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Abstract

Let Py, Py be additive hereditary properties of graphs. A (Py,P2)-
decomposition of a graph G is a partition of E(G) into sets Ey, Es
such that induced subgraph G[E;] has the property P;, i = 1,2. Let
us define a property P; @ P2 by {G : G has a (P, P2)-decomposition}.

A property D is said to be decomposable if there exists nontrivial
additive hereditary properties Py, Po such that D = P; & P». In this
paper we determine the completeness of some decomposable properties
and we characterize the decomposable properties of completeness 2.
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1 Introduction and Notation

We consider finite undirected simple graphs. In general, we follow the no-
tation and terminology of [4, 6]. Let us denote by Z the class of all simple
finite graphs. A graph property P is any isomorphism-closed nonempty sub-
class of Z. P will also denote the property that a graph is a member of P.
A property P is said to be hereditary if G € P and H C G (H is a subgraph
of G) implies H € P. A property P is called additive if for each graph G all
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of whose components have property P it follows that G € P, too. The
set IL of all hereditary and additive properties of graphs, partially ordered
by set inclusion forms a complete distributive lattice. We will denote by
(91, Q2) the interval between Q1 and Qs in the lattice IL%.

Every hereditary property P is uniquely determined by the set

F(P)={G €Z:G ¢ P but each proper subgraph of G belongs to P}

of its minimal forbidden subgraphs. By the property —{Hj,-- -, Hy} we mean
the property P with F(P) = {Hy,---, Hi}.

Example. We list some important additive hereditary properties, using
partially the notation of [2, 4].

O = {GeZI:QGisedgeless,ie., E(G)=0},

Or = {G € T:each component of G has at most k + 1 vertices},
Sy = {G €T : the maximum degree A(G) < k},
Wy = {G € I : the length of the longest path in G is at most k},
D, = {GeTI:G isk-degenerate,
i.e., the minimum degree 6(H) < k for each H C G},
T = {G €Z:G contains no subgraph homeomorphic to Kj o or

K e pugag},
Iy = {G€T:G does not contain Kj o},

& = {G € T: each component of G has at most k edges},
LF = {GeI:GeDNGESy},
SF = {G € Z:each component of G is a star}.

An additive hereditary property P is said to be nontrivial if P # O and
P # Z. Let P be a nontrivial additive hereditary property. Then there is
a nonnegative integer ¢(P) such that K.pyy; € P but Ko pyo ¢ P; it is
called the completeness of P. Obviously

c(Ok) = c(Sk) = c(Wk) = (D) = c(Tx) = (L) = k,

o(&) = E(—l 4 \/1+—8k)J

and for additive properties ¢(P) = 0 if and only if P = O.

Let P1,Pa,..., P, be arbitrary hereditary properties of graphs. A ver-
tex (P1,Pa, ..., Pn)-partition of a graph G is a partition of V(G) into sets
Vi,Va, ..., V, such that for each i = 1,2,...,n, the induced subgraph G[V;]
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has the property P; (for convenience, the empty set () will be regarded as
the set inducing the subgraph with any property P).

A property R = PioPqo...0P, is defined as the set of all graphs having
a vertex (Py, P, ..., Py)-partition. It is easy to see that if Py, Ps,..., P, are
additive and hereditary, then R = PjoPyo...0P, is additive and hereditary,
too. If Py =Py =--- =P, =P, then we write P* =Py oPyo...0P,.
Thus, e.g., OF, k > 2 denotes the class of all k-colourable graphs.

An hereditary property R is said to be reducible if there exist hereditary
properties P, Q such that R = P o Q and irreducible, otherwise.

A (Py,Pa, ..., Py)-decomposition of a graph G is a partition of E(G)
into sets Ei, Fs,...,E, such that for each ¢ = 1,2,...,n, the subgraph
G|[FE;] has the property P; (for convenience, the empty set () will be regarded
as the set inducing the subgraph with any property P).

A property D = P1@P2®. . . P, is defined as the set of all graphs having
a (P1,Pa,...,Py)-decomposition. It is easy to see that if Py, Ps,..., P,
are additive and hereditary, then D = Py & P> & ... ® P, is additive and
hereditary, too. If Py = Py =--- =P, = P, then we write nP = P; & Ps &
. O Py

A hereditary property D is said to be decomposable if there exist non-
trivial hereditary properties P, Q such that D = P& Q and indecomposable,
otherwise.

The Ramsey number r(m,n) is the smallest integer for which every graph
of order r(m,n) contains either a clique of size m or an independent set of
size n.

Throughout this article, all properties we deal with are hereditary and
additive.

2 Completeness

There is an easy formula to determine the completeness of any reducible
property R = PoQ, namely, ¢(R) = ¢(P)+c(Q)+1 (see [8]). The calculation
of the completeness of decomposable properties is much more difficult. It is
easy to see that:

max{c(P),c(Q)} < c(P® Q) < c(Zypy +ZLe(g)) = r(c(P) +2,¢(Q) +2) -2,

and hence the problem is related to the problem of determining the Ramsey
numbers.
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Obviously, there is only one decomposable property of completeness 1, the
property O; @& O;. The next result characterize the decomposable properties
of completeness equals 2.

Theorem 1. Let P, Q be nontrivial additive hereditary properties.
Then c(P®Q) = 2 if and only if P and Q satisfy at least one of the following
conditions:

(i) P =0 and Q € (€2, —{C4}),

(i) P =E&; and Q € (01, —{Y,Cy}),

(iii) P =09 and Q € (O1,—{C4} N S2),
) P € (2,82 N—{C5,C4}) and Q € (01, Ws),
) P €(E,8F) and Q € (O1,—{C5,Cy}).

(iv
(v

Proof. By the definition of the completeness if ¢(P @& Q) = 2 then K4 ¢
PdQ. Let ¢(P® Q) =2. Since Oy CP,Q, then Cy ¢ P and Cy ¢ Q
(because K4 € (Ko U K3) & Cy).

To prove the theorem let us consider the following cases:

Case 1. Let Ko € P and P3 & P. Then Cy € Q.
Conversely, if P = O; and Q € (&2, —{C4}), then ¢(P & Q) = 2 and we
have (i).

Case 2. Let P3 € P, K3 & P, K1,3 Z P and P, € P.
Then Cy ¢ Q and Y ¢ Q. Conversely, if P = & and Q € (01, —{C4,Y}),
then ¢(P & Q) = 2 and we have (ii).

Case 3. Let P; € P, K3 € P, K1,3 Z P and P, € P.
Then Cy ¢ Q and K;3 ¢ Q. Conversely, if P = Oy and Q €
(01, —{C4, K1 3}), then ¢(P & Q) = 2 and we have (iii).

Case 4. Let P3 € P, K3 & P, K1,3 € P and P, € P.
Then Cy ¢ Q and C3 ¢ Q. Conversely, if P € (£5,SF) and Q €
(01,—{C4,Cs}), then ¢(P & Q) = 2 and we have (v).

Case 5. Let P; € P, K3 € P, K1,3 € P and P, € P.
Then Cy ¢ Q,C3 ¢ Q and K3 ¢ Q. Conversely, if P € (£2,,) and
Q € (01,8 N —{C4,Cs}), then ¢(P & Q) = 2 and we have (iv).

Case 6. Let Py € P, K3 € P, K13 ¢ P. Then P, & Q.
Conversely, if P € (£5,82 A —{C4,C3}) and Q € (O, Ws), then ¢(P® Q) =
2 and we have (iv).
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Case 7. Let P, € P, K3€ P, Ki3&P. Then P, ¢ Q and K3 € Q.
Conversely, if P € (£9,82 A —{C4}) and Q € (O1,03), then ¢(P & Q) = 2
and we have (iii).

Case 8. Let Py € P, K3 ¢ P, K13 € P. Then P, ¢ Q and K3 & Q.
Conversely, if P € (€9, —{C4,C3}) and Q € (O1,SF), then ¢(P & Q) = 2
and we have (v).

Case 9. Let P, € P, K3€ P, Ki3€Pand Y& P.
Then Py ¢ Q, K13 ¢ Q and K3 ¢ Q. Conversely, if P € (&2, —{C4,Y}) and
Q € (01,&;), then ¢(P & Q) = 2 and we have (ii).

Case 10. Let Y€ P.
Then P; ¢ Q. Conversely, if P € (€9, —{C4}) and Q@ = Oy, then ¢(P® Q) =
2 and we have (i).

Because all possible (P, Q)-decomposition were considered and taking into
consideration fact that Ky ¢ P @ Q, the proof is complete. [ ]

Theorem 2. Dy is indecomposable.
Proof. It is easy to check that the graphs G; in Figure 1, belongs

to DQ, for 1 = 1,...,4 and G1 ¢ 01 &) —{04}, GQ ¢ 62 &) —{Y, 04}, G3 ¢ OQ
D — {04} NSy, Gy ¢ Wy & —{03,04} A Sy and Gy ¢ SF® —{03704}.

b e

Figure 1

Gy

Hence, it follows: D2¢01 D —{04}, D2¢€2 D —{Y, 04}, Doz Oy B —{04}
ASa, Dog@Wo @& —{C3,Cy} A So and Do SF & —{C3,Cy} and by Theorem 1
D, is indecomposable. n

Theorem 3. Every reducible property of completeness 2 is indecomposable.
Proof. It is easy to see that the graph G in Figure 2, belongs to

00O and G ¢ O, ®—{Ci}, GEED—{T,Ci}, G ¢ Or® —{Ci} A Ss,
G ¢ Ws & —{03,04} A Sy, and G ¢ SF® —{03704}.
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P22y

Figure 2

Hence, it follows: O 0 O1¢01 & —{C4}, O 0 O1¢E & —{Y,Cys}, O 0 0104
&b — {04} A SQ., Qo 01§ZWQ D —{Cg., 04} AN 82 and O o 01¢Sf@ —{Cg, 04}
Thus, since O o Oy is the smallest reducible property of completeness 2, any
reducible property R of completeness 2 is indecomposable. [ |

Now we can reformulate as examples some well-known results in Ramsey
Theory using our notations.

" e(Py)4n)!

eg=1 "\ V)

Theorem 4 [10]. c(P1®P2® ... & Pp) < ORI 2.

Theorem 5 [7]. ¢(Zy, Ly, ® ... D ZLk,) < c(Tpy—1 DLk, ® ... ® I, ) +
(T, ®Zy1®...0L,)+ ...+ (T, ®Zi, ® ... ® Ly, 1) + 1.

Proposition 6. ¢(Z, @ 7)) =4, ¢(Z1 ®Z, ®1,) = 15.

Theorem 7 [5].
i1 ki, when Sy ki is odd
(S, OSk, @. .. ®Sy,) = or Vi'_1k; is even,
S ki—1,  otherwise.

We found an upper bound for ¢(D, @ D).
Theorem 8. ¢(D, ®Dy) <p+qg—1+ 1y 1+8pg V;Jrsm.

Proof. For any graph G € D, @ Dy, if K;, C G then K,, € D, @ D,.
Since the number of edges in a k-degenerate graph of order n is at most
kn — ("1, then (3) < pn— (P11 +gn— (3"). By an easy computation we
havenﬁp—i—q—i—pri”l;gm. [ |

Corollary 9. ¢(kD,) < kp + _HVIHPRED

Proof. For any graph G € kDy, if K, C G then K,, € kDy. Then (j) <
k (pn — (’H;)). Tt implies n < kp + 1 + —V 1+§p2k(k_1). [

But we are expecting that the following conjectures are true.
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Conjecture 10. ¢(D, ®D,) =p+q—1+ [@J _

Conjecture 11. c¢(kD,) = kp +

{—H 1+4p2k(k—1)J
5 )

In the paper [3] the following upper bound is found
(D, @D, ® ... B Dy,) <2 ki — 1.
=1
In [9] has been proved that P @& QF = (P @ Q)*. From this we have the
following equality.
Corollary 12. ¢(0? @ P) = 2¢(P) + 1.
Proposition 13. ¢(kLF) = ¢(kD;) = 2k — 1.

Proof. Beineke [1] proved that a complete graph Ko, can be decomposed
into k spanning paths. Hence ¢(kLF) > 2k — 1. Because |E(Kogt1)| >
|E(G)|, for any graph G € kDj, then ¢(kD;) < 2k — 1. This establishes the
formula ¢(kLF) = ¢(kD;) = 2k — 1. |

Theorem 14. ¢(2Z, & P) > 5¢(P) + 4.

Theorem 15. Let P, Q be nontrivial additive hereditary properties. Then
c(P® Q) =1 if and only if P = Op and Q = O5.
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