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Abstract

A property of graphs is any isomorphism closed class of sim-
ple graphs. For given properties of graphs P1,P2, . . . ,Pn a vertex
(P1,P2, . . . ,Pn)-partition of a graph G is a partition {V1, V2, . . . , Vn} of
V (G) such that for each i = 1, 2, . . . , n the induced subgraph G[Vi] has
property Pi. The class of all graphs having a vertex (P1,P2, . . . ,Pn)-
partition is denoted by P1◦P2◦ · · · ◦Pn. A property R is said to be
reducible with respect to a lattice of properties of graphs L if there
are n ≥ 2 properties P1,P2, . . . ,Pn ∈ L such that R =P1◦P2◦ · · · ◦Pn;
otherwise R is irreducible in L. We study the structure of different lat-
tices of properties of graphs and we prove that in these lattices every
reducible property of graphs has a finite factorization into irreducible
properties.
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1 Introduction and Motivation

For terminology and notation not presented here, we follow [4] and [5]. The
join

∑n
i=1 Gi = G1 + G2 + · · · + Gn of n graphs G1, G2, . . . , Gn is the graph

consisting of the disjoint union of Gis and all the edges between V (Gi) and
V (Gj) for any 1 ≤ i < j ≤ n.

In [3] the concept of varieties of graphs with respect to different closure
operators on the class of graphs is investigated. In this paper we consider
the class I of all finite simple graphs (without loops and multiple edges)
and a finite set of closure operators σ0, σ1, . . . , σn defined on I. A variety

P of graphs is a subclass of I closed under all operators σ0, σ1, . . . , σn, i.e.,
σ0(P) = σ1(P) = · · · = σn(P) = P. In order to obtain some interesting
results, it is important to choose suitable closure operators in the definition
of varieties of graphs.

Throughout the paper we fix six closure operators σ0, σ1, . . . , σ5. These
are now defined. For any class P of graphs we define σi(P) by:

σ0(P) = {G ∈ I : G ∼= H for some H ∈ P}, i.e., σ0 is derived from the
relation “to be isomorphic”. A variety of graphs closed under operator σ0

is called a graph property. We also say that a graph G has property P if
G ∈ P. The graph properties I and Θ = {K0} are called trivial, all others
are nontrivial.

σ1(P) = {G ∈ I : each component of G is in P}, i.e., σ1 is derived from the
operation “to take the disjoint union of graphs”. A variety of graphs closed
under this operator is called additive.

σ2(P) = {G ∈ I : G ⊆ H for some H ∈ P}, i.e., σ2 is derived from the
relation “to be a subgraph”. A variety of graphs closed under this operator
is said to be hereditary.

σ3(P) = {G ∈ I : G ≤ H for some H ∈ P}, i.e., σ3 is derived from the
relation “to be an induced subgraph”. A variety of graphs closed under this
operator is said to be induced hereditary.

σ4(P) = {G ∈ I : G ⊇ H for some H ∈ P}, i.e., σ4 is derived from the
relation “to be a supergraph”. A variety of graphs closed under this operator
is said to be co-hereditary.

σ5(P) = {G ∈ I : G ≥ H for some H ∈ P}, i.e., σ5 is derived from the
relation “to be an induced supergraph”. A variety of graphs closed under
this operator is said to be induced co-hereditary.
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Since we are considering properties of graphs, we will always assume that the
variety we consider is closed under isomorphism. We will use the notation
Lσi1

,...,σi
k

to denote the set of all properties of graphs closed under each of
the operators σi1 , . . . , σik . If the operator σ1 is used, we shall omit it in
the lower index and we shall add an “a” as an upper index. Thus the set
of all additive properties of graphs will be denoted by L

a. In what follows
we will consider properties of graphs closed under one of the operators σi,
i ∈ {2, . . . , 5}. In all these cases, the set of all properties closed under the
given operator ordered by set inclusion forms a complete lattice, denoted by
(Lσi

,⊆) (or by (La
σi

,⊆) if it is also closed under the operator σ1).

For a property P the property P = I − P is said to be a co-property.
Note that “to be co-hereditary” is a co-property of “to be hereditary”. The
set of all “co-properties” of given set of properties L will be denoted by L,
i.e., L = {P : P ∈ L}.

Let P be a hereditary (an induced hereditary) property of graphs. A
graph F is a forbidden subgraph for P provided F is not in P, but all of its
proper subgraphs (induced subgraphs) are in P. The set of all forbidden
subgraphs for P, denoted by F (P), uniquely determines P.

We omit the proof of the following simple lemma (see [2]).

Lemma 11. Let P be a hereditary (an induced hereditary) property of

graphs. Then P is additive if and only if all the graphs in F (P) are con-

nected.

In order to determine a hereditary property it is also useful to define the set
of so called P-maximal graphs. A graph G is P-maximal if G ∈ P and for
every edge e ∈ G we have that G + e 6∈ P. Then a graph G has hereditary
property P if there exists P-maximal graph H such that G ⊆ H. It is easy
to see that the concept of P-maximal graphs cannot be used in the class
of induced hereditary properties. Fortunately, a more general concept of
generating set is useful also in the class of induced hereditary properties of
graphs. We define the set G ⊆ I to be a generating set of P if every graph
from P is a subgraph (an induced subgraph) of some graph from G. The
fact that G is a generating set of P will be written in the following way:

[G]⊆ = P ([G]≤ = P respectively).

The members of G are called generators of P. The concept of a generating
set with respect to an arbitrary partial order was discussed in [1].
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Let G be an arbitrary graph. A fundamental colouring problem asks for the
minimum positive number k such that there is a partitioning of the vertex
set V (G) of G into k independent sets. A natural extension of this type
of partitions leads to the generalized graph colouring problems and to the
concept of a reducible hereditary property. Let us consider a positive integer
n ≥ 2 and hereditary (or induced hereditary) properties P1,P2, . . . ,Pn. A
P1◦P2◦ · · · ◦Pn-partition of a graph G is a partition {V1, V2, . . . , Vn} of V (G)
such that for each i = 1, 2, . . . , n the induced subgraph G[Vi] of G has
property Pi. The class P1◦P2◦ · · · ◦Pn is defined as the set of all graphs
having a (P1◦P2◦ · · · ◦Pn)-partition. A nontrivial property R is called a
reducible property in some lattice L of properties if there is an integer n ≥ 2
and nontrivial properties P1,P2, . . . ,Pn in L such that R = P1◦P2◦ · · · ◦Pn.
The nontrivial property R is irreducible otherwise. If P1 = P2 = · · · =
Pn = P we write R = Pn. If R = P1◦P2◦ · · · ◦Pn, we call P1◦P2◦ · · · ◦Pn a

factorization of R and we also say that R is the product of P1,P2, . . . ,Pn

and that R is divisible by each Pi, i = 1, 2, . . . , n. The definition of reducible
properties appeared in [6]. For more details and some applications we refer
the reader to [1] and [2].

The existence of a factorization of a hereditary property of graphs into
a finite number of factors follows from the definition of completeness of a
hereditary property. This is defined, for a nontrivial hereditary property P,
as the least integer c(P) such that Kc(P)+2 /∈ P.

The question whether each reducible property has a unique factorization
into irreducible factors has been formulated in [5]. This question naturally
arises in the study of reducible properties and is motivated by the Fundamen-
tal Theorem of Arithmetic. The complete answer for hereditary properties
of graphs is given in [8]; we now formulate it as

Theorem 12. Let R be an additive hereditary property of graphs. Then

R has a factorization into irreducible additive hereditary factors and this

factorization is unique up to the order of the factors.

In the same paper the authors showed that in the lattice (L⊆,⊆) of all heredi-
tary properties of graphs a factorization of a property into irreducible factors
need not be unique. The proof of this assertion is given by constructing a
property which is not uniquely factorizable into hereditary properties. Since
each hereditary property of graphs is also an induced hereditary property,
this example shows that the factorization of induced hereditary properties
of graphs into irreducible induced hereditary properties is also not unique
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in general. An unsolved problem in this line of investigation is the question
whether the factorization of reducible additive induced hereditary properties
of graphs into irreducible factors is unique.

2 Factorization of Reducible Properties of Graphs

We now turn our attention to the factorization of reducible properties of
graphs into (finitely many) irreducible factors in the lattices defined above.
We will prove that each property in each of the lattices (Lσ2

,⊆), (La
σ2

,⊆),
(Lσ3

,⊆), (La
σ3

,⊆), (Lσ4
,⊆) and (Lσ5

,⊆) has a factorization into a finite num-
ber of factors which are irreducible in the corresponding lattice.

Theorem 21. Let (L,⊆) be one of the lattices (Lσ2
,⊆), (La

σ2
,⊆), (Lσ3

,⊆),
(La

σ3
,⊆), (Lσ4

,⊆) and (Lσ5
,⊆) and let P be any nontrivial property of graphs

belonging to L. Then P is factorizable into a finite number of factors irre-

ducible over (L,⊆).

The proof of this theorem can be given using suitable invariants of properties
of graphs which we now describe. The first is easy to describe and, as we shall
see, related to the completeness of a property. We define the co-completeness

of a co-property c(P) as the least value of the integer k such that Kk+2 ∈ P.
If P is hereditary and c(P) = k, then Kk+1 ∈ P and k is the least value
with this property so that c(P) = c(P).

In the next lemma we show how to compute the co-completeness of
products of co-hereditary properties of graphs.

Lemma 22. Let P1, P2 be co-hereditary properties of graphs. Then

c(P1◦P2) = c(P1) + c(P2) + 2.

Proof. Since K
c(P i)+2 is the smallest complete graph in P i for i = 1, 2,

one can see immediately that K
c(P1)+c(P2)+4 is the smallest complete graph

in P1◦P2. Therefore c(P1◦P2) = (c(P1) + c(P2) + 4) − 2 = c(P1)+
c(P2) + 2.

The definition of completeness certainly makes sense for induced hereditary
properties of graphs, but the concept cannot be used to prove that the
number of factors in this lattice is finite. In order to solve this problem we
introduce another operation and invariants for graphs and properties.
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Definition 1. We define the operation ∗ as follows: For given graphs G1,

G2, . . . , Gn, n ≥ 2,

G1 ∗ G2 ∗ · · · ∗ Gn = {G :
n⋃

i=1

Gi ⊆ G ⊆
n∑

i=1

Gi}.

Next we define, for a given graph G in an induced hereditary property of
graphs P, the invariant rP(G) as follows:

rP(G) = max{n : there exist nonempty graphs G1, G2, . . . , Gn in P and a
graph H such that G ≤ H ∈ G1 ∗G2 ∗ . . . ∗Gn ⊆ P}. If G 6∈ P we set rP(G)
to be zero.

Now suppose we are given an induced hereditary property P 6= I. Obviously
there exists a finite simple graph F 6∈ P. For the property P we can therefore
define f(P) to be the least number of vertices of a forbidden subgraph of P,
i.e., f(P) = min{|V (F )| : F 6∈ P}.

Lemma 23. Let P 6= I be an induced hereditary property of graphs and let

G ∈ P. Then rP(G) < f(P).

Proof. Suppose F 6∈ P is a graph realizing f(P) and suppose that n =
rP(G) ≥ |V (F )| = f(P). Then there exist nonempty graphs G1, G2, . . . , Gn

in P and a graph H such that G ≤ H ∈ G1 ∗ G2 ∗ . . . ∗ Gn ⊆ P. But
then, K1 is a graph in P and there is a graph H ′ such that F ≤ H ′ ∈
K1 ∗ K1 ∗ . . . ∗ K1 ⊆ P, i.e., F ∈ P, a contradiction.

This lemma allows us to define the number r(P) for an induced hereditary
property P 6= I by r(P) = min{rP (G) : G ∈ P}.

We are now ready to prove the main theorem of this section. This is
accomplished by choosing a suitable invariant for each of the six lattices
listed in Theorem 21 and showing that the number of factors into which
reducible graph properties belonging to the chosen lattice can be factorized
is bounded by the value of this invariant.

Sketch of the proof of Theorem 21.

1. Consider the lattice (Lσ2
,⊆). To prove the theorem for this lattice we use

the concept of completeness. In [8] it is shown that the completeness of a
reducible hereditary property R = P1◦P2 satisfies c(R) = c(P1)+ c(P2)+1.
From this fact the proof of the statement in the theorem for this lattice
follows immediately.
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2. To prove the theorem for the lattice (La
σ2

,⊆) we can use the same argu-
ment as in the previous case.

3. The proof for the lattice (Lσ3
,⊆) uses the invariant r(R). If R is an

induced hereditary property satisfying R = P1◦P2◦ · · · ◦Pn and G ∈ R, then
it is easy to see that n ≤ rR(G) so that n ≤ r(R).

4. In the lattice (La
σ3

,⊆), the same argument as in the previous case can be
used.

5. In order to prove the statement of the theorem for the lattice (Lσ4
,⊆)

we can use the concept of c(P). By Lemma 22 it follows that the number
of irreducible factors into which a co-hereditary property can be factorized
is finite.

6. Finally we consider the lattice (Lσ5
,⊆)}. Consider an arbitrary property

R ∈ Lσ5
different from I and suppose that R = P 1◦P2◦ · · · ◦Pn with each

P i ∈ Lσ5
. Then there exists a graph G ∈ R with a finite number p of

vertices. Then we have for each i that Pi 6= I, since otherwise R = I.
Therefore it follows for every factor Pi that K0 6∈ Pi so that every graph in
R has at least n vertices. But then n ≤ p, i.e., the number of factors into
which R can be factorized is finite.
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