, s)}$ belongs to $\mathcal{G}_{(k, s)}$ whenever k, s are positive integers.
Proof. $D_{(k, s)}$ has a hamiltonian cycle (for instance $t_{1}, t_{2}, \ldots, t_{s-1}, t_{s}, v, u_{1}$, $\left.u_{2}, \ldots, u_{s-1}, u_{s}, w, t_{1}\right)$, thus it is strongly connected. Since no vertex of the digraph $D_{(k, s)}$ creates absorbent (dominant) set then every kernel (solution) of $D_{(k, s)}$ contains at least two vertices. On the other hand no triple of vertices of $D_{(k, s)}$ is independent. Thus any kernel (solution) must contain exactly two vertices. But if $\{x, y\}$ is an independent subset of the vertex set of $D_{(k, s)}$ then there exists $i \in\{1,2, \ldots, s\}$ such that $x=t_{i}, y=u_{i}$ or $x=u_{i}, y=t_{i}$. It is easy to check that S is a solution of $D_{(k, s)}$ if and only if $S=\left\{t_{i}, u_{i}\right\}$ for $i \in\{1,2, \ldots, s\}$ and K is a kernel of $D_{(k, s)}$ if and only if $K=\left\{t_{i}, u_{i}\right\}$ for $i \in\{1,2, \ldots, k\}$.

Corollary. Let k, s be positive integers. Then $k \star s \leq 2 \cdot \max \{k, s\}+2$.
Proof. By the previous proposition it suffices to take the digraph $D_{(k, s)}$ having $\max \{k, s\}+2$ vertices. Therefore the number of the vertices of a minimum digraph of $\mathcal{G}_{(k, s)}$ is at most $2 \cdot \max \{k, s\}+2$.

Remark. The upper bound of $k \star s$ above is sharp in the case $k=s=1$ and also if $k=0, s=2$. On the contrary it is not attained for $k=0$ and $s \in\{0,1\}$. The new bound improved the bound from (v) in Proposition 1 in all cases where $k>1, s>1$ or $k=1, s>2$ or $k>2, s=1$.

References

[1] M. Behzad and F. Harary, Which directed graphs have a solution?, Math. Slovaca 27 (1977) 37-42.
[2] V.V. Belov, E.M. Vorobjov and V.E. Shatalov, Graph Theory, Vyshshaja Shkola, Moskva, 1976. (Russian)
[3] C. Berge, Graphs and Hypergraphs (Dunod, Paris, 1970). (French)
[4] M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).
[5] F. Harary, R.Z. Norman and D. Cartwright, Structural Models (John Wiley \& Sons, Inc., New York - London - Sydney, 1965).
[6] M. Harminc, Kernel and solution numbers of digraphs, Acta Univ. M. Belii 6 (1998) 15-20.
[7] M. Harminc and T. Olejnikova, Binary operations on digraphs and solutions, Slovak, Zb. ved. prac, VŠT, Košice (1984) 29-42.
[8] L. Lovasz, Combinatorial Problems and Exercises (Akademiai Kiado, Budapest, 1979).
[9] R.G. Nigmatullin, The largest number of kernels in graphs with n vertices, Kazan. Gos. Univ. Učen. Zap. 130 (1970) kn.3, 75-82. (Russian)

Received 2 February 1999
Revised 29 October 1999

