NOTE ON CYCLIC DECOMPOSITIONS OF COMPLETE BIPARTITE GRAPHS INTO CUBES

Dalibor Fronček
Department of Applied Mathematics
Technical University Ostrava 17 listopadu, 70833 Ostrava, Czech Republic
e-mail: dalibor.froncek@vsb.cz

Abstract

So far, the smallest complete bipartite graph which was known to have a cyclic decomposition into cubes Q_{d} of a given dimension d was $K_{d 2^{d-1}, d 2^{d-2}}$. We improve this result and show that also $K_{d 2^{d-2}, d 2^{d-2}}$ allows a cyclic decomposition into Q_{d}. We also present a cyclic factorization of $K_{8,8}$ into Q_{4}.

Keywords: hypercubes, bipartite graphs, factorization.
1991 Mathematics Subject Classification: 05C70.

1. Introduction

The 1-dimensional cube Q_{1} is the graph K_{2} while the 2-dimensional cube Q_{2} is isomorphic to the cycle C_{4}. In general, the d-dimensional hypercube Q_{d} is defined recursively as the product $Q_{d-1} \square K_{2}$. Obviously, such a hypercube has 2^{d} vertices and $d 2^{d-1}$ edges. Another nice definition of a hypercube Q_{d} (often called just a cube) can be stated as follows: Take all binary numbers of length d and assign them to the vertices $v_{1}, v_{2}, \ldots, v_{2^{d}}$. Then join two vertices by an edge if and only if their binary labels differ exactly at one position. We present in Figure 1 the bipartite adjacency matrices of the cubes Q_{d} for $d=1,2,3,4$ as we shall need them later.

[^0]\[

[1]\left[$$
\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}
$$\right]\left[$$
\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}
$$\right] \quad\left[$$
\begin{array}{llllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}
$$\right]
\]

Figure 1
One can notice that the $2^{d-1} \times 2^{d-1}$ bipartite adjacency matrix $A\left(Q_{d}\right)$ of a cube Q_{d} can be easily recursively constructed from the $2^{d-2} \times 2^{d-2}$ matrix $A\left(Q_{d-1}\right)$ of Q_{d-1} in such a way that we put to both left upper and right lower $2^{d-2} \times 2^{d-2}$ submatrix of $A\left(Q_{d}\right)$ a copy of $A\left(Q_{d-1}\right)$. Then we fill the secondary diagonal with 1 s and all other entries with 0s.

As the hypercubes are bipartite graphs, it is natural to ask a question which complete bipartite graphs can be decomposed or even factorized into hypercubes. The necessary condition for factorization of a complete bipartite graph $K_{n, m}$ into d-dimensional hypercubes is that the parts have to be both of the same order 2^{d-1} and d itself must be a power of 2 . If it is not so, then the number of edges (or a size) of the hypercube does not divide the size of $K_{n, m}$. It was proved by El-Zanati and Vanden Eynden [1] that the necessary condition is also sufficient. In fact, they also proved that for other dimensions than powers of 2 the hypercubes Q_{d} can be packed into $K_{2^{d-1}, 2^{d-1}}$, the smallest complete bipartite graph that allows embedding of Q_{d}. Their result follows.

Theorem A (El-Zanati, Vanden Eynden [1]). Let d be a positive integer with $t=2^{d-1}=d q+r, 0 \leq r<d$. Then $K_{t, t}$ can be decomposed into q cubes Q_{d} and an r-factor. If $r \neq 0$ this r-factor itself decomposes into 2^{d-r} cubes Q_{r}.

However, in this note we are interested in cyclic decompositions and the decompositions used in the proof of Theorem A are not cyclic. Cyclic decompositions were studied by Vanden Eynden [3]. We shall follow the notation used in [3]. Let $K_{n, m}$ be a complete bipartite graph and G a bipartite graph such that $n m=q|E(G)|$. We denote edges of $K_{n, m}$ as (i, j), where $i \in\{1,2, \ldots, n\}$ and $j \in\{1,2, \ldots, m\}$. We say that $K_{n, m}$
has an (r, s)-cyclic decomposition into G if we can assign labels to vertices of G such that for any edge (i, j) belonging to $G_{0} \cong G$ all edges $(i+l r, j+l s), l=1,2, \ldots, q-1$ belong to different copies $G_{1}, G_{2}, \ldots, G_{q-1}$ of G, where the set $\left\{G_{0}, G_{1}, \ldots, G_{q-1}\right\}$ forms a decomposition of $K_{n, m}$. Vanden Eynden generalized earlier results of Rosa [2] (concerning decompositions of complete graphs) to prove the following.

Theorem B (Vanden Eynden [3]). Let G be a bipartite graph with parts V_{1}, V_{2} and edge set E. Suppose that n and m are positive integers and r and s are integers such that $r|m, s| n$, and $|E|=\operatorname{gcd}(m s, n r)$. Let $t=$ $\operatorname{gcd}(r, s), R=r / t, S=s / t$, and $k=\operatorname{gcd}(S m, R n)$. Define $\psi: Z_{m} \times Z_{n} \rightarrow$ $Z_{k} \times Z_{t}$ by $\psi(i, j)=(S i-R j,\lfloor i / R\rfloor)$. Then there exists an (r, s)-cyclic decomposition of $K_{m, n}$ into copies of G if and only if there exist one-to-one functions N_{1} and N_{2} from V_{1} and V_{2} into Z_{m} and Z_{n}, respectively, such that the function $\theta: E \rightarrow Z_{k} \times Z_{t}$ defined by $\theta\left(v_{1}, v_{2}\right)=\psi\left(N_{1}\left(v_{1}\right), N_{2}\left(v_{2}\right)\right)$ is one-to-one.

It was proved by Vanden Eynden that for a given $d \geq 2$, the graph $K_{d 2^{d-2}, d 2^{d-1}}$ can be cyclically decomposed into hypercubes Q_{d}. It is conjectured that if d is a power of 2 , then the graph $K_{2^{d-1}, 2^{d-1}}$ can be cyclically factorized into copies of Q_{d}. In this note we improve Vanden Eynden's result and show that for a given $d \geq 2$ the graph $K_{d 2^{d-2}, d 2^{d-2}}$ can be cyclically decomposed into hypercubes Q_{d}.

2. Decomposition of $K_{d 2^{d-2, d 2^{d-2}}}$ Into Hypercubes Q_{d}

We start with a cyclic decomposition of the graph $K_{6,6}$ with partite sets $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{6}\right\}$ and $V_{2}=\left\{u_{1}, u_{2}, \ldots, u_{6}\right\}$. To find such a decomposition, we have to label the vertices of each partite set by labels from the set $\{0,1, \ldots, 5\}$. Then we choose numbers r, s and define a cube Q_{3} in such a way that for any given edge (i, j) of Q_{3} neither $(i+r, j+s)$ nor $(i+2 r, j+2 s)$ belongs to the Q_{3}, where the labels are taken $\bmod 4$. Then the other two copies of Q_{3}, namely Q_{3}^{1} and Q_{3}^{2}, are defined exactly by the sets of edges $\left\{(i+r, j+s) \mid(i, j) \in Q_{3}\right\}$ and $\left\{(i+2 r, j+2 s) \mid(i, j) \in Q_{3}\right\}$, respectively.

As $\left|E\left(Q_{3}\right)\right|=12$, the divisibility condition is clearly satisfied. We set parameters r, s defined in Theorem B as $r=-2$ and $s=2$. Then $t=$ $\operatorname{gcd}(r, s)=2$. Indeed it holds that $r|m, s| n$ and $12 \mid \operatorname{gcd}(m s, n r)$. It follows that $R=r / t=-1, S=s / t=1$ and $k=\operatorname{gcd}(S m, R n)=6$. The function $\psi: Z_{m} \times Z_{n} \rightarrow Z_{k} \times Z_{t}$ from Theorem B appears to be $\psi(i, j)=(i+j, i)$. It only remains to find the functions N_{1} and N_{2} from V_{1} and V_{2} both into
Z_{6} such that the function $\theta: E\left(Q_{3}\right) \rightarrow Z_{6} \times Z_{2}$ defined by $\theta\left(v_{a}, u_{b}\right)=$ $\left(N_{1}\left(v_{a}\right)+N_{2}\left(u_{b}\right), N_{1}\left(v_{a}\right)\right)$ will be one-to-one. We define the cube Q_{3} by the bipartite adjacency matrix presented in Figure 1 and label the vertices of each partite set of the cube Q_{3} (that means, define the functions θ, N_{1}, N_{2}) with labels from the set $\{0,1,2,3\}$. We assign vertices $v_{1}, v_{2}, v_{3}, v_{4}$ to the rows and $u_{1}, u_{2}, u_{3}, u_{4}$ to the columns. Now we define the functions N_{1}, N_{2} as follows: $N_{1}\left(v_{1}\right)=0, N_{1}\left(v_{2}\right)=1, N_{1}\left(v_{3}\right)=3, N_{1}\left(v_{4}\right)=2$ and $N_{2}\left(u_{j}\right)=$ $j-1$ for $j=1,2,3,4$. The values of the function θ are presented in the "labeling array" shown in Figure 2. Notice that the asterisks correspond to zeros in the bipartite adjacency matrix of Q_{3}. A non-blank entry in a row v_{a} and a column u_{b} denotes the value of the first entry of the function $\theta\left(v_{a}, u_{b}\right)=\left(N_{1}\left(v_{a}\right)+N_{2}\left(u_{b}\right), N_{1}\left(v_{a}\right)\right)$, that means, the sum $N_{1}\left(v_{a}\right)+N_{2}\left(u_{b}\right)$ taken $\bmod 6$ (because $k=6$). The second entry, $N_{1}\left(v_{a}\right)$, is taken mod 2 , as the parameter t equals 2 .

N_{2} N_{1}	0	1	2	3
0	0	1	$*$	3
1	1	2	3	$*$
3	$*$	4	5	0
2	2	$*$	4	5

Figure 2
One can check now that the function θ is really one-to-one: The entries in the rows v_{1} and $v_{4}\left(\right.$ recall that $\left.N_{1}\left(v_{1}\right) \equiv N_{1}\left(v_{4}\right) \equiv 0(\bmod 2)\right)$ are exactly the elements of Z_{6}. The same holds for the entries of the rows v_{2} and v_{3} (here $N_{1}\left(v_{2}\right) \equiv N_{1}\left(v_{3}\right) \equiv 1(\bmod 2)$).

For $d=4$ we want to decompose $K_{d 2^{d-2}, d 2^{d-2}}=K_{16,16}$ into eight copies of Q_{4}. We use the recursive definition of Q_{4}. This means that we take two copies of Q_{3} and join them by eight independent edges. Then we label the vertices of one copy of Q_{3} as in the previous case. To label the vertices of the other copy of Q_{3}, we use the same "pattern". While the edges of the first copy have now labels $(0,0),(1,0), \ldots,(5,0)$ and $(1,1),(2,1) \ldots,(6,1)$ (notice that there is now an edge labeled $(6,1)$ rather than $(0,1)$ as the values of $N_{1}\left(v_{a}\right)+N_{2}\left(u_{b}\right)$ are not taken mod 6 , but mod 16), we want the edges of the second copy to have labels $(10,0),(11,0), \ldots,(15,0)$ and $(11,1),(12,1) \ldots,(15,1),(0,1)$. The remaining values, namely $(6,0),(7,0),(8,0),(9,0)$ and $(7,1),(8,1),(9,1),(10,1)$ are
to be assigned to the edges joining the two copies of Q_{3}. Notice that the edges of the two copies of Q_{3} appear in the left upper and right lower submatrix of the incidence matrix of Q_{4} while the joining edges appear on the secondary diagonal. It means that we want to label the vertices $v_{5}, \ldots v_{8}, u_{5}, \ldots u_{8}$ such that $N_{1}\left(v_{a+4}\right)+N_{2}\left(u_{b+4}\right)=N_{1}\left(v_{a}\right)+N_{2}\left(u_{b}\right)+10$ for $a, b=1,2,3,4$. Moreover, we have to guarantee the correct values of the joining edges. One can check that the labeling defined as $N_{1}\left(v_{a+4}\right)=N_{1}\left(v_{a}\right)+4$ and $N_{2}\left(u_{b+4}\right)=N_{2}\left(u_{b}\right)+6$ satisfies our requirements. The corresponding array is shown in Figure 3. Notice that not only the right lower subarray has now the same structure, but the same holds for the secondary diagonal: its left lower and right upper parts repeat the structure of the secondary diagonal of the array of Q_{3}.

${ }^{*} N_{2}$	0	1	2	3	6	7	8	9
N_{1}								
0	0	1	$*$	3	$*$	$*$	$*$	9
1	1	2	3	$*$	$*$	$*$	9	$*$
3	$*$	4	5	6	$*$	10	$*$	$*$
2	2	$*$	4	5	8	$*$	$*$	$*$
4	$*$	$*$	$*$	7	10	11	$*$	13
5	$*$	$*$	7	$*$	11	12	13	$*$
7	$*$	8	$*$	$*$	$*$	14	15	0
6	6	$*$	$*$	$*$	12	$*$	14	15

Figure 3
Here again the assumptions of Theorem B are satisfied: $m=n=16, r=$ $-2, s=2$ and $t=\operatorname{gcd}(r, s)=2$. Indeed it holds that $r|m, s| n$ and $\left|E\left(Q_{4}\right)\right|=$ $32 \mid \operatorname{gcd}(m s, n r)$. It follows that $R=r / t=-1, S=s / t=1$ and $k=$ $\operatorname{gcd}(S m, R n)=16$ and the function $\psi: Z_{16} \times Z_{16} \rightarrow Z_{16} \times Z_{2}$ appears to be $\psi(i, j)=(i+j, i)$. Hence the function $\theta: E\left(Q_{4}\right) \rightarrow Z_{16} \times Z_{2}$ is defined by $\theta\left(v_{a}, u_{b}\right)=\left(N_{1}\left(v_{a}\right)+N_{2}\left(u_{b}\right), N_{1}\left(v_{a}\right)\right)$.

We now use the same idea to label recursively any cube Q_{d} using a labeling of Q_{d-1}. First we prove a lemma.

Lemma 1. Let $d \geq 3$ and let $N_{j}^{d}:\left\{1,2, \ldots, 2^{d-1}\right\} \rightarrow Z_{d 2^{d-2}}$ for $j=1,2$ be defined recursively as follows: $N_{1}^{3}(1)=0, N_{1}^{3}(2)=1, N_{1}^{3}(3)=3, N_{1}^{3}(4)=2$ and $N_{2}^{3}(i)=i-1$ for $i=1,2,3,4$. Furthermore, for i with $1 \leq i \leq 2^{d-1}$, $N_{1}^{d+1}(i)=N_{1}^{d}(i)$ and $N_{1}^{d+1}\left(2^{d-1}+i\right)=N_{1}^{d}(i)+(d+1) 2^{d-3}$. Similarly, for
$1 \leq i \leq 2^{d-1}, N_{2}^{d+1}(i)=N_{2}^{d}(i)$ and $N_{2}^{d+1}\left(2^{d-1}+i\right)=N_{2}^{d}(i)+(d+3) 2^{d-3}$. Then N_{1}^{d} and N_{2}^{d} are one-to-one.

Proof. We denote the maximal value of $N_{j}^{d}(i), i \in\left\{1,2, \ldots, 2^{d-1}\right\}$ by $h_{j}(d)$. First we prove that $h_{1}(d)<(d+1) 2^{d-3}$. It is indeed true for $d=3$. We suppose that $h_{1}(d-1)<d 2^{d-4}$ for every $d \leq d_{0}$, and want to show that then it follows that $h_{1}\left(d_{0}\right)<\left(d_{0}+1\right) 2^{d_{0}-3}$. From the definition of N_{1}^{d} it is clear that $h_{1}\left(d_{0}\right)=h_{1}\left(d_{0}-1\right)+d_{0} 2^{d_{0}-4}$ and from our assumption it follows that $h_{1}\left(d_{0}-1\right)<d_{0} 2^{d_{0}-4}$. Therefore $h_{1}\left(d_{0}\right)<2 d_{0} 2^{d_{0}-4}=d_{0} 2^{d_{0}-3}$. On the other hand, $d_{0} 2^{d_{0}-3}<\left(d_{0}+1\right) 2^{d_{0}-3}$ and hence $h_{1}\left(d_{0}\right)<\left(d_{0}+1\right) 2^{d_{0}-3}$. By the same manner we show that $h_{2}(d)<(d+3) 2^{d-3}$.

Now we can prove that N_{1}^{d} and N_{2}^{d} are one-to-one. It is obviously true for N_{1}^{3} and N_{2}^{3}. Then we suppose that N_{1}^{d} is one-to-one for any $d \leq d_{0}$ and want to show that then it holds that $N_{1}^{d_{0}+1}$ is one-to-one. If $1 \leq i<$ $j \leq 2^{d_{0}-1}$, then $N_{1}^{d_{0}+1}(i)=N_{1}^{d_{0}}(i) \neq N_{1}^{d_{0}}(j)=N_{1}^{d_{0}+1}(j)$. Similarly, if $2^{d_{0}-1}+1 \leq i<j \leq 2^{d_{0}}$, then $N_{1}^{d_{0}+1}(i)=N_{1}^{d_{0}}(i)+\left(d_{0}+1\right) 2^{d_{0}-3} \neq N_{1}^{d_{0}}(j)+$ $\left(d_{0}+1\right) 2^{\overline{d_{0}}-3}=N_{1}^{d_{0}+1}(j)$. It remains to show that $N_{1}^{d_{0}+1}(i) \neq N_{1}^{d_{0}+1}(j)$ even when $1 \leq i \leq 2^{d_{0}-1}<j \leq 2^{d_{0}}$. But for j with $2^{d_{0}-1}<j \leq 2^{d_{0}}$ it holds that $N_{1}^{d_{0}+1}(j) \geq\left(d_{0}+1\right) 2^{d_{0}-3}$. On the other hand, for i with $1 \leq i \leq 2^{d_{0}-1}$ it holds that $N_{1}^{d_{0}+1}(i)=N_{1}^{d_{0}}(i) \leq h_{1}\left(d_{0}\right)<\left(d_{0}+1\right) 2^{d_{0}-3}$ and therefore the inequality above holds as well. For N_{2}^{d} the considerations are essentially similar and therefore can be left to the reader.

To complete the proof, we have to show that $h_{1}(d)$ and $h_{2}(d)$ do not exceed $d 2^{d-2}-1$. To do this, we observe that for $d \geq 3$ it holds that $d+3 \leq 2 d$ and therefore $(d+3) 2^{d-3} \leq 2 d 2^{d-3}=d 2^{d-2}$. Because for $i=1,2$ we have $h_{i}(d) \leq(d+3) 2^{d-3}-1$, it obviously holds that $h_{i}(d) \leq d 2^{d-2}-1$.

Theorem 2. For a given $d \geq 2$, the complete bipartite graph $K_{d 2^{d-2}, d 2^{d-2}}$ is (r, s)-cyclically decomposable into hypercubes Q_{d}. In particular, such a decomposition always exists for $r=-2, s=2$.

Proof. We suppose that $d>2$, as the case $d=2$ is trivial. Let $r=-2$ and $s=2$. Then $r \mid m$ and $s \mid n$, as $m=n=d 2^{d-2}$ and $t=\operatorname{gcd}(r, s)=2$. It holds that $\left|E\left(Q_{d}\right)\right|=d 2^{d-1}=\operatorname{gcd}(m s, n r)$. It follows that $R=r / t=-1, S=$ $s / t=1$ and $k=\operatorname{gcd}(S m, R n)=d 2^{d-2}$. The function $\psi: Z_{d 2^{d-2}} \times Z_{d 2^{d-2}} \rightarrow$ $Z_{d 2^{d-2}} \times Z_{2}$ from Theorem B is then $\psi(i, j)=(i+j, i)$.

We define the functions N_{1}^{d} and N_{2}^{d} from V_{1}^{d} and V_{2}^{d} both into $Z_{d 2^{d-2}}$ recursively, similarly as in our example for $d=4$. Let $N_{1}^{3}\left(v_{1}\right)=0, N_{1}^{3}\left(v_{2}\right)=1$, $N_{1}^{3}\left(v_{3}\right)=3, N_{1}^{3}\left(v_{4}\right)=2$ and $N_{2}^{3}\left(u_{j}\right)=j-1$ for $j=1,2,3,4$. Now suppose
that we have labeled the vertices $v_{1}, v_{2}, \ldots, v_{2^{d-1}}$ and $u_{1}, u_{2}, \ldots, u_{2^{d-1}}$ of a cube Q_{d} using functions N_{1}^{d} and N_{2}^{d} such that the function $\theta^{d}: E\left(Q_{d}\right) \rightarrow$ $Z_{d 2^{d-2}} \times Z_{2}$ defined by $\theta^{d}\left(v_{i}, u_{j}\right)=\left(N_{1}^{d}\left(v_{i}\right)+N_{2}^{d}\left(u_{j}\right), N_{1}^{d}\left(v_{i}\right)\right)$ is one-to-one. We moreover suppose that the secondary diagonal of the array defining the labeling of the cube Q_{d} consists of 2^{d-1} entries corresponding to the edges joining in Q_{d} the vertices of two copies of the cube Q_{d-1}. These edges are labeled $\left.\left((d-1) 2^{d-3}, 0\right),\left((d-1) 2^{d-3}+1,0\right), \ldots,\left((d-1) 2^{d-3}+2^{d-2}-1\right), 0\right)$ and $\left((d-1) 2^{d-3}+1,1\right),\left((d-1) 2^{d-3}+2,1\right), \ldots,\left((d-1) 2^{d-3}+2^{d-2}, 1\right)$.

We now define the functions N_{1}^{d+1}, N_{2}^{d+1} and θ^{d+1} as follows. Similarly as before, $\theta^{d+1}\left(v_{i}, u_{j}\right)=\left(N_{1}^{d+1}\left(v_{i}\right)+N_{2}^{d+1}\left(u_{j}\right), N_{1}^{d+1}\left(v_{i}\right)\right)$. For $v_{1}, v_{2}, \ldots, v_{2^{d-1}}$ and $u_{1}, u_{2}, \ldots, u_{2^{d-1}}$ we define $N_{1}^{d+1}\left(v_{i}\right)=N_{1}^{d}\left(v_{i}\right)$ and $N_{2}^{d+1}\left(u_{j}\right)=N_{2}^{d}\left(u_{j}\right)$. Recall that the function θ^{d+1} is taking $E\left(Q_{d+1}\right)$ into $Z_{(d+1) 2^{d-1}} \times Z_{2}$ while θ^{d} was taking $E\left(Q_{d}\right)$ into $Z_{d 2^{d-2}} \times Z_{2}$. Hence the entries of the labeling array of Q^{d+1} are taken $\bmod (d+1) 2^{d-1}$ and the entry in the row $v_{2^{d-1}-1}$ and the column $u_{2^{d-1}}$ is now $d 2^{d-2}$ rather than 0 . Notice that $d 2^{d-2}+(d+2) 2^{d-2}=(d+1) 2^{d-1}$. In all other cases $\theta^{d+1}\left(v_{i}, u_{j}\right)=\theta^{d}\left(v_{i}, u_{j}\right)$. For $v_{2^{d-1}+i}$ and $u_{2^{d-1}+j}$ we define $N_{1}^{d+1}\left(v_{2^{d-1}+i}\right)=N_{1}^{d}\left(v_{i}\right)+(d+1) 2^{d-3}$ and $N_{2}^{d+1}\left(u_{2^{d-1}+j}\right)=N_{2}^{d}\left(u_{j}\right)+(d+3) 2^{d-3}$ for each $i, j=1,2, \ldots, 2^{d-1}$. It follows from Lemma 1 that both N_{1}^{d+1} and N_{2}^{d+2} are one-to-one. Then the right lower subarray of the labeling array of Q^{d+1} (corresponding to one copy of Q_{d} contained in Q_{d+1}) repeats the structure of the left upper subarray (corresponding to the other copy of Q_{d}): For every pair ($v_{2^{d-1}+i}, u_{2^{d-1}+j}$) inducing an edge of Q_{d+1} we get

$$
\begin{aligned}
& \theta^{d+1}\left(v_{2^{d-1}+i}, u_{2^{d-1}+j}\right) \\
& =\left(N_{1}^{d+1}\left(v_{2^{d-1}+i}\right)+N_{2}^{d+1}\left(u_{2^{d-1}+j}\right), N_{1}^{d+1}\left(v_{2^{d-1}+i}\right)\right) \\
& =\left(N_{1}^{d}\left(v_{i}\right)+(d+1) 2^{d-3}+N_{2}^{d}\left(u_{j}\right)+(d+3) 2^{d-3}, N_{1}^{d}\left(v_{i}\right)+(d+1) 2^{d-3}\right) \\
& =\left(N_{1}^{d}\left(v_{i}\right)+N_{2}^{d}\left(u_{j}\right)+(d+2) 2^{d-2}, N_{1}^{d}\left(v_{i}\right)\right) .
\end{aligned}
$$

Thus the left upper subarray contains the edges labeled $(0,0),(1,0), \ldots$, $\left(d 2^{d-2}-1,0\right)$ and $(1,1),(2,1) \ldots,\left(d 2^{d-2}, 1\right)$ while the right lower subarray contains the edges labeled $\left((d+2) 2^{d-2}, 0\right),\left((d+2) 2^{d-2}+1,0\right), \ldots$, $\left((d+1) 2^{d-1}-1,0\right)$ and $\left((d+2) 2^{d-2}+1,1\right),\left((d+2) 2^{d-2}+2,1\right), \ldots$, $\left((d+1) 2^{d-1}-1,1\right),(0,1)$ (notice that $\left.(d+2) 2^{d-2}+d 2^{d-2}-1=(d+1) 2^{d-1}-1\right)$. The remaining labels are assigned to the edges joining the copies of Q_{d} and appear on the secondary diagonal. For every pair $\left(v_{2^{d-1}+i}, u_{i}\right), i=$
$1,2, \ldots, 2^{d-1}$ inducing an edge appearing in the left lower part of the diagonal we have

$$
\begin{aligned}
\theta^{d+1}\left(v_{2^{d-1}+i}, u_{i}\right) & =\left(N_{1}^{d+1}\left(v_{2^{d-1}+i}\right)+N_{2}^{d+1}\left(u_{i}\right), N_{1}^{d+1}\left(v_{2^{d-1}+i}\right)\right) \\
& =\left(N_{1}^{d}\left(v_{i}\right)+(d+1) 2^{d-3}+N_{2}^{d}\left(u_{i}\right), N_{1}^{d}\left(v_{i}\right)+(d+1) 2^{d-3}\right) \\
& =\left(N_{1}^{d}\left(v_{i}\right)+N_{2}^{d}\left(u_{i}\right)+(d+1) 2^{d-3}, N_{1}^{d}\left(v_{i}\right)\right)
\end{aligned}
$$

Therefore this part of the diagonal repeats the structure of the secondary diagonal of the left upper subarray (and hence the structure of the secondary diagonal of $\left.Q_{d}\right)$ and contains the labels $\left((d-1) 2^{d-3}+(d+1) 2^{d-3}, 0\right)$, $\left.\left((d-1) 2^{d-3}+(d+1) 2^{d-3}+1,0\right), \ldots,\left((d-1) 2^{d-3}+(d+1) 2^{d-3}+2^{d-2}-1\right), 0\right)$ or, more conveniently, $\left(d 2^{d-2}, 0\right),\left(d 2^{d-2}+1,0\right), \ldots,\left((d+1) 2^{d-2}-1,0\right)$, and $\left(d 2^{d-2}+1,1\right),\left(d 2^{d-2}+2,1\right), \ldots,\left((d+1) 2^{d-2}, 1\right)$. Similarly, the right upper part of the secondary diagonal contains the labels $\left((d+1) 2^{d-2}, 0\right)$, $\left((d+1) 2^{d-2}+1,0\right), \ldots,\left((d+2) 2^{d-2}-1,0\right)$ and $\left((d+1) 2^{d-2}+1,1\right)$, $\left((d+1) 2^{d-2}+2,1\right), \ldots,\left((d+2) 2^{d-2}, 1\right)$. This is so because for every pair $\left(v_{i}, u_{2^{d-1}+i}\right), i=1,2, \ldots, 2^{d-1}$ inducing an edge appearing in the right upper part of the secondary diagonal we have

$$
\begin{aligned}
\theta^{d+1}\left(v_{i}, u_{2^{d-1}+i}\right) & =\left(N_{1}^{d+1}\left(v_{i}\right)+N_{2}^{d+1}\left(u_{2^{d-1}+i}\right), N_{1}^{d+1}\left(v_{i}\right)\right) \\
& =\left(N_{1}^{d}\left(v_{i}\right)+N_{2}^{d}\left(u_{i}\right)+(d+3) 2^{d-3}, N_{1}^{d}\left(v_{i}\right)\right)
\end{aligned}
$$

Hence we have checked that the function $\theta^{d+1}: E\left(Q_{d+1}\right) \rightarrow Z_{(d+1) 2^{d-1}} \times Z_{2}$ is one-to-one and the proof is complete.

Although we are not able to cyclically factorize the graphs $K_{2^{d-1}, 2^{d-1}}$ into cubes Q_{d} for $d=2^{c}>4$, we present an example of such factorization for the smallest non-trivial case with $c=2$. Thus we factorize $K_{8,8}$ into cubes Q_{4} as follows: We set $r=-4, s=8$. This yields $t=4, R=-1, S=2$ and $k=8$.

The function $\psi: Z_{8} \times Z_{8} \rightarrow Z_{8} \times Z_{4}$ is then $\psi(i, j)=(2 i+j,-i)$. We define the functions N_{1}^{d} and N_{2}^{d} from $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{8}\right\}$ and $V_{2}=$ $\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$ both into Z_{8} as $N_{1}\left(v_{a}\right)=a-1$ for $a=1,2,3,4, N_{1}\left(v_{5}\right)=5$, $N_{1}\left(v_{6}\right)=4, N_{1}\left(v_{7}\right)=7, N_{1}\left(v_{8}\right)=6$ and $N_{1}\left(u_{b}\right)=b-1$ for $b=1,2, \ldots, 8$. The function θ defined in Theorem B is one-to-one, as can be observed from the labeling array shown in Figure 4.

${ }^{*} N_{2}$	0	1	2	3	4	5	6	7
N_{1}								
0	0	1	$*$	3	$*$	$*$	$*$	7
1	2	3	4	$*$	$*$	$*$	0	$*$
2	$*$	5	6	7	$*$	1	$*$	$*$
3	6	$*$	0	1	2	$*$	$*$	$*$
5	$*$	$*$	$*$	5	6	7	$*$	1
4	$*$	$*$	2	$*$	4	5	6	$*$
7	$*$	7	$*$	$*$	$*$	3	4	5
6	4	$*$	$*$	$*$	0	$*$	2	3

Figure 4

References

[1] S. El-Zanati and C. Vanden Eynden, Decompositions of $K_{m, n}$ into cubes, J. Comb. Designs 4 (1) (1996) 51-57.
[2] A. Rosa, On certain valuations of the vertices of a graph, Internat. Sympos. ICC Rome, Dunod, Paris, 1967, 349-355.
[3] C. Vanden Eynden, Decompositions of complete bipartite graphs, Ars Combinatoria, to appear.

[^0]: This work was in part supported by GAČR Grant No. 201/98/1451.

