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Abstract

A k-ranking of a graph G is a colouring ϕ : V (G) → {1, . . . , k} such
that any path in G with endvertices x, y fulfilling ϕ(x) = ϕ(y) contains
an internal vertex z with ϕ(z) > ϕ(x). On-line ranking number χ∗

r
(G)

of a graph G is a minimum k such that G has a k-ranking constructed
step by step if vertices of G are coming and coloured one by one in an
arbitrary order; when colouring a vertex, only edges between already
present vertices are known. Schiermeyer, Tuza and Voigt proved that
χ∗

r
(Pn) < 3 log

2
n for n ≥ 2. Here we show that χ∗

r
(Pn) ≤ 2blog

2
nc+1.

The same upper bound is obtained for χ∗

r
(Cn), n ≥ 3.
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1 Introduction

In this article we deal with simple finite undirected graphs. For formal
reasons we also use the empty graphK0 = (∅, ∅). A k-ranking of a graph G is
a vertex colouring of G which takes as colours integers 1, . . . , k in such a way
that, whenever a path of G has endvertices of the same colour, it contains an
internal vertex with a greater colour. If k is not specified, we speak simply
about a ranking. Evidently, a ranking is a proper vertex colouring and a k-
ranking of a connected graph uses k at most once. Rankings are important
in the parallel Cholesky factorization of matrices (Liu [3]) and also in VLSI
layout (Leiserson [2]).
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Ranking number χr(G) of a graph G is a minimum k such that G has a k-
ranking. The problem of finding the ranking number of an arbitrary graph
is NP-complete, see Llewelyn et al. [4]. Katchalski et al. [1] proved, among
other results on trees, that χr(Pn) = blog2 nc + 1 for n ≥ 1. They have
also an upper bound for the ranking number of a planar graph G, namely
χr(G) ≤ 3(

√
6 + 2)

√

|V (G)|.
In an on-line version of the problem vertices of a graph G are coming

in an arbitrary order. They are coloured one by one in such a way that
only a local information concerning edges between already present vertices
is known in a moment when a colour for a vertex is to be chosen. Schiermeyer
et al. [5] showed that, for n ≥ 2, there is an on-line algorithm providing a
ranking of n-vertex path, for which the maximum used number is smaller
than 3 log2 n, independently from arriving order of vertices. Our main aim
is to show that this number is ≤ 2blog2 nc + 1.

For a graph G and a set W ⊆ V (G) let G〈W 〉 be the subgraph of G
induced by W . The notation Cn and Pn is used for n-vertex cycle and
n-vertex path, respectively.

For integers p, q we denote by [p, q] the set of all integers r with p ≤
r ≤ q, and by [p,∞) the set of all integers r with p ≤ r.

The length of a finite sequence A (i.e., the number of terms of A), is
denoted by |A|. For finite sequences A = (a1, . . . , am) and B = (b1, . . . , bn)
let AB = (a1, . . . , am, b1, . . . , bn) be the concatenation of A and B (in this
order); the concatenation can be generalized to any finite number of finite
sequences. The concatenation is, clearly, associative, and we will use Πk

i=1Ai

for the concatenation of finite sequences A1, . . . , Ak (in this order).
Now, let us describe our on-line version of the ranking problem more

precisely. An input sequence for a graph G is any sequence of vertices of G
containing all vertices of G exactly once. Let Is(G) be the set of all input
sequences for G and let Y = Πn

i=1(yi) ∈ Is(G). Vertices y1, . . . , yn are
coloured in this order one by one in the following way: We denote by G(Y, yi)
the graph G〈{yj : j ∈ [1, i]}〉 induced by all vertices that come in Y not later
than yi does, i ∈ [1, n]. We colour y1 with an arbitrary positive integer. In
the moment when yi, i ∈ [2, n], is to be coloured, only the graph G(Y, yi) and
a ranking of G(Y, yi−1) is known; the colour of yi has to be chosen in such
a way that a ranking of G(Y, yi) results (without altering “old” colours).

We would like to analyze all possibilities of forming a ranking of a
graph G in the above on-line fashion. To that aim, we denote by Q the
set of all quadruples (G,H,ϕ, x) such that G is a non-empty graph, H is
an induced subgraph of G with |V (H)| = |V (G)| − 1, ϕ is a ranking of H
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and {x} = V (G) − V (H). We say that two quadruples (G,H,ϕ, x) and
(G′,H ′, ϕ′, x′) are equivalent (and we do not distinguish them in Q) if there
is an isomorphism ι between G and G′ which maps H onto H ′ (so that
ι(x) = x′) and an automorphism α′ of H ′ such that for any y ∈ V (H) it
holds ϕ(y) = ϕ′(α′(ι(y))). A ranking algorithm is a mapping A : Q → [1,∞)
such that, for any (G,H,ϕ, x) ∈ Q, ϕ∪{(x,A(G,H,ϕ, x))} is a ranking of G.

Let A be a ranking algorithm, let G be a graph and let Y = Πn
i=1(yi) ∈

Is(G). The algorithm A provides a ranking rank(A, G, Y, yi) of the graph
G(Y, yi), i ∈ [1, n], recurrently as follows:

rank(A, G, Y, y1) := {(y1,A(K1,K0, ∅, y1))},

rank(A, G, Y, yi) := rank(A, G, Y, yi−1)

∪{(yi,A(G(Y, yi), G(Y, yi−1), rank(A, G, Y, yi−1), yi))}, i ∈ [2, n].

We denote by rank(A, G, Y ) the ranking rank(A, G, Y, yn) of the graph
G(Y, yn) = G provided by the algorithm A if the vertices of G are com-
ing in the input sequence Y . Clearly, the ranking rank(A, G, Y, yi) is a
restriction of the ranking rank(A, G, Y ) to the graph G(Y, yi), i ∈ [1, n]. By
max (A, G, Y ) we will denote the maximum number attributed to a vertex
of G by rank(A, G, Y ) and by max(A, G) the maximum of max(A, G, Y )
over all Y ∈ Is(G). The on-line ranking number χ∗

r (G) of the graph G is the
minimum of max(A, G) over all ranking algorithms A. Evidently, for any
graph G and any ranking algorithm A we have

χr(G) ≤ χ∗

r (G) ≤ max(A, G).

Proposition 1. If G1 is an induced subgraph of G2 and A is a ranking
algorithm, then max(A, G1) ≤ max(A, G2).

Proof. Consider an input sequence Y1 = Πn
i=1(yi) ∈ Is(G1) such that

max(A, G1, Y1) = max(A, G1) and an arbitrary input sequence Y2 of the
graph G2〈V (G2) − V (G1)〉. Then Y1Y2 ∈ Is(G2), and we have rank(A, G2,
Y1Y2, yn) = rank(A, G1, Y1), so that max(A, G2) ≥ max(A, G2, Y1Y2) ≥
max(A, G1, Y1) = max(A, G1).

Corollary 2. If G1 is an induced subgraph of G2, then χ∗

r (G1) ≤ χ∗

r (G2).
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2 Reduction

A natural greedy algorithm G (called also First Fit Algorithm) is deter-
mined by the requirement that, for any (G,H,ϕ, x) ∈ Q, G(G,H,ϕ, x) is
the minimum positive integer k such that ϕ ∪ {(x, k)} is a ranking of G.
In other words, we can describe G as follows: A colour l ∈ [1,∞) is for-
bidden for x if the colouring ψ = ϕ ∪ {(x, l)} produces a (u, v)-path P in
G with ψ(u) = ψ(v) = max{ψ(y) : y ∈ V (P )} (clearly, x ∈ V (P )). The
greedy algorithm colours x with the smallest colour that is not forbidden
for x. Evidently, the colour max{ϕ(y) : y ∈ V (H)} + 1 is not forbidden
for x. That is why, we know that for any graph G and any input sequence
Y ∈ Is(G) the ranking rank(G, G, Y ) ofG uses every integer from the interval
[1,max(G, G, Y )] at least once.

Now we are going to analyze how G works for cycles and paths. For
that purpose suppose that G = Cn, n ∈ [3,∞), or G = Pn, n ∈ [1,∞), with
V (G) = {xi : i ∈ [1, n]} and E(G) ⊇ {xixi+1 : i ∈ [1, n − 1]} (there is an
equality in this inclusion if G = Pn, and, if G = Cn, there is an additional
edge xnx1). Sometimes it will be necessary to use for indices arithmetics
modulo n, i.e., xi−n = xi = xi+n for any i ∈ [1, n].

As an example, consider the input sequence Y = (x6, x7, x3, x5, x2,
x4, x1) ∈ Is(C7) = Is(P7). We have rank(G, C7, Y ) = {(x6, 1), (x7, 2), (x3, 1),
(x5, 3), (x2, 2), (x4, 4), (x1, 5)} and rank(G, P7, Y ) differs from rank(G, C7, Y )
only by attributing 1 to x1.

An important role in our analysis is played by the following reduction
process: We suppose that G = Cn, n ∈ [5,∞), or G = Pn, n ∈ [2,∞),
Y ∈ Is(G) and ϕ = rank(G, G, Y ). A vertex xi ∈ V (G) is said to be
a survivor of G (with respect to the input sequence Y ) if ϕ(xi) ≥ 2; if
ϕ(xi) = 1, it is a non-survivor. We transform G into a non-empty graph
R(G,Y ) homeomorphic to G as follows: We delete from G all non-survivors
and we join by a new edge any two survivors having a non-survivor as a
common neighbour (i.e., we delete all non-survivors of degree 1 and we
“smooth out” all non-survivors of degree 2). We can do this because it is
easy to see that the number of survivors is always positive and, in the case
G = Cn, it is ≥ 3. The input sequence Y induces in a natural way an
input sequence R(Y,G) for the graph R(G,Y ) – we simply delete from Y
all non-survivors.

If Y ∈ Is(C7) is as above, then R(C7, Y ) = C5, R(Y,C7) = (x7, x5,
x2, x4, x1) and R(P7, Y ) = P4, R(Y, P7) = (x7, x5, x2, x4).
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Lemma 3. Let G = Cn, n ∈ [5,∞), or G = Pn, n ∈ [2,∞), let Y ∈ Is(G),
ϕ = rank(G, G, Y ), Ġ = R(G,Y ), Ẏ = R(Y,G) and ϕ̇ = rank(G, Ġ, Ẏ ).
Then, for any survivor xi of G with respect to Y , it holds ϕ̇(xi) = ϕ(xi)−1.

Proof. Consider a sequence Y ′ ∈ Is(G) in which all non-survivors (with
respect to Y ) come first (in an arbitrary order) and then all survivors (with
respect to Y ) come in the order induced by that of Y . It is easy to see that
ϕ = rank(G, G, Y ′).

Let Y ′ = Πn
i=1(yi) and let ys be the first survivor with respect to Y ′ (and

Y as well). We are going to show by induction on i that ϕ̇(yi) = ϕ(yi) − 1
for any i ∈ [s, n]. Obviously, ϕ̇(ys) = 1 = 2 − 1 = ϕ(ys) − 1.

Now suppose that i ∈ [s + 1, n] and that ϕ̇(yj) = ϕ(yj) − 1 for every
j ∈ [s, i − 1]. Note that survivors yj , yk with j, k ∈ [s, i], j 6= k, are joined
by a path P in G(Y ′, yi) if and only if they are joined in Ġ(Ẏ , yi) by the
path Ṗ such that V (Ṗ ) = V (P ) − {yl : l ∈ [1, s − 1]}. Hence, by the
induction hypothesis and the fact that ϕ(yl) = 1 for any l ∈ [1, s − 1], a
colour a ∈ [2,∞) is forbidden for yi in G(Y, yi) by a path P if and only if
the colour a− 1 is forbidden for yi in Ġ(Ẏ , yi) by the corresponding path Ṗ .
Since ϕ(yi) ≥ 2, we obtain ϕ̇(yi) = ϕ(yi) − 1, as necessary.

We define a section of our graph G as follows: A section of Pn is any sequence
Πk

i=j(xi) of vertices of Pn with j, k ∈ [1, n] and j ≤ k. A section of Cn is any

sequence Πk
i=j(xi) of vertices of Cn with j, k ∈ [1−n, 2n] and j ≤ k ≤ j−1+n.

From the definition we see that a section Πk
i=j(xi) consists of k + 1 − j ≤ n

distinct vertices of G and that xixi+1 is an edge of G for every i ∈ [j, k− 1].
An endsection of Pn is any section of Pn containing an endvertex of Pn. The
type of a section Πk

i=j(xi) (with respect to the ranking ϕ = rank(G, G, Y )) is

the sequence formed from Πk
i=j(ϕ(xi)) by replacing any term ϕ(xi) fulfilling

ϕ(xi) ≥ 3 with 3+. The ranking ϕ = rank(G, G, Y ) determines two types of
vertices in G: a vertex x ∈ V (G) is high (with respect to ϕ), if ϕ(x) ≥ 3,
otherwise it is low. A section of G containing only high [low] vertices, which
is maximal (non-extendable with respect to this property), is called a high
[low] section of G. The defect of a section S of G is the difference def(S)
between the number of low vertices in S and the number of high vertices
in S. The defect of a graph G is the difference def(G) between the number
of low vertices in V (G) and the number of high vertices in V (G), i.e., the
defect of (any) section S of G with |S| = |V (G)|.

Lemma 4. Let G = Cn, n ∈ [3,∞), or G = Pn, n ∈ [1,∞), let Y ∈ Is(G),
ϕ = rank(G, G, Y ) and q ∈ [1, n].
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1. If Πq+3

i=q (xi) is a section of G, then there are j, k ∈ [q, q + 3] such that
ϕ(xj) = 1 and ϕ(xk) ≥ 3.

2. If Πq+2

i=q (xi) is such a section of G that ϕ(xq+1) = 2, then min{ϕ(xq),
ϕ(xq+2)} = 1.

3. If G = Pn and ϕ(x1) ≥ 2, then n ≥ 2 and ϕ(x2) = 1.

4. If G = Pn and ϕ(x1) ≥ 3, then n ≥ 3, ϕ(x2) = 1 and ϕ(x3) = 2.

5. If G = Pn and ϕ(xn) ≥ 2, then n ≥ 2 and ϕ(xn−1) = 1.

6. If G = Pn and ϕ(xn) ≥ 3, then n ≥ 3, ϕ(xn−1) = 1 and ϕ(xn−2) = 2.

7. If Πq+2

i=q (xi) is a section of G of type (3+, 3+, 3+), then Πq+4

i=q−2
(xi) also

is a section of G and it is of type (2, 1, 3+, 3+, 3+, 1, 2).

8. If Πq+3

i=q (xi) is a section of G of type (3+, 3+, 1, 3+), then Πq+5

i=q−2
(xi)

also is a section of G and it is of type (2, 1, 3+, 3+, 1, 3+, 1, 2) or
(2, 1, 3+, 3+, 1, 3+, 2, 1).

9. If Πq+3

i=q (xi) is a section of G of type (3+, 1, 3+, 3+), then Πq+5

i=q−2
(xi)

also is a section of G and it is of type (1, 2, 3+, 1, 3+, 3+, 1, 2) or
(2, 1, 3+, 1, 3+, 3+, 1, 2).

10. If G = Pn, n ≥ 3, ϕ(x1) = 1 and ϕ(x3) ≥ 3, then ϕ(x2) = 2.

11. If G = Pn, n ≥ 3, ϕ(xn) = 1 and ϕ(xn−2) ≥ 3, then ϕ(xn−1) = 2.

12. If G = Pn and Πq+1

i=q (xi) is a section of G of type (3+, 3+), then n ≥ 6
and q ∈ [3, n− 3].

13. If G = Pn and Πq+2

i=q (xi) is a section of G of type (3+, 1, 3+), then n ≥ 7
and q ∈ [3, n− 4].

14. If G = Pn and Πq+2

i=q (xi) is a section of G of type (3+, 3+, 2), then n ≥ 7
and q ∈ [3, n− 4].

15. If G = Pn and Πq+2

i=q (xi) is a section of G of type (2, 3+, 3+), then n ≥ 7
and q ∈ [3, n− 4].

Proof. 1. The existence of k follows immediately from the definition of a
ranking. As concerns the existence of j, we may suppose that min{ϕ(xq),
ϕ(xq+3)} ≥ 2 – otherwise we are done. Let xj be that vertex from among
xq+1, xq+2, which comes sooner in Y . Then, clearly, ϕ(xj) = 1.

2. Suppose that ϕ(xq) ≥ 3 and ϕ(xq+2) ≥ 3. We have ϕ(xq+1) 6= 1,
hence the colour 1 is forbidden for xq+1 because of an (xs, xt)-path with
ϕ(xs) = ϕ(xt) = a containing xq+1 as an internal vertex. Clearly,
min{ϕ(xs), ϕ(xt)} ≥ 3 implies a ≥ 3. Then, however, the colour 2 is
forbidden for xq+1, too, a contradiction.
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3. The inequality n ≥ 2 is immediate. Also, we cannot have ϕ(x2) ≥ 2,
because then ϕ(x1) = 1.

4. Since ϕ uses each colour from [1,max(G, G, Y )] at least once, we have
n ≥ 3. From 3 we know that ϕ(x2) = 1. The assumption ϕ(x3) ≥ 3 then
would lead to ϕ(x1) = 2.

5,6. The situation is symmetric with that of 3 and 4.

7. Since, clearly, n ≥ 5 (1 and 2 are used at least once), the reduction
process applies and yields Ġ = R(G,Y ), Ẏ = R(Y,G), ϕ̇ = rank(G, Ġ, Ẏ ).

Suppose first that G = Pn. From 4 and 6 it follows that Πq+3

i=q−1
(xi) is

a section of G and from 1 we obtain ϕ(xq−1) = ϕ(xq+3) = 1. From Lemma
3 we know that ϕ̇(xi) = ϕ(xi) − 1 ≥ 2 for i = q, q + 1, q + 2; then, from
3 and 5 (applied to the ranking ϕ̇ of Ġ) we see that xq and xq+2 are not
endvertices of Ġ, which (since xq−1 and xq+3 as non-survivors are not in Ġ)

means that xq−2, xq+4 ∈ V (Ġ) and S = Πq+4

i=q−2
(xi) is a section of G. Then,

from 1 applied to ϕ̇, we have ϕ̇(xq−2) = ϕ̇(xq+4) = 1, and, by Lemma 3
again, S is a section of G of type (2, 1, 3+, 3+, 3+, 1, 2).

If G = Cn, then, by 1, Πq+3

i=q−1
(xi) is a section of G of type (1, 3+,

3+, 3+, 1), hence n ≥ 6 (ϕ as a ranking is a proper vertex colouring of G).
If n ≥ 7, then, as in the case G = Pn, we conclude that S is a section of G of
type (2, 1, 3+, 3+, 3+, 1, 2). If n = 6, Πq+3

i=q−2
(xi) would be a section of G of

type (2, 1, 3+, 3+, 3+, 1). Then, however, Ġ = C4 and ϕ̇ = rank(G, C4, Ẏ )
uses 1 exactly once in contradiction with the following fact (which can be
easily checked out):

(*) For any input sequence Ȳ ∈ Is(C4) the ranking rank(G, C4, Ȳ ) uses
1 exactly twice.

8. As in 7, we use the reduction process leading to Ġ, Ẏ and ϕ̇. In
the case G = Pn, we obtain from 4 and 6 that Πq+4

i=q−1
(xi) is a section

of G. Clearly, because of 7, we have ϕ(xq−1) ≤ 2. Then, the assumption
q = 2 would mean ϕ(xq) ≤ 2, a contradiction. Thus, q ≥ 3. Suppose that
ϕ(xq−1) = 2. If xq comes in Y before xq+1, then ϕ(xq) = 1, and, if xq+1

comes in Y before xq, then ϕ(xq+1) ≤ 2, in both cases a contradiction.
Thus, ϕ(xq−1) = 1; we cannot have ϕ(xq−2) ≥ 3, because in such a case,
by Lemma 3, (xq−2, xq, xq+1, xq+3) would be a section of Ġ contradicting
1 (applied to ϕ̇). The mentioned contradiction yields ϕ(xq−2) = 2. If
ϕ(xq+4) ≥ 3, considering the section (xq, xq+1, xq+3, xq+4) of Ġ supplies
an analogous contradiction. So, there are two possibilities for ϕ(xq+4): If
ϕ(xq+4) = 1, then n ≥ q + 5, as n = q + 4 would imply ϕ(xq+3) = 2, a
contradiction; then, by 1 applied to ϕ̇,we get ϕ̇(xq+5) = 1 and ϕ(xq+5) = 2.
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The assumption ϕ(xq+4) = 2 excludes n = q+ 4, by 5. Then, by 2, ϕ(xq+5)
≥ 3 is impossible and ϕ(xq+5) = 1, as necessary.

Now, consider the case G = Cn. Since ϕ must use 2, we have n ≥ 5.
However, n = 5 is impossible, because then ϕ̇ would contradict (*). Thus,
n ≥ 6 and, just as in the case G = Pn, we can show that ϕ(xq−1) = 1
and ϕ(xq−2) = 2. That is why, n = 6 is impossible – use again (*) for ϕ̇.
We cannot have ϕ(xq+4) ≥ 3 from the same reason as applied for G = Pn.
Then the assumption n = 7 would lead to ϕ(xq+4) = 1 (ϕ is proper) and a
contradiction involving once more (*) for ϕ̇. Finally, for n ≥ 8, the reasoning
for G = Pn can be repeated, and we are done.

9. Use the symmetry with the situation of 8.
10,11. The proof is immediate.

12. From 4 we see that q ≥ 2. If ϕ(xq−1) ≥ 2, from 3 we obtain q ≥ 3.
If ϕ(xq−1) = 1, then q ≥ 3, since q = 2 would lead to ϕ(xq) = 2. Thus,
q ≥ 3 in any case, and, because of the symmetry of the type (3+, 3+), we
have n ≥ q + 3, too.

13. The proof is analogous to that of 12.
14. By 5 we have n ≥ q + 3, so that 1 yields ϕ(xq+3) = 1. Now,

n = q + 3 is impossible – this would mean that ϕ(xq+1) = 1. To show that
q ≥ 3, proceed as in 12.

15. Symmetry with 14.

For a ranking algorithm A, we will denote by fi(A, G, Y ), i ∈ [1,∞), the
number of vertices that are coloured with i by rank(A, G, Y ).

Lemma 5. Let G = Cn, n ∈ [3,∞), or G = Pn, n ∈ [1,∞), and let
Y ∈ Is(G). Then the sequence {fi(G, G, Y )}∞i=1 is non-increasing.

Proof. We proceed by induction on n. First, it is straightforward to see
that f1(G, P1, Y ) = 1 for (the unique) Y ∈ Is(P1), fi(G, C3, Y ) = 1, i =
1, 2, 3, for any Y ∈ Is(C3), and f1(G, C4, Y ) = 2 (in fact, this is (*)),
fi(G, C4, Y ) = 1, i = 2, 3, for any Y ∈ Is(C4).

Now, suppose that n ≥ 5 (if G = Cn) or n ≥ 2 (if G = Pn) and
that {fi(G, G′, Y ′)}∞i=1 is a non-increasing sequence for any graph G′ home-
omorphic to G with |V (G′)| < n and any input sequence Y ′ ∈ Is(G′).
Let ϕ = rank(G, G, Y ), Ġ = R(G,Y ), Ẏ = R(Y,G), ϕ̇ = rank(G, Ġ, Ẏ ).
From Lemma 3 we know that, for any i ∈ [2,∞), we have fi−1(G, Ġ, Ẏ ) =
fi(G, G, Y ) and, since |V (Ġ)| < n (there are non-survivors of G with respect
to Y , because ϕ uses 1 at least once), from the induction hypothesis we
obtain fi(G, G, Y ) = fi−1(G, Ġ, Ẏ ) ≥ fi(G, Ġ, Ẏ ) = fi+1(G, G, Y ).
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Put Vi = {x ∈ V (G) : ϕ(x) = i}, i = 1, 2, and consider a mapping α : V2 →
V1 defined in such a way that xα(x) is an edge of G for any x ∈ V2. From
Lemmas 4.2, 4.3 and 4.5 it follows that α is well defined. Moreover, the
definition of a ranking implies that α is an injection; thus, f1(G, G, Y ) =
|V1| ≥ |V2| = f2(G, G, Y ), which represents the last wanted inequality.

Suppose that G ∈ {Cn, Pn}, n ∈ [4,∞) and let G̃ be the cycle defined as
follows: G̃ = G if G = Cn, G̃ = G + xnx1 if G = Pn. The ranking ϕ of G
is then also a vertex colouring of G̃, which, if G = Pn, in general is not a
ranking of G̃ (it may be even not proper). When working with G̃, types of
vertices will be always related to this colouring “inherited” from the ranking
ϕ of the “underlying” graph G. With respect to this colouring we define
also high and low sections of G̃.

By Lemma 4.1, rotating around G̃ we meet alternately high and low
sections; their possible lengths are between 1 and 3 if G = Cn, and between
1 and 6 if G = Pn (and in this case, due to Lemmas 4.4 and 4.6, only one
section, namely low, obtained by joining two low endsections of Pn, can be
of length greater than 3). Let s be the number of high (and low as well)
sections of G̃. We will denote those sections Si, i ∈ [1, 2s], in such a way
that S1 is that high section of maximum length which contains a vertex xt

with minimum index t. Consider a (high) section S2i−1, i ∈ [1, s]. Starting
from it and rotating around G̃ in the sense of the orientation of G̃ given
by the growing order of sections indices (modulo 2s) we take all sections
until we arrive at the first high section not shorter than S2i−1 (maybe S2i−1

itself). The section which arises by the concatenation of those sections (in
their natural “rotating” order) is called the closure of S2i−1 and is denoted
by cl(S2i−1). Thus, cl(S2i−1) = Π2j

k=2i−1
Sk, where j ∈ [i, s] is (uniquely)

chosen to fulfill the conditions |S2k−1| < |S2i−1| for each k ∈ [i + 1, j] and
|S2j+1| ≥ |S2i−1| (note that j ≤ s because S1 is the longest high section).

In our example we have S1 = (x4, x5), cl(S1) = S1S2 = (x4, x5, x6, x7),
S3 = (x1), cl(S3) = S3S4 = (x1, x2, x3) (for G = C7) and S1 = (x4, x5),
cl(S1) = S1S2 = (x4, x5, x6, x7, x1, x2, x3) (for G = P7).

Lemma 6. The closure of any high section of G̃ has a nonnegative defect.

Proof. Let S2i−1 be a high section of G̃ and suppose that cl(S2i−1) =
Π2j

k=2i−1
Sk.

1. If |S2i−1| = 1, then cl(S2i−1) = S2i−1S2i and def(cl(S2i−1)) = |S2i| −
1 ≥ 0.

2. Assume that |S2i−1| = 2. Evidently, we have def(cl(S2i−1)) =
def(S2i−1S2i) +

∑j
k=i+1

def(S2k−1S2k). Since 2 = |S2i−1| > |S2k−1| = 1
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for each k ∈ [i+ 1, j], the sum consists of nonnegative summands |S2k| − 1.
Thus, we are done if def(S2i−1S2i) ≥ 0.

If def(S2i−1S2i) = |S2i| − |S2i−1| < 0, then, necessarily, |S2i| = 1. From
Lemmas 4.2, 4.3 and 4.5 we then see that S2i is of type (1). Suppose that
S2i−1S2i = Πq+2

k=q(xk), q ∈ [1, n], and consider the section S = Πq+3

k=q(xk) of G̃
of type (3+, 3+, 1, 3+). If S is also a section of G, then, by Lemma 4.8, S2i+1

is of length 1 (so that j ≥ i + 1) and def(S2i+1S2i+2) ≥ 1, which implies
def(cl(S2i−1)) ≥ −1 + 1 +

∑j
k=i+2

(|S2k| − 1) ≥ 0. If S is not a section of G,
then G = Pn and n ∈ [q, q+2]. However, n = q is impossible by Lemma 4.4,
n = q + 1 by Lemma 4.5 and n = q + 2 by Lemma 4.11.

3. Now, let |S2i−1| = 3. First we show that, for any l ∈ [i, j], we have
dl = def(Π2l

k=2i−1
Sk) ≥ −1, and, if dk = −1 for every k ∈ [i, l], then either

S2l is of type (1,2) or S2l−1S2l is of type (3+,1). We proceed by induction
on l. If l = i and S2i−1 = Πq+2

k=q(xk) with q ∈ [1, n], we know that S2i−1

is a section of G (otherwise G = Pn and n ∈ [q, q + 1], which contradicts
Lemma 4.3 or Lemma 4.5). Thus, we can use Lemma 4.7, from which it
follows that di ≥ −1 and di = −1 only if S2i is of type (1,2).

Suppose that j > i and that our statement is true for some l ∈ [i, j − 1]
(so that |S2l+1| ≤ 2). Since dl+1 = dl + |S2l+2|− |S2l+1| ≥ dl +1−2 = dl −1,
to prove the statement for l+1 it is sufficient to analyze the case dl = −1. (If
dl ≥ 0, then dl+1 ≥ −1 and it is not true that dk = −1 for any k ∈ [i, l+1].)
By the induction hypothesis, we have two possibilities:

a) S2l = Πq+1

k=q(xk), where q ∈ [1, n], is of type (1,2). If |S2l+1| = 2,

then Πq+5

k=q(xk) is the section of the graph G (G = Pn and n ∈ [q, q + 4]
would be in contradiction with one of Lemmas 4.3, 4.5 and 4.11) and S2l+2

is neither of type (1,1) nor of type (2,2) (this would mean G = Pn and
n = q + 4). Next, by Lemma 4.1, S2l+2 cannot be of type (2) or (2,1), and,
by Lemma 4.8, of type (1); thus, either dl+1 = dl = −1 and S2l+2 is of type
(1,2) (as necessary) or dl+1 ≥ 0 (and there is nothing more to prove). Let
|S2l+1| = 1. The only interesting case (in which dl+1 = −1) is that with
|S2l+2| = 1. Then, because of Lemma 4.2 or 4.5, S2l+2 is not of type (2),
and, consequently, S2l+1S2l+2 is of type (3+, 1), as needed.

b) S2l−1S2l = (xq, xq+1), where q ∈ [1, n], is of type (3+,1). If |S2l+1|
= 2, then Πq+3

k=q(xk) is the section of the graph G (G = Pn and n ∈ [q, q+ 2]
would be in contradiction with one of Lemmas 4.3, 4.6 and 4.10). Then,
by Lemma 4.9, ϕ(xq+4) = 1 and ϕ(xq+5) = 2, so that either dl+1 = −1
and S2l+2 is of type (1,2) or dl+1 = 0; in both cases we are done. Suppose
|S2l+1| = 1. It is sufficient to deal with the case dl+1 = −1, in which
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|S2l+2| = 1. If S2l+1S2l+2 is of type (3+,1), we are done. On the other hand,
by Lemmas 4.2 and 4.5, S2l+2 cannot be of type (2) and our statement is
completely proved.

Now, it is clear that we cannot have dk = −1 for each k ∈ [i, j], because
|S2j+1| = 3 and, by Lemma 4.7, the type of S2j ends up with (2,1). Thus,
there exists (uniquely determined) l ∈ [i, j] fulfilling dl ≥ 0 and dk = −1 for
any k ∈ [i, l − 1]. If l = j, then def(cl(S2i−1)) = dl ≥ 0. Suppose therefore
l < j. If |S2k−1| = 1 for any k ∈ [l + 1, j], then def(cl(S2i−1)) = dl +
∑j

k=l+1
(|S2k|−1) ≥ 0. If |S2m−1| = 2 for some m ∈ [l+1, j] and |S2k−1| = 1

for any k ∈ [l + 1,m− 1], delete from the sequence Πj
k=m(2k − 1) all terms

2k−1 with |S2k−1| = 1 and denote by Πq
k=1

(pk) the resulting sequence. Then

it is easy to see directly from the definitions that Π2j
k=2m−1

Sk = Πq
k=1

cl(Spk
)

and, as Spk
is a high section of length 2, by 2 we have def(cl(Spk

)) ≥ 0
for each k ∈ [1, q]. That is why, def(cl(S2i−1)) = dl +

∑m−1

k=l+1
(|S2k| − 1) +

∑q
k=1

def(cl(Spk
)) ≥ 0.

Theorem 7. Let G = Cn, n ∈ [3,∞), or G = Pn, n ∈ [1,∞), and let
Y ∈ Is(G). Then

∑

2
i=1 fi(G, G, Y ) ≥ dn/2e and f1(G, G, Y ) ≥ ddn/2e/2e.

Proof. The assertion is immediate if n ≤ 3. If n ∈ [4,∞), consider
the graph G̃ and its high and low sections Si, i ∈ [1, 2s], as defined be-
fore Lemma 6. Let Πm

i=1(li) be the increasing sequence of indices of all
longest high sections of G̃. Then, obviously, the section Πm

i=1cl(Sli) con-
tains all vertices of V (G̃) = V (G), and so, by Lemma 6,

∑

2
i=1 fi(G, G, Y ) −

∑

∞

i=3 fi(G, G, Y ) = def(G) = def(Πm
i=1cl(Sli)) =

∑m
i=1 def(cl(Sli)) ≥ 0.

Thus, we have n =
∑

2
i=1 fi(G, G, Y )+

∑

∞

i=3 fi(G, G, Y ) ≤ 2
∑

2
i=1 fi(G, G, Y )

and the first inequality follows. The remaining one comes from Lemma 5,
since 2f1(G, G, Y ) ≥ ∑

2
i=1 fi(G, G, Y ) ≥ dn/2e.

Proposition 8. If k ∈ [1,∞) and l ∈ [3,∞), there exist q ∈ [1,∞) and
r ∈ [3,∞) such that max(G, Pq) = k and max(G, Cr) = l.

Proof. Suppose that there is no q ∈ [1,∞) such that max(G, Pq) = k.
Since, evidently, max(G, Pn) = n, n = 1, 2, we have k ≥ 3. The sequence
{χr(Pn)}∞n=1 = {blog2 nc+1}∞n=1 is unbounded and max(G, Pn) ≥ χ∗

r (Pn) ≥
χr(Pn), hence there exists q ∈ [1,∞) such that max(G, Pq) ≥ k+ 1; without
loss of generality, we may suppose that q is minimum with this property, i.e.,
max(G, Pn) ≤ k − 1 for any n ∈ [1, q − 1]. Consider such an input sequence
Y ∈ Is(Pq) that max(G, Pq , Y ) = max(G, Pq). Clearly, q ≥ k + 1 ≥ 4, so we
may use our reduction process yielding Ġ = R(Pq, Y ), Ẏ = R(Y, Pq). We
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have |V (Ġ)| < q, which implies max(G, Ġ) ≤ k − 1. On the other hand, by
Lemma 3, the maximum number used by ϕ̇ is by 1 smaller than that used by
ϕ, i.e., max(G, Ġ, Ẏ ) = max(G, Pq, Y )−1 = max(G, Pq)−1 ≥ (k+1)−1 = k,
hence max(G, Ġ) ≥ max(G, Ġ, Ẏ ) ≥ k, a contradiction.

For cycles we proceed analogously using the fact that max(G, C3) = 3
and that the reduction process applies if the number of vertices of Cn is
at least 5. Note that also the sequence {χr(Cn)}∞n=1 is unbounded, because
Pn−1 is an induced subgraph of Cn, and so (as can be easily seen) χr(Pn−1) ≤
χr(Cn) for any n ∈ [3,∞).

From Proposition 8 we conclude that the numbers

f(k) := min{n ∈ [1,∞) : max(G, Pn) = k}, k ∈ [1,∞),

g(k) := min{n ∈ [3,∞) : max(G, Cn) = k}, k ∈ [3,∞)

(f(k) was introduced in [5]) are correctly defined. It is easily seen that
f(k) = k for k = 1, 2, 3 and g(3) = 3. Clearly, from Lemma 3 it follows that
f(k) 6= f(l) and g(k) 6= g(l) for k 6= l. However, we can say more:

Proposition 9. The sequences {f(k)}∞k=1
and {g(k)}∞k=3

are increasing.

Proof. In the case of paths use simply Proposition 1 and the fact that Pm

is an induced subgraph of Pn if m < n.
For cycles suppose that {h(k)}∞k=3

is the increasing sequence created by
rearranging {g(k)}∞k=3

, that {h(k)} 6= {g(k)} and that k is the minimum
index with h(k) 6= g(k). Since g(3) = h(3) = 3, we have k ≥ 4 and h(k) =
g(l) < g(k) with k < l. For n = g(l) take an input sequence Y ∈ Is(Cn)
fulfilling max(G, Cn, Y ) = l. As l ≥ 5, Ġ = R(Cn, Y ) and Ẏ = R(Y,Cn)
are well defined. Then, by Lemma 3, max(G, Ġ, Ẏ ) = max(G, Cn, Y ) − 1 =
l − 1 ≥ k and, since |V (Ġ)| < |V (Cn)| = g(l), we have g(l − 1) ≤ |V (Ġ)| <
g(l) < g(k) and l− 1 > k. Now, g(l − 1) > g(k − 1) is in contradiction with
h(k) = g(l) and g(l − 1) < g(k − 1) contradicts the minimality of k.

Corollary 10. For any k, n ∈ [1,∞) it holds max(G, Pn) = k if and only if
n ∈ [f(k), f(k + 1) − 1].

Proof. A consequence of Propositions 1 and 9.

For cycles the situation is unclear, but we conjecture that, analogously, for
any k, n ∈ [3,∞), max(G, Cn) = k if and only if n ∈ [g(k), g(k + 1) − 1].

Theorem 7 has an important consequence:
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Theorem 11. Let k ∈ [1,∞), l ∈ [3,∞), q ∈ [2,∞) and r ∈ [7,∞).
1. If f(k) ≥ q, then f(k + 2i) ≥ q · 2i for any i ∈ [0,∞).

2. If g(k) ≥ r, then g(k + 2i) ≥ r · 2i for any i ∈ [0,∞).

Proof. 1. We proceed by induction on i. For i = 0 there is nothing to
prove, so we suppose that i ∈ [1,∞) and f(k + 2i − 2) ≥ q · 2i−1. With
respect to Proposition 9 it is sufficient to show that max(G, Pn, Y ) ≤ k +
2i − 1 for any n ∈ [q · 2i−1 + 2, q · 2i − 1] and any Y ∈ Is(Pn). Since
n ≥ q · 2i−1 + 2 ≥ q + 2 ≥ 4, the reduction process applied to Pn and
Y yields Ġ = R(Pn, Y ) and Ẏ = R(Y, Pn). The ranking rank(G, Pn, Y )
is a proper vertex colouring of Pn, hence f1(G, Pn, Y ) ≤ dn/2e, |V (Ġ)| =
n − f1(G, Pn, Y ) ≥ n − dn/2e = bn/2c ≥ 2, so that the reduction process
applied to Ġ and Ẏ leads to G̈ = R(Ġ, Ẏ ) and Ÿ = R(Ẏ , Ġ). By a repeated
use of Lemma 3 we see that |V (G̈)| = n − ∑

2
i=1 fi(G, Pn, Y ), hence, by

Theorem 7, |V (G̈)| ≤ n−dn/2e = bn/2c ≤ q ·2i−1−1, and, by the induction
hypothesis, max(G, G̈, Ÿ ) ≤ max(G, G̈) ≤ k + 2i − 3. Using Lemma 3 twice
then max(G, Pn, Y ) = max(G, Ġ, Ẏ ) + 1 = max(G, G̈, Ÿ ) + 2 ≤ k+ 2i− 1, as
needed.

2. We proceed as in 1 and use the fact that f1(G, Cn, Y ) ≤ bn/2c, so that
|V (R(Cn, Y ))| ≥ n−bn/2c = dn/2e ≥ 5 for any n ∈ [r ·2i−1 +2, r ·2i−1], i ∈
[1,∞) and any Y ∈ Is(Cn), which enables us to use the reduction process
twice, as above.

3 Insertion

Now we are going to show that, in some extent, our reduction process can
be inverted. Let Am,n, n ∈ [1,∞),m ∈ [0, n], be the set of all non-empty
increasing sequences of integers from [m,n].

We will analyze in detail the case G = Pn. For A = Πl
i=1(ai) ∈ A0,n we

denote by I(Pn, A) the path with n+ l vertices constructed as follows: Add
to V (Pn) = {xi : i ∈ [1, n]} l new vertices (called newcomers) zi, i ∈ [1, l].
If i ∈ [1, l] is such that ai ∈ [1, n − 1], the newcomer zi is inserted between
vertices xai

and xai+1 (i.e., the edge xai
xai+1 is deleted and edges xai

zi and
zixai+1 are added). If a1 = 0, the newcomer z1 is a new endvertex – the
edge z1x1 is added. Similarly, if al = n, the newcomer zl is a new endvertex
– the edge xnzl is added. Note that the set of newcomers is an independent
set of vertices of I(Pn, A). An input sequence Y ∈ Is(Pn) for the path Pn

yields in a natural way an input sequence I(Pn, A, Y ) = [Πl
i=1(zi)]Y for the

path I(Pn, A) – newcomers are coming first (zi comes as i-th, i ∈ [1, l]) and
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then vertices of Pn arrive in the order given by Y . Consider the ranking
ϕ = rank(G, Pn, Y ). An internal vertex xi of Pn, i ∈ [2, n− 1], is Y -good, if
it comes in Y as the last from among xi−1, xi, xi+1, and ϕ(xi−1) = ϕ(xi+1).
A sequence A ∈ A0,n is Y -proper, if any vertex of Pn, that is not Y -good,
has in I(Pn, A) at least one newcomer as a neighbour.

For example, if Y is the input sequence (x3, x2, x5, x6, x4, x1) ∈ Is(P6),
there is only one Y -good vertex in P6, namely x4 – we have rank(G, P6, Y ) =
{(x3, 1), (x2, 2), (x5, 1), (x6, 2), (x4, 3), (x1, 1)} (x2 is not Y -good, because it
comes in Y before x1). Thus, the sequence A = (1, 2, 5) ∈ A0,6 is Y -
proper – vertices xi, i ∈ [1, 6] − {5}, that are not Y -good, are “domi-
nated” by newcomers of the graph I(P6, A) = P9 (its vertices are suc-
cessively x1, z1, x2, z2, x3, x4, x5, z3, x6). The input sequence I(P6, A, Y ) is
(z1, z2, z3, x3, x2, x5, x6, x4, x1).

Lemma 12. Let n ∈ [1,∞), Y ∈ Is(Pn), let a sequence A ∈ A0,n be Y -
proper and let ϕ = rank(G, Pn, Y ), Ĝ = I(Pn, A), Ŷ = I(Pn, A, Y ), ϕ̂ =
rank(G, Ĝ, Ŷ ). Then ϕ̂(zi) = 1 for any newcomer zi, i ∈ [1, |A|], and ϕ̂(xi) =
ϕ(xi) + 1 for any i ∈ [1, n].

Proof. Newcomers of the graph Ĝ are attributed 1 by ϕ̂ because they form
an independent set of vertices in Ĝ and they are coming at the beginning of
Ŷ , before all remaining vertices of Ĝ.

Let us prove by induction on i that ϕ̂(yi) = ϕ(yi)+1 for every i ∈ [1, n].
The vertex y1, clearly, is not Y -good, hence it has at least one newcomer as
a neighbour and ϕ̂(y1) = 2 = ϕ(y1) + 1.

Suppose that i ∈ [2, n] and that ϕ̂(yj) = ϕ(yj) + 1 for any j ∈ [1, i− 1].
Vertices yj, yk with j, k ∈ [1, i], j 6= k, are joined by a path P̂ in Ĝ(Ŷ , yi) if
and only if they are joined in G(Y, yi) by the path P with V (P ) = V (P̂ ) −
{zl : l ∈ [1, |A|]}. Since ϕ̂(zl) = 1 for any l ∈ [1, |A|], using the induction
hypothesis we see that a colour a ∈ [2,∞) is forbidden for yi in Ĝ(Ŷ , yi)
because of a path P̂ if and only if the colour a−1 is forbidden for yi inG(Y, yi)
because of the corresponding path P . Moreover, the colour 1 is forbidden
for yi in Ĝ(Ŷ , yi), too – either a neighbour of yi is a newcomer (and so is
coloured with 1 in Ĝ(Ŷ , yi)) or both neighbours of yi are coloured in Ĝ(Ŷ , yi)
and they received the same colour. This means that ϕ(yi) = ϕ̂(yi) − 1 and
we are done.

In our illustrative example with n = 6 we have ϕ̂ = rank(G, P9, I(P6, A, Y ))
= {(z1, 1), (z2, 1), (z3, 1), (x3, 2), (x2, 3), (x5, 2), (x6, 3), (x4, 4), (x1, 2)}.

Put el := 3 · 2l−1 − 1 and ol := 2l+1 − 1, l ∈ [1,∞).
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Theorem 13. For any l ∈ [1,∞) there exists

1. an input sequence Y2l ∈ Is(Pel
) such that max(G, Pel

, Y2l) = 2l and the
set of Y2l-good vertices of the path Pel

is {x3i : i ∈ [1, 2l−1 − 1]};
2. an input sequence Y2l+1 ∈ Is(Pol

) such that max(G, Pol
, Y2l+1) = 2l + 1

and the set of Y2l+1-good vertices of the path Pol
is {x4i : i ∈ [1, 2l−1−1]}.

Proof. Evidently, for l = 1 any input sequence Y2 ∈ Is(P2) has all the
properties required by 1 (no vertex of P2 is Y2-good). We are going to
show that for any l ∈ [1,∞) the existence of Y2l implies that of Y2l+1 and
the existence of Y2l+1 implies that of Y2l+2. So, suppose that there is an
input sequence Y2l ∈ Is(Pel

) with properties given by 1. The sequence

A2l := Π2l−1

i=1 (3i − 2) ∈ A0,el
is Y2l-proper – note that vertices of Pel

, that
are not Y2l-good, are in pairs x3i−2, x3i−1, and an “old” edge x3i−2x3i−1 is
subdivided by the newcomer zi, i ∈ [1, 2l−1]. The graph I(Pel

, A2l) is a path
with el + 2l−1 = ol vertices and, if we define Y2l+1 := I(Pel

, A2l, Y2l), then,
by Lemma 12, max(G, Pol

, Y2l+1) = max(G, Pel
, Y2l) + 1 = 2l+ 1. Moreover,

any Y2l-good vertex x3i, i ∈ [1, 2l−1 − 1], is Y2l+1-good. There are no other
Y2l+1-good vertices, because, by Lemma 12, any vertex of the path Pel

, that
is Y2l+1-good and not Y2l-good, must have two newcomers as neighbours
(and the distance between any two newcomers in I(Pol

, A2l) is at least 3).
Now, if we rename vertices of I(Pel

, A2l) = Pol
in our ordinary way (i.e.,

they will be xi, i ∈ [1, ol]), then x3i becomes x4i, i ∈ [1, 2l−1 − 1], and the
set of Y2l+1-good vertices of Pol

is {x4i : i ∈ [1, 2l−1 − 1]}.
The sequence A2l+1 := Π2l−1

i=1 (4i − 3, 4i − 2) ∈ A0,ol
is Y2l+1-

proper, because vertices of Pol
, that are not Y2l-good, occur in triples

x4i−3, x4i−2, x4i−1, which are “dominated” by newcomers z2i−1 and z2i,
i ∈ [1, 2l−1]. The graph I(Pol

, A2l+1) is a path with ol + 2 · 2l−1 = el+1

vertices and, for Y2l+2 := I(Pol
, A2l+1, Y2l+1), we have, by Lemma 12,

max(G, Pel+1
, Y2l+2) = max(G, Pol

, Y2l+1) + 1 = 2l + 2. Any Y2l+1-good ver-
tex x4i, i ∈ [1, 2l−1], is Y2l+2-good. Moreover, the vertex x4i−2, i ∈ [1, 2l−1],
is Y2l+2-good, too (it has two newcomers as neighbours). There are no
other Y2l+2-good vertices, because there are no more pairs of newcom-
ers which are at the distance 2 apart. Thus, after renaming vertices
of I(Pol

, A2l+1) = Pel+1
in our ordinary way (so that x4i becomes x6i,

i ∈ [1, 2l−1−1], and x4i−2 becomes x6i−3, i ∈ [1, 2l−1]), the set of Y2l+2-good
vertices of Pel+1

is {x3i : i ∈ [1, 2l − 1]}.

Corollary 14. For any l ∈ [1,∞), f(2l) ≤ el and f(2l + 1) ≤ ol.
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Evidently, the reduction process can also be (partially) inverted for cycles. In
this case the sequence A = Πl

i=1(ai), characterizing positions of newcomers,
is from the set A1,n (if the original cycle is Cn), a newcomer zi subdivides
the edge xai

xai+1, i ∈ [1, l], and there is no restriction on index of a Y -
good vertex. (Recall that, for paths, endvertices are not Y -good.) Thus, an
analogue of Lemma 12 is presented without proof (no new idea is necessary).

Lemma 15. Let n ∈ [3,∞), Y ∈ Is(Cn), let a sequence A ∈ A1,n be Y -
proper and let ϕ = rank(G, Cn, Y ), Ĝ = I(Cn, A), Ŷ = I(Cn, A, Y ), ϕ̂ =
rank(G, Ĝ, Ŷ ). Then ϕ̂(zi) = 1 for any newcomer zi, i ∈ [1, |A|] and ϕ̂(xi) =
ϕ(xi) + 1 for any i ∈ [1, n].

4 Main Results

Now we are able to analyze First Fit Algorithm for cycles and paths in a
detailed way.

Proposition 16. g(4) ≤ 5, g(5) ≤ 7, g(6) ≤ 10 and g(7) ≤ 15.

Proof. It is easy to check that the sequences Â3 = (1, 2), Â4 = (1, 4), Â5 =
(2, 5, 7) and Â6 = (1, 3, 5, 7, 9) are such that Ân is Ŷn-proper, n ∈ [3, 6], if
the graph Ĝn and the input sequence Ŷn for Ĝn, n ∈ [3, 7], are defined
by the following recurrence: Ĝ3 := C3, Ŷ3 := (x1, x2, x3) and Ĝn+1 :=
I(Ĝn, Ân), Ŷn+1 := I(Ĝn, Ân, Ŷn), n ∈ [3, 6]. Since max(G, Ĝ3, Ŷ3) = 3,
Ĝ4 = C5, Ĝ5 = C7, Ĝ6 = C10, Ĝ7 = C15 and, by Lemma 15, max(G, Ĝn+1,
Ŷn+1) = max(G, Ĝn, Ŷn) + 1 for n ∈ [3, 6], the proof follows.

Proposition 17. If k ∈ [3,∞), then

1. f(k + 1) ≥ min{n ∈ [f(k) + 1,∞) : n− ddn/2e/2e ≥ f(k)};
2. g(k + 1) ≥ min{n ∈ [g(k) + 1,∞) : n− ddn/2e/2e ≥ g(k)}.

Proof. 1. Suppose that f(k+ 1) = n; by Proposition 9 then n ≥ f(k) + 1.
Take an input sequence Y ∈ Is(Pn) such that max(G, Pn, Y ) = k + 1
and put Ġ = R(Pn, Y ), Ẏ = R(Y, Pn). For the path Ġ we have, by The-
orem 7, |V (Ġ)| = n − f1(G, Pn, Y ) ≤ n − ddn/2e/2e, and, by Lemma 3,
max(G, Ġ, Ẏ ) = max(G, Pn, Y ) − 1 = k. Since |V (Ġ)| < n = f(k + 1),
due to Proposition 9 we obtain max(G, Ġ) = max(G, Ġ, Ẏ ) = k. Thus,
|V (Ġ)| ≥ f(k) and we see that n− ddn/2e/2e ≥ f(k).

2. The proof is completely analogous to that of 1.
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Theorem 18. f(4) = g(4) = 5, f(5) = g(5) = 7, f(6) = 11, g(6) = 10,
f(7) = 15 and 14 ≤ g(7) ≤ 15.

Proof. Take k ∈ [4, 7]. The upper bounds for f(k) come from Corollary 14
and those for g(k) from Proposition 16. On the other hand, by Theorem 1
and Lemma 7 of [5], f(4) ≥ 5 and g(4) ≥ 5, so that f(4) = g(4) = 5. Now,
by Proposition 17, f(5) ≥ 7 and g(5) ≥ 7, which implies f(5) = g(5) = 7.
By Proposition 17 again, we get f(6) ≥ 10 and g(6) ≥ 10, yielding g(6) = 10
and, consequently, g(7) ≥ 14.

Suppose that there is an input sequence Y ∈ Is(P10) such that
max(G, P10, Y ) = 6 and put ϕ = rank(G, P10, Y ). Since f(4) = 5, from
Lemma 3 (used twice) we see that

∑

2
i=1 fi(G, P10, Y ) ≤ 5. So, with help of

Theorem 7,
∑

2
i=1 fi(G, P10, Y ) =

∑

6
i=3 fi(G, P10, Y ) = 5, and, by Lemma 5,

f1(G, P10, Y ) = 3, f2(G, P10, Y ) = 2. Consider the cycle P̃10 = C10 intro-
duced before Lemma 6 and its high and low sections. First we show that
there is no high section of P̃10 of length 3. Suppose there is one; by Lem-
mas 4.4 and 4.6, this section Πq+2

i=q (xi) must also be a section of P10. Then,

by Lemma 4.7, Πq+4

i=q−2
(xi) is a section of P10 of type (2,1,3+,3+,3+,1,2).

The remaining three vertices of P10 do not form a section of P10, because
two of them are high (otherwise we would obtain a contradiction with one
of Lemmas 4.4, 4.6, 4.10 and 4.11). Thus, they form two nonempty end-
sections of P10. That containing only one vertex cannot be of type (3+)
(P10 would have an endsection of type (3+, 2) or (2, 3+) in contradiction
with Lemmas 4.4 and 4.6), hence that of length 2 is of type (3+,3+), which
contradicts again Lemmas 4.4 and 4.6.

Denote the number of low sections of P10 and P̃10 by l and l̃, respectively.
Clearly, l̃ ≥ 3, since for l̃ = 2 one of two high sections of P̃10 would be of
length 3. By Lemmas 4.2, 4.3 and 4.5, any low section of P10 contains a
vertex coloured with 1, hence l ≤ 3. On the other hand, l̃ ≤ l, and we get
l = l̃ = 3. Thus, P̃10 has two low sections of type (1,2) or (2,1), one low
section of type (1), two high sections of length 2 and one high section of
length 1.

A high section of P̃10 of length 2 must be a section of P10, too – other-
wise, by Lemmas 4.4 and 4.6, Π3

i=1(xi) is of type (3+,1,2) and Π10
i=8(xi) is

of type (2,1,3+), so that Π7
i=4(xi) is of type (3+,3+,1,3+) or (3+,1,3+,3+),

which contradicts Lemma 4.8 or Lemma 4.9. Thus, two high sections of
P10 of length 2 are, by Lemmas 4.8 and 4.9, separated by a low section
of P10 of length 2; let Πq+5

i=q (xi) be the corresponding section of P10 with
min{ϕ(xi) : i ∈ {q, q + 1, q + 4, q + 5}} ≥ 3. Then q = 1 is impossible by
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Lemma 4.4, q = 2 by Lemmas 4.3 and 4.10 and, symmetrically, q = 4 by
Lemmas 4.5 and 4.11, q = 5 by Lemma 4.6. If q = 3, one endvertex of P10

is high, which contradicts Lemma 4.4 or Lemma 4.6.

So, we conclude that f(6) = 11, and then Proposition 17 yields
f(7) = 15.

Corollary 19. For n = 5, 6, χ∗

r (Cn) = χ∗

r (Pn) = 4.

Proof. Those on-line ranking numbers must be at least 4, by Theorem 1 of
[5]. On the other hand, due to Theorem 18, max(G, Cn) = max(G, Pn) = 4.

Note that, by Theorem 1 of [5], it holds χ∗

r (C4) = χ∗

r (P4) = 3. The value
of on-line ranking number for simplest cycles and paths (with at most three
vertices) is evidently equal to the corresponding number of vertices.

For an input sequence Y = Πn
i=1(yi) ∈ Is(Cn) and j ∈ [0, n− 1] let Y +j

be the input sequence for the graph Cn defined by Y +j := Πn
i=1(yi+j).

Lemma 20. If n ∈ [3,∞), j ∈ [0, n − 1] and Y ∈ Is(Cn), then max(G, Cn,
Y +j) = max(G, Cn, Y ).

Proof. Evidently, V (Cn(Y +j, xi)) = {xk+j : xk ∈ V (Cn(Y, xi))} for any
i ∈ [1, n]. If i ∈ [1, n] and xk ∈ V (Cn(Y, xi)), the ranking rank(G, Cn,
Y +j , xi+j) attributes to the vertex xk+j the same colour as the ranking
rank(G, Cn, Y, xi) does to the vertex xk, hence the proof follows.

Proposition 21. If n ∈ [2,∞), then max(G, Pn) ≤ max(G, Cn+1) ≤
max(G, Pn) + 1.

Proof. The first inequality comes from Proposition 1, because Pn is an
induced subgraph of Cn+1.

Take an input sequence Y = Πn+1
i=1 (yi) ∈ Is(Cn+1) such that max(G,

Cn+1, Y ) = max(G, Cn+1). Since Cn+1(Y, yn) is a path with n vertices, with
respect to Lemma 20 we may suppose that V (Cn+1(Y, yn)) = {xi : i ∈
[1, n]}. Then, for the input sequence Y − = Πn

i=1(yi) ∈ Is(Pn), we have
rank(G, Pn, Y

−) = rank(G, Cn+1, Y, yn). That is why, max(G, Pn, Y
−) ≥

max(G, Cn+1, Y )−1 = max(G, Cn+1)−1 (the arrival of yn+1, the last vertex
of Y , can increase the number of used colours only by 1) and max(G, Cn+1) ≤
max(G, Pn, Y

−) + 1 ≤ max(G, Pn) + 1.

Corollary 22. If k ∈ [3,∞), then g(k) ≤ f(k) + 1.
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Proof. Suppose that f(k) = n. As n ≥ k ≥ 3, Proposition 21 implies
max(G, Cn+1) ≥ max(G, Pn) = k, and so, by Proposition 9, g(k) ≤ n+ 1 =
f(k) + 1.

Theorem 23. Let i be a nonnegative integer. Then

1. 11 · 2i ≤ f(2i+ 6) ≤ 12 · 2i − 1.

2. 15 · 2i ≤ f(2i+ 7) ≤ 16 · 2i − 1.

3. 10 · 2i ≤ g(2i + 6) ≤ 12 · 2i.

4. 14 · 2i ≤ g(2i + 7) ≤ 16 · 2i.

Proof. Lower bounds come from Theorems 11 and 18. The upper bounds
in 1 and 2 follow from Corollary 14, and then those in 3 and 4 from
Corollary 22.

Theorem 24. Let i be a nonnegative integer.

1. If n ∈ [12 · 2i − 1, 15 · 2i − 1], then max(G, Pn) = 2i+ 6.

2. If n ∈ [15 · 2i, 16 · 2i − 2], then 2i+ 6 ≤ max(G, Pn) ≤ 2i+ 7.

3. If n ∈ [16 · 2i − 1, 22 · 2i − 1], then max(G, Pn) = 2i+ 7.

4. If n ∈ [22 · 2i, 24 · 2i − 2], then 2i+ 7 ≤ max(G, Pn) ≤ 2i+ 8.

5. If n ∈ [12 · 2i, 14 · 2i − 1], then max(G, Cn) = 2i+ 6.

6. If n ∈ [14 · 2i, 16 · 2i − 1], then 2i+ 6 ≤ max(G, Cn) ≤ 2i+ 7.

7. If n ∈ [16 · 2i, 20 · 2i − 1], then max(G, Cn) = 2i+ 7.

8. If n ∈ [20 · 2i, 24 · 2i − 1], then 2i+ 7 ≤ max(G, Cn) ≤ 2i+ 8.

Proof. Because of Proposition 1, the statements 1–4 follow from Theorems
23.1 and 23.2.

If n ∈ [12 · 2i,∞), then max(G, Cn) ≥ 2i + 6, since otherwise, by
Proposition 21, max(G, Pn−1) ≤ max(G, Cn) ≤ 2i + 5, which contradicts
Theorem 23.1 (with respect to Proposition 1). Thus, 5 and 6 follow from
Theorems 23.3 and 23.4. The remaining two statements are proved analo-
gously.

Theorem 25. Let i be a nonnegative integer.

1. If n ∈ [12 · 2i − 1, 15 · 2i − 1], then χ∗

r (Pn) ≤ 2blog2 nc.
2. If n ∈ [15 · 2i, 16 · 2i − 1], then χ∗

r (Pn) ≤ 2blog2 nc + 1.

3. If n ∈ [16 · 2i, 22 · 2i − 1], then χ∗

r (Pn) ≤ 2blog2 nc − 1.

4. If n ∈ [22 · 2i, 24 · 2i − 2], then χ∗

r (Pn) ≤ 2blog2 nc.
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5. If n ∈ [12 · 2i, 14 · 2i − 1], then χ∗

r (Cn) ≤ 2blog2 nc.
6. If n ∈ [14 · 2i, 16 · 2i − 1], then χ∗

r (Cn) ≤ 2blog2 nc + 1.

7. If n ∈ [16 · 2i, 20 · 2i − 1], then χ∗

r (Cn) ≤ 2blog2 nc − 1.

8. If n ∈ [20 · 2i, 24 · 2i − 1], then χ∗

r (Cn) ≤ 2blog2 nc.
Proof. If n ∈ [12 · 2i − 1, 15 · 2i − 1], then blog2 nc = i + 3, and, by
Theorem 24.1, χ∗

r (Pn) ≤ max(G, Pn) = 2i + 6 = 2blog2 nc, which repre-
sents 1. The remaining assertions follow from Theorem 24, too.

Theorem 26. For any n ∈ [3,∞), χr(Cn) = blog2(n− 1)c + 2.

Proof. First we show that χr(Cn) ≥ 1 + χr(Pn−1). Suppose, on the con-
trary, that χr(Cn) = l ≤ χr(Pn−1), and consider an l-ranking ϕ of Cn. If x is
the (only) vertex of Cn coloured with l, then ϕ−{(x, l)} is an (l−1)-ranking
of the path Pn−1 = Cn − x, and so χr(Pn−1) ≤ l− 1, a contradiction. Thus,
according to [1], we have χr(Cn) ≥ 1+ blog2(n− 1)c+1 = blog2(n− 1)c+2.

Now, take k ∈ [1,∞), m ∈ [1, 2k − 1] and n = 2k +m. From Lemma 2.1
of [1] it is easy to see that χr(P2k ) = k + 1 and χr(Pm) = blog2mc + 1 =
l(m) ≤ k. Let ϕ1 be a (k+1)-ranking of P2k with V (P2k) = {xi : i ∈ [1, 2k]}
and endvertices x1, x2k , and let ϕ2 be an l(m)-ranking of Pm with V (Pm) =
{ui : i ∈ [1,m]}, with endvertices u1, um and with V (P2k) ∩ V (Pm) = ∅.
Without loss of generality, by Proposition 2.1 of [1], we may suppose that
ϕ1(x1) = k + 1. Let C2k+m be the cycle formed from P2k ∪ Pm by adding
the edges x1um and x2ku1. The colouring ϕ of C2k+m defined by ϕ(xi) :=
ϕ1(xi), i ∈ [1, 2k], ϕ(u1) = k+2 and ϕ(ui) = ϕ2(ui), i ∈ [2,m], is easily seen
to be a (k + 2)-ranking. Thus, χr(Cn) ≤ k + 2 = blog2(n− 1)c + 2.

For k ∈ [1,∞) let ϕ′ be such a (k+2)-ranking of P2k+1 that the (unique)
appearance of the colour k + 2 is at an endvertex of P2k+1 . Then, ϕ′ is
also a (k + 2)-ranking of the cycle C2k+1 , which is created from P2k+1 by
joining its endvertices by a new edge, and, for n = 2k + 2k = 2k+1, we have
χr(Cn) ≤ k + 2 = blog2(n− 1)c + 2.

So, χr(Cn) ≤ blog2(n − 1)c + 2 for any n ∈ [2k + 1, 2k+1] and any
k ∈ [1,∞), and the desired result follows.

Theorem 27.

1. For any n ∈ [1,∞), blog2 nc + 1 ≤ χ∗

r (Pn) ≤ 2blog2 nc + 1.

2. For any n ∈ [3,∞), blog2(n− 1)c + 2 ≤ χ∗

r (Cn) ≤ 2blog2 nc + 1.

Proof. Lower bounds come from the values of χr(Pn) and χr(Cn) due
to [1] and Theorem 26.
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As concerns upper bounds, for n ∈ [12,∞) see Theorem 25; for n ≤ 11 use
Theorem 18 and the fact that f(i) = i, i = 1, 2, 3, and g(3) = 3.

First Fit Algorithm is not necessarily optimal when computing χ∗

r (Pn), as
shows our next statement.

Theorem 28. χ∗

r (P7) = 4 < 5 = max(G, P7).

Proof. According to Theorem 1 of [5], we have χ∗

r (P7) ≥ 4. Consider the
ranking algorithm G ′ functioning just as G does with the only exception: If
G = P5, H = 2K2, {x} = V (G) − V (H) and ϕ is a ranking of H such that
both neighbours of x (in G) are coloured with 2, then G ′(G,H,ϕ, x) = 4 (and
not 3, as required by G). We are going to show that m′ = max(G′, P7, Y ) ≤ 4
for any Y ∈ Is(P7).

First suppose that Y = Π7
i=1(yi) is such that ϕ′ = rank(G′, P7, Y ) 6=

rank(G, P7, Y ) = ϕ. Then P7(Y, y5) = P5 and it is easy to see that any
neighbour of (a vertex of) P7(Y, y5) is coloured with 3 and any non-neighbour
(at most one) of P7(Y, y5) is coloured with 1 by ϕ′; thus, m′ = 4.

Now, assume that ϕ′ = ϕ. If y7 ∈ {x3, x4, x5}, then P7(Y, y6) = Pi∪
P6−i, i ∈ {2, 3}. Clearly, the maximum colour used by ϕ′

6 = rank(G′, P7,
Y, y6) is not greater than max{max(G, Pi),max(G, P6−i)}; this maximum
is equal to 3, by Proposition 1 and f(3) = 3, f(4) = 5 (Theorem 18),
hence m′ ≤ 4.

If y7 ∈ {x1, x2}, we may suppose that ϕ′

6 uses colour 4 – otherwise we
are done.

If y7 = x2, then P7(Y, y6) = P1 ∪ P5 and 4 is used by ϕ′

6 for a vertex of
P5-component of P7(Y, y6). If one of x3, x4 is coloured with a colour ≥ 3,
then, using Lemma 4.3, ϕ′(x2) = 2. On the other hand, {ϕ′

6(x3), ϕ
′

6(x4)} 6=
{1, 2}, because otherwise at least two vertices from among x5, x6, x7 would
be coloured with a colour ≥ 3 (3 is used at least once by ϕ′

6) in contradiction
with one of Lemmas 4.2, 4.7, 4.12 and 4.13.

If y7 = x1, then P7(Y, y6) = P6. We may assume that ϕ′

6(x2) = 1 and
ϕ′

6(x3) = 2, since if not, we would have ϕ′(x1) ≤ 2. Because of Lemmas 4.1,
4.7, 4.8 and 4.9, exactly two vertices from among x4, x5, x6, x7 are coloured
with a colour ≥ 3. From Lemmas 4.2, 4.12, 4.13 and 4.15 it follows that
these are x4 and x7. If ϕ′

6(x4) = 4, then ϕ′(x1) = 3. Finally, suppose
that ϕ′

6(x4) = 3 and ϕ′

6(x7) = 4. Then ϕ′

6(x6) = 1 and ϕ′

6(x5) = 2 (by
Lemma 4.6), x4 comes in Y before x7 (otherwise ϕ′

6(x7) ≤ 3), x4 comes
in Y after each of xi, i ∈ {2, 3, 5, 6} (otherwise ϕ′

6(x4) = 1), which means
that P7(Y, y4) = 2K2 and that the vertex y5 = x4 has in P7(Y, y5) both
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neighbours coloured with 2. This, however, is a contradiction, because in
such a case 4 = ϕ′(y5) = ϕ′

6(y5).

The last possibility, y7 ∈ {x6, x7}, leads to a situation which is symmet-
ric with that of y7 ∈ {x1, x2}.

Now, to conclude the proof, we use Theorem 18, from which it follows
that max(G, P7) = 5.

Theorem 29. χ∗

r (C7) = 5.

Proof. By Theorem 1 of [5], we have χ∗

r (C7) ≥ 4. We are going to
show by the way of contradiction, that χ∗

r (C7) ≥ 5; this, together with
max(G, C7) = 5 (Theorem 18), will mean that χ∗

r (C7) = 5.

We know from Theorem 26 that χr(C7) = 4. Let ϕ be a 4-ranking of C7.
It can be immediately seen that ϕ uses 3 and 4 exactly once, say, for vertices
xi and xj . Since χr(P4) = 3 = χr(P5), no component of H = C7 − {xi, xj}
can have more than 3 vertices, so that H = P2 ∪ P3. Clearly, ϕ restricted
to P3-component of H uses 2 just once, for the internal vertex of that P3.
Also, ϕ restricted to P2-component of H, uses 2 once. Thus, ϕ colours two
vertices of C7 with 2 and two vertices with a colour ≥ 3; the mutual distance
of vertices in those two pairs is 3.

Now, suppose that there is a ranking algorithm A such that max(A,
C7) = 4. Consider an input sequence Y = Π7

i=1(yi) ∈ Is(P7) and the ranking
ϕ = rank(A, C7, Y ). As χr(C7) = 4, ϕ is a 4-ranking of C7. If C7(Y, y2) =
P2, the ranking rank(A, C7, Y, y2) must use colours 1 and 2. To see this
suppose that a colour i ∈ {3, 4} is used for a vertex yj of C7(Y, y2). Assume,
moreover, that C7(Y, yk) = P2 ∪ Pk−2, k = 3, 4, 5 (we cannot avoid this
situation). We have ϕ(yk) 6= i, k = 3, 4, 5, hence it may happen that ϕ(yk) =
7−i for some k ∈ [3, 5] and an endvertex yk of C7(Y, yk) – if {ϕ(y3), ϕ(y4)} =
{1, 2}, y5 may be an endvertex of C7(Y, y5) with the neighbour coloured with
1. Then, however, the distance between yj and yk, the vertices coloured with
3 and 4, may be 2 in contradiction with the structure of a 4-ranking of C7.

If C7(Y, y2) = P2, C7(Y, y3) = P3 and the neighbour of y3 in C7(Y, y3) is
coloured with 1, we have ϕ(y3) = i ∈ {3, 4}. It may happen that C7(Y, y5) =
P3 ∪ P2. For vertices of P2-component of C7(Y, y5) two from among colours
1,2 and 7− i are used. If 2 is used, it may happen that there are two vertices
coloured with 2 by ϕ, whose distance is 2, a contradiction. On the other
hand, the presence of 7 − i could yield two vertices of distance 2, coloured
with 3 and 4 by ϕ, a contradiction again.
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5 Open Problems

There are several open problems which naturally arise from our analysis.
1. Find nontrivial lower bounds for χ∗

r (Cn) and χ∗

r (Pn).

2. Which is the minimum n such that χ∗

r (Pn) = 5?

3. Does there exist n ∈ [8,∞) such that χ∗

r (Cn) < max(G, Cn)? If so,
which is the minimum n in such an inequality?

4. Determine g(7). (We conjecture that g(7) = 15.)

5. Prove or disprove that the sequence {max(G, Cn)}∞n=3 is non-decreasing.
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