ON THE COMPLETENESS OF DECOMPOSABLE PROPERTIES OF GRAPHS

Mariusz Hałuszczak

Institute of Mathematics Technical University of Zielona Góra Podgórna 50, 65-246 Zielona Góra, Poland

e-mail: M.Haluszczak@im.pz.zgora.pl

AND

PAVOL VATEHA

Department of Geometry and Algebra Faculty of Science, P.J. Šafárik University Jesenná 5, 041 54 Košice, Slovak Republic

e-mail: vateha@duro.upjs.sk

Abstract

Let $\mathcal{P}_1, \mathcal{P}_2$ be additive hereditary properties of graphs. A $(\mathcal{P}_1, \mathcal{P}_2)$ decomposition of a graph G is a partition of E(G) into sets E_1, E_2 such that induced subgraph $G[E_i]$ has the property $\mathcal{P}_i, i = 1, 2$. Let
us define a property $\mathcal{P}_1 \oplus \mathcal{P}_2$ by $\{G : G \text{ has a } (\mathcal{P}_1, \mathcal{P}_2)\text{-decomposition}\}$.

A property D is said to be decomposable if there exists nontrivial additive hereditary properties $\mathcal{P}_1, \mathcal{P}_2$ such that $D = \mathcal{P}_1 \oplus \mathcal{P}_2$. In this paper we determine the completeness of some decomposable properties and we characterize the decomposable properties of completeness 2.

Keywords: decomposition, hereditary property, completeness. 1991 Mathematics Subject Classification: 05C55, 05C70.

1 Introduction and Notation

We consider finite undirected simple graphs. In general, we follow the notation and terminology of [4, 6]. Let us denote by \mathcal{I} the class of all simple finite graphs. A graph property \mathcal{P} is any isomorphism-closed nonempty subclass of \mathcal{I} . \mathcal{P} will also denote the property that a graph is a member of \mathcal{P} . A property \mathcal{P} is said to be hereditary if $G \in \mathcal{P}$ and $H \subseteq G$ (H is a subgraph of G) implies $H \in \mathcal{P}$. A property \mathcal{P} is called additive if for each graph G all

of whose components have property \mathcal{P} it follows that $G \in \mathcal{P}$, too. The set \mathbb{L}^a of all hereditary and additive properties of graphs, partially ordered by set inclusion forms a complete distributive lattice. We will denote by $\langle \mathcal{Q}_1, \mathcal{Q}_2 \rangle$ the interval between \mathcal{Q}_1 and \mathcal{Q}_2 in the lattice \mathbb{L}^a .

Every hereditary property \mathcal{P} is uniquely determined by the set

$$\mathbf{F}(\mathcal{P}) = \{G \in \mathcal{I} : G \notin \mathcal{P} \text{ but each proper subgraph of } G \text{ belongs to } \mathcal{P}\}$$

of its minimal forbidden subgraphs. By the property $-\{H_1, \dots, H_k\}$ we mean the property \mathcal{P} with $\mathbf{F}(\mathcal{P}) = \{H_1, \dots, H_k\}$.

Example. We list some important additive hereditary properties, using partially the notation of [2, 4].

 $\mathcal{O} = \{G \in \mathcal{I} : G \text{ is edgeless, i.e., } E(G) = \emptyset\},\$

 $\mathcal{O}_k = \{G \in \mathcal{I} : \text{ each component of } G \text{ has at most } k+1 \text{ vertices} \},$

 $S_k = \{G \in \mathcal{I} : \text{the maximum degree } \Delta(G) \leq k\},\$

 $\mathcal{W}_k = \{G \in \mathcal{I} : \text{the length of the longest path in } G \text{ is at most } k\},$

 $\mathcal{D}_k = \{G \in \mathcal{I} : G \text{ is } k\text{-degenerate},$

i.e., the minimum degree $\delta(H) \leq k$ for each $H \subseteq G$,

 $\mathcal{T}_k = \{G \in \mathcal{I} : G \text{ contains no subgraph homeomorphic to } K_{k+2} \text{ or } K_{\lfloor \frac{k+3}{4} \rfloor, \lceil \frac{k+3}{4} \rceil} \},$

 $\mathcal{I}_k = \{G \in \mathcal{I} : G \text{ does not contain } K_{k+2} \},$

 $\mathcal{E}_k = \{G \in \mathcal{I} : \text{ each component of } G \text{ has at most } k \text{ edges} \},$

 $\mathcal{LF} = \{ G \in \mathcal{I} : G \in \mathcal{D}_1 \land G \in \mathcal{S}_2 \},$

 $\mathcal{SF} = \{G \in \mathcal{I} : \text{each component of } G \text{ is a star}\}.$

An additive hereditary property \mathcal{P} is said to be nontrivial if $\mathcal{P} \neq \mathcal{O}$ and $\mathcal{P} \neq \mathcal{I}$. Let \mathcal{P} be a nontrivial additive hereditary property. Then there is a nonnegative integer $c(\mathcal{P})$ such that $K_{c(\mathcal{P})+1} \in \mathcal{P}$ but $K_{c(\mathcal{P})+2} \notin \mathcal{P}$; it is called the *completeness* of \mathcal{P} . Obviously

$$c(\mathcal{O}_k) = c(\mathcal{S}_k) = c(\mathcal{W}_k) = c(\mathcal{D}_k) = c(\mathcal{T}_k) = c(\mathcal{I}_k) = k,$$
$$c(\mathcal{E}_k) = \left\lfloor \frac{1}{2}(-1 + \sqrt{1 + 8k}) \right\rfloor$$

and for additive properties $c(\mathcal{P}) = 0$ if and only if $\mathcal{P} = \mathcal{O}$.

Let $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n$ be arbitrary hereditary properties of graphs. A vertex $(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n)$ -partition of a graph G is a partition of V(G) into sets V_1, V_2, \ldots, V_n such that for each $i = 1, 2, \ldots, n$, the induced subgraph $G[V_i]$

has the property \mathcal{P}_i (for convenience, the empty set \emptyset will be regarded as the set inducing the subgraph with any property \mathcal{P}).

A property $\mathcal{R} = \mathcal{P}_1 \circ \mathcal{P}_2 \circ \ldots \circ \mathcal{P}_n$ is defined as the set of all graphs having a vertex $(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n)$ -partition. It is easy to see that if $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n$ are additive and hereditary, then $\mathcal{R} = \mathcal{P}_1 \circ \mathcal{P}_2 \circ \ldots \circ \mathcal{P}_n$ is additive and hereditary, too. If $\mathcal{P}_1 = \mathcal{P}_2 = \cdots = \mathcal{P}_n = \mathcal{P}$, then we write $\mathcal{P}^n = \mathcal{P}_1 \circ \mathcal{P}_2 \circ \ldots \circ \mathcal{P}_n$. Thus, e.g., \mathcal{O}^k , $k \geq 2$ denotes the class of all k-colourable graphs. An hereditary property \mathcal{R} is said to be reducible if there exist hereditary

properties \mathcal{P}, \mathcal{Q} such that $\mathcal{R} = \mathcal{P} \circ \mathcal{Q}$ and irreducible, otherwise. A $(\mathcal{P}_1, \mathcal{P}_2, \dots, \mathcal{P}_n)$ -decomposition of a graph G is a partition of E(G) into sets E_1, E_2, \dots, E_n such that for each $i = 1, 2, \dots, n$, the subgraph $G[E_i]$ has the property \mathcal{P}_i (for convenience, the empty set \emptyset will be regarded

 $G[E_i]$ has the property \mathcal{P}_i (for convenience, the empty set \mathcal{P}_i as the set inducing the subgraph with any property \mathcal{P}).

A property $\mathcal{D} = \mathcal{P}_1 \oplus \mathcal{P}_2 \oplus \ldots \oplus \mathcal{P}_n$ is defined as the set of all graphs having a $(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n)$ -decomposition. It is easy to see that if $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n$ are additive and hereditary, then $\mathcal{D} = \mathcal{P}_1 \oplus \mathcal{P}_2 \oplus \ldots \oplus \mathcal{P}_n$ is additive and hereditary, too. If $\mathcal{P}_1 = \mathcal{P}_2 = \cdots = \mathcal{P}_n = \mathcal{P}$, then we write $n\mathcal{P} = \mathcal{P}_1 \oplus \mathcal{P}_2 \oplus \ldots \oplus \mathcal{P}_n$.

A hereditary property \mathcal{D} is said to be decomposable if there exist non-trivial hereditary properties \mathcal{P}, \mathcal{Q} such that $\mathcal{D} = \mathcal{P} \oplus \mathcal{Q}$ and indecomposable, otherwise.

The Ramsey number r(m, n) is the smallest integer for which every graph of order r(m, n) contains either a clique of size m or an independent set of size n.

Throughout this article, all properties we deal with are hereditary and additive.

2 Completeness

There is an easy formula to determine the completeness of any reducible property $\mathcal{R} = \mathcal{P} \circ \mathcal{Q}$, namely, $c(\mathcal{R}) = c(\mathcal{P}) + c(\mathcal{Q}) + 1$ (see [8]). The calculation of the completeness of decomposable properties is much more difficult. It is easy to see that:

$$\max\{c(\mathcal{P}), c(\mathcal{Q})\} \le c(\mathcal{P} \oplus \mathcal{Q}) \le c(\mathcal{I}_{c(\mathcal{P})} + \mathcal{I}_{c(\mathcal{Q})}) = r(c(\mathcal{P}) + 2, c(\mathcal{Q}) + 2) - 2,$$

and hence the problem is related to the problem of determining the Ramsey numbers. Obviously, there is only one decomposable property of completeness 1, the property $\mathcal{O}_1 \oplus \mathcal{O}_1$. The next result characterize the decomposable properties of completeness equals 2.

Theorem 1. Let \mathcal{P}, \mathcal{Q} be nontrivial additive hereditary properties. Then $c(\mathcal{P} \oplus \mathcal{Q}) = 2$ if and only if \mathcal{P} and \mathcal{Q} satisfy at least one of the following conditions:

- (i) $\mathcal{P} = \mathcal{O}_1 \text{ and } \mathcal{Q} \in \langle \mathcal{E}_2, -\{C_4\} \rangle$,
- (ii) $\mathcal{P} = \mathcal{E}_2 \text{ and } \mathcal{Q} \in \langle \mathcal{O}_1, -\{ \mathbf{Y}, C_4 \} \rangle$,
- (iii) $\mathcal{P} = \mathcal{O}_2 \text{ and } \mathcal{Q} \in \langle \mathcal{O}_1, -\{C_4\} \wedge \mathcal{S}_2 \rangle$,
- (iv) $\mathcal{P} \in \langle \mathcal{E}_2, \mathcal{S}_2 \wedge -\{C_3, C_4\} \rangle$ and $\mathcal{Q} \in \langle \mathcal{O}_1, \mathcal{W}_2 \rangle$,
- (v) $\mathcal{P} \in \langle \mathcal{E}_2, \mathcal{SF} \rangle$ and $\mathcal{Q} \in \langle \mathcal{O}_1, -\{C_3, C_4\} \rangle$.

Proof. By the definition of the completeness if $c(\mathcal{P} \oplus \mathcal{Q}) = 2$ then $K_4 \not\in \mathcal{P} \oplus \mathcal{Q}$. Let $c(\mathcal{P} \oplus \mathcal{Q}) = 2$. Since $O_1 \subseteq \mathcal{P}, \mathcal{Q}$, then $C_4 \not\in \mathcal{P}$ and $C_4 \not\in \mathcal{Q}$ (because $K_4 \in (K_2 \cup K_2) \oplus C_4$).

To prove the theorem let us consider the following cases:

Case 1. Let $K_2 \in \mathcal{P}$ and $P_3 \notin \mathcal{P}$. Then $C_4 \notin \mathcal{Q}$. Conversely, if $\mathcal{P} = \mathcal{O}_1$ and $\mathcal{Q} \in \langle \mathcal{E}_2, -\{C_4\} \rangle$, then $c(\mathcal{P} \oplus \mathcal{Q}) = 2$ and we have (i).

Case 2. Let $P_3 \in \mathcal{P}$, $K_3 \notin \mathcal{P}$, $K_{1,3} \notin \mathcal{P}$ and $P_4 \notin \mathcal{P}$. Then $C_4 \notin \mathcal{Q}$ and $\mathbf{Y} \notin \mathcal{Q}$. Conversely, if $\mathcal{P} = \mathcal{E}_2$ and $\mathcal{Q} \in \langle \mathcal{O}_1, -\{C_4, \mathbf{Y}\} \rangle$, then $c(\mathcal{P} \oplus \mathcal{Q}) = 2$ and we have (ii).

Case 3. Let $P_3 \in \mathcal{P}$, $K_3 \in \mathcal{P}$, $K_{1,3} \notin \mathcal{P}$ and $P_4 \notin \mathcal{P}$. Then $C_4 \notin \mathcal{Q}$ and $K_{1,3} \notin \mathcal{Q}$. Conversely, if $\mathcal{P} = \mathcal{O}_2$ and $\mathcal{Q} \in \langle \mathcal{O}_1, -\{C_4, K_{1,3}\} \rangle$, then $c(\mathcal{P} \oplus \mathcal{Q}) = 2$ and we have (iii).

Case 4. Let $P_3 \in \mathcal{P}$, $K_3 \notin \mathcal{P}$, $K_{1,3} \in \mathcal{P}$ and $P_4 \notin \mathcal{P}$. Then $C_4 \notin \mathcal{Q}$ and $C_3 \notin \mathcal{Q}$. Conversely, if $\mathcal{P} \in \langle \mathcal{E}_2, \mathcal{SF} \rangle$ and $\mathcal{Q} \in \langle \mathcal{O}_1, -\{C_4, C_3\} \rangle$, then $c(\mathcal{P} \oplus \mathcal{Q}) = 2$ and we have (v).

Case 5. Let $P_3 \in \mathcal{P}$, $K_3 \in \mathcal{P}$, $K_{1,3} \in \mathcal{P}$ and $P_4 \notin \mathcal{P}$. Then $C_4 \notin \mathcal{Q}$, $C_3 \notin \mathcal{Q}$ and $K_{1,3} \notin \mathcal{Q}$. Conversely, if $\mathcal{P} \in \langle \mathcal{E}_2, \mathcal{W}_2 \rangle$ and $\mathcal{Q} \in \langle \mathcal{O}_1, \mathcal{S}_2 \wedge -\{C_4, C_3\} \rangle$, then $c(\mathcal{P} \oplus \mathcal{Q}) = 2$ and we have (iv).

Case 6. Let $P_4 \in \mathcal{P}$, $K_3 \notin \mathcal{P}$, $K_{1,3} \notin \mathcal{P}$. Then $P_4 \notin \mathcal{Q}$. Conversely, if $\mathcal{P} \in \langle \mathcal{E}_2, \mathcal{S}_2 \wedge -\{C_4, C_3\} \rangle$ and $\mathcal{Q} \in \langle \mathcal{O}_1, \mathcal{W}_2 \rangle$, then $c(\mathcal{P} \oplus \mathcal{Q}) = 2$ and we have (iv). Case 7. Let $P_4 \in \mathcal{P}$, $K_3 \in \mathcal{P}$, $K_{1,3} \notin \mathcal{P}$. Then $P_4 \notin \mathcal{Q}$ and $K_{1,3} \notin \mathcal{Q}$. Conversely, if $\mathcal{P} \in \langle \mathcal{E}_2, \mathcal{S}_2 \wedge -\{C_4\} \rangle$ and $\mathcal{Q} \in \langle \mathcal{O}_1, \mathcal{O}_2 \rangle$, then $c(\mathcal{P} \oplus \mathcal{Q}) = 2$ and we have (iii).

Case 8. Let $P_4 \in \mathcal{P}$, $K_3 \notin \mathcal{P}$, $K_{1,3} \in \mathcal{P}$. Then $P_4 \notin \mathcal{Q}$ and $K_3 \notin \mathcal{Q}$. Conversely, if $\mathcal{P} \in \langle \mathcal{E}_2, -\{C_4, C_3\} \rangle$ and $\mathcal{Q} \in \langle \mathcal{O}_1, \mathcal{SF} \rangle$, then $c(\mathcal{P} \oplus \mathcal{Q}) = 2$ and we have (v).

Case 9. Let $P_4 \in \mathcal{P}$, $K_3 \in \mathcal{P}$, $K_{1,3} \in \mathcal{P}$ and $\mathbf{Y} \notin \mathcal{P}$. Then $P_4 \notin \mathcal{Q}$, $K_{1,3} \notin \mathcal{Q}$ and $K_3 \notin \mathcal{Q}$. Conversely, if $\mathcal{P} \in \langle \mathcal{E}_2, -\{C_4, \mathbf{Y}\} \rangle$ and $\mathcal{Q} \in \langle \mathcal{O}_1, \mathcal{E}_2 \rangle$, then $c(\mathcal{P} \oplus \mathcal{Q}) = 2$ and we have (ii).

Case 10. Let $\mathbf{Y} \in \mathcal{P}$.

Then $P_3 \notin \mathcal{Q}$. Conversely, if $\mathcal{P} \in \langle \mathcal{E}_2, -\{C_4\} \rangle$ and $\mathcal{Q} = \mathcal{O}_1$, then $c(\mathcal{P} \oplus \mathcal{Q}) = 2$ and we have (i).

Because all possible $(\mathcal{P}, \mathcal{Q})$ -decomposition were considered and taking into consideration fact that $K_4 \notin \mathcal{P} \oplus \mathcal{Q}$, the proof is complete.

Theorem 2. \mathcal{D}_2 is indecomposable.

Proof. It is easy to check that the graphs G_i in Figure 1, belongs to \mathcal{D}_2 , for i = 1, ..., 4 and $G_1 \notin \mathcal{O}_1 \oplus -\{C_4\}$, $G_2 \notin \mathcal{E}_2 \oplus -\{\P, C_4\}$, $G_3 \notin \mathcal{O}_2 \oplus -\{C_4\} \land \mathcal{S}_2$, $G_2 \notin \mathcal{W}_2 \oplus -\{C_3, C_4\} \land \mathcal{S}_2$ and $G_4 \notin \mathcal{SF} \oplus -\{C_3, C_4\}$.

Figure 1

Hence, it follows: $\mathcal{D}_2 \not\subset \mathcal{O}_1 \oplus -\{C_4\}$, $\mathcal{D}_2 \not\subset \mathcal{E}_2 \oplus -\{\mathbf{Y}, C_4\}$, $\mathcal{D}_2 \not\subset \mathcal{O}_2 \oplus -\{C_4\}$ $\wedge \mathcal{S}_2$, $\mathcal{D}_2 \not\subset \mathcal{W}_2 \oplus -\{C_3, C_4\} \wedge \mathcal{S}_2$ and $\mathcal{D}_2 \not\subset \mathcal{SF} \oplus -\{C_3, C_4\}$ and by Theorem 1 \mathcal{D}_2 is indecomposable.

Theorem 3. Every reducible property of completeness 2 is indecomposable.

Proof. It is easy to see that the graph G in Figure 2, belongs to $\mathcal{O} \circ \mathcal{O}_1$ and $G \notin \mathcal{O}_1 \oplus -\{C_4\}$, $G \notin \mathcal{E}_2 \oplus -\{\P, C_4\}$, $G \notin \mathcal{O}_2 \oplus -\{C_4\} \wedge \mathcal{S}_2$, $G \notin \mathcal{W}_2 \oplus -\{C_3, C_4\} \wedge \mathcal{S}_2$, and $G \notin \mathcal{SF} \oplus -\{C_3, C_4\}$.

Figure 2

Hence, it follows: $\mathcal{O} \circ \mathcal{O}_1 \not\subset \mathcal{O}_1 \oplus -\{C_4\}$, $\mathcal{O} \circ \mathcal{O}_1 \not\subset \mathcal{E}_2 \oplus -\{\nabla, C_4\}$, $\mathcal{O} \circ \mathcal{O}_1 \not\subset \mathcal{O}_2 \oplus -\{C_4\} \land \mathcal{S}_2$, $\mathcal{O} \circ \mathcal{O}_1 \not\subset \mathcal{W}_2 \oplus -\{C_3, C_4\} \land \mathcal{S}_2$ and $\mathcal{O} \circ \mathcal{O}_1 \not\subset \mathcal{SF} \oplus -\{C_3, C_4\}$. Thus, since $\mathcal{O} \circ \mathcal{O}_1$ is the smallest reducible property of completeness 2, any reducible property \mathcal{R} of completeness 2 is indecomposable.

Now we can reformulate as examples some well-known results in Ramsey Theory using our notations.

Theorem 4 [10].
$$c(\mathcal{P}_1 \oplus \mathcal{P}_2 \oplus \ldots \oplus \mathcal{P}_n) \leq \frac{(\sum_{i=1}^n c(\mathcal{P}_i) + n)!}{\prod_{i=1}^n (c(\mathcal{P}_i) + 1)!} - 2.$$

Theorem 5 [7].
$$c(\mathcal{I}_{k_1} \oplus \mathcal{I}_{k_2} \oplus \ldots \oplus \mathcal{I}_{k_n}) \leq c(\mathcal{I}_{k_1-1} \oplus \mathcal{I}_{k_2} \oplus \ldots \oplus \mathcal{I}_{k_n}) + c(\mathcal{I}_{k_1} \oplus \mathcal{I}_{k_2-1} \oplus \ldots \oplus \mathcal{I}_{k_n}) + \ldots + c(\mathcal{I}_{k_1} \oplus \mathcal{I}_{k_2} \oplus \ldots \oplus \mathcal{I}_{k_{n-1}}) + n.$$

Proposition 6. $c(\mathcal{I}_1 \oplus \mathcal{I}_1) = 4$, $c(\mathcal{I}_1 \oplus \mathcal{I}_1 \oplus \mathcal{I}_1) = 15$.

Theorem 7 [5].

$$c(\mathcal{S}_{k_1} \oplus \mathcal{S}_{k_2} \oplus \ldots \oplus \mathcal{S}_{k_n}) = \begin{cases} \sum_{i=1}^n k_i, & when \\ \sum_{i=1}^n k_i & is \ odd \\ \sum_{i=1}^n k_i - 1, & otherwise. \end{cases}$$

We found an upper bound for $c(\mathcal{D}_p \oplus \mathcal{D}_q)$.

Theorem 8.
$$c(\mathcal{D}_p \oplus \mathcal{D}_q) \leq p + q - 1 + \frac{1 + \sqrt{1 + 8pq}}{2}$$

Proof. For any graph $G \in \mathcal{D}_p \oplus \mathcal{D}_q$, if $K_n \subseteq G$ then $K_n \in \mathcal{D}_p \oplus \mathcal{D}_q$. Since the number of edges in a k-degenerate graph of order n is at most $kn - \binom{k+1}{2}$, then $\binom{n}{2} \leq pn - \binom{p+1}{2} + qn - \binom{q+1}{2}$. By an easy computation we have $n \leq p + q + \frac{1+\sqrt{1+8pq}}{2}$.

Corollary 9.
$$c(k\mathcal{D}_p) \le kp + \frac{-1 + \sqrt{1 + 4p^2k(k-1)}}{2}$$
.

Proof. For any graph
$$G \in k\mathcal{D}_p$$
, if $K_n \subseteq G$ then $K_n \in k\mathcal{D}_p$. Then $\binom{n}{2} \le k\left(pn - \binom{p+1}{2}\right)$. It implies $n \le kp + 1 + \frac{-1 + \sqrt{1 + 4p^2k(k-1)}}{2}$.

But we are expecting that the following conjectures are true.

Conjecture 10. $c(\mathcal{D}_p \oplus \mathcal{D}_q) = p + q - 1 + \left\lfloor \frac{1 + \sqrt{1 + 8pq}}{2} \right\rfloor$.

Conjecture 11.
$$c(k\mathcal{D}_p) = kp + \left| \frac{-1+\sqrt{1+4p^2k(k-1)}}{2} \right|$$
.

In the paper [3] the following upper bound is found

$$c(\mathcal{D}_{k_1} \oplus \mathcal{D}_{k_2} \oplus \ldots \oplus \mathcal{D}_{k_n}) \leq 2 \sum_{i=1}^n k_i - 1.$$

In [9] has been proved that $\mathcal{P} \oplus \mathcal{Q}^k = (\mathcal{P} \oplus \mathcal{Q})^k$. From this we have the following equality.

Corollary 12. $c(\mathcal{O}^2 \oplus \mathcal{P}) = 2c(\mathcal{P}) + 1$.

Proposition 13. $c(k\mathcal{LF}) = c(k\mathcal{D}_1) = 2k - 1$.

Proof. Beineke [1] proved that a complete graph K_{2k} can be decomposed into k spanning paths. Hence $c(k\mathcal{LF}) \geq 2k-1$. Because $|E(K_{2k+1})| > |E(G)|$, for any graph $G \in k\mathcal{D}_1$, then $c(k\mathcal{D}_1) \leq 2k-1$. This establishes the formula $c(k\mathcal{LF}) = c(k\mathcal{D}_1) = 2k-1$.

Theorem 14. $c(2\mathcal{I}_1 \oplus \mathcal{P}) \geq 5c(\mathcal{P}) + 4$.

Theorem 15. Let \mathcal{P}, \mathcal{Q} be nontrivial additive hereditary properties. Then $c(\mathcal{P} \oplus \mathcal{Q}) = 1$ if and only if $\mathcal{P} = \mathcal{O}_1$ and $\mathcal{Q} = \mathcal{O}_1$.

Acknowledgement

The authors of this paper wish to thank refree for his suggestions and critical comments that were found very helpful.

References

- [1] L.W. Beineke, *Decompositions of complete graphs into forests*, Magyar Tud. Akad. Mat. Kutato Int. Kozl. **9** (1964) 589–594.
- [2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5–50.

- [3] M. Borowiecki and M. Hałuszczak, *Decomposition of some classes of graphs*, (manuscript).
- [4] M. Borowiecki and P. Mihók, *Hereditary properties of graphs*, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 41–68.
- [5] S.A. Burr, J.A. Roberts, On Ramsey numbers for stars, Utilitas Math. 4 (1973) 217–220
- [6] G. Chartrand and L. Lesnak, Graphs and Digraphs (Wadsworth & Brooks/Cole, Monterey, California, 1986).
- [7] E.J. Cockayne, Colour classes for r-graphs, Canad. Math. Bull. 15 (1972) 349–354.
- [8] P. Mihók Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki, Z. Skupień, eds., Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49–58.
- [9] P. Mihók and G. Semanišin, Generalized Ramsey Theory and Decomposable Properties of Graphs, (manuscript).
- [10] L. Volkmann, Fundamente der Graphentheorie (Springer, Wien, New York, 1996).

Received 12 February 1999 Revised 20 October 1999