
Discussiones Mathematicae 159
Graph Theory 19 (1999 ) 159–166

REMARKS ON THE EXISTENCE OF UNIQUELY

PARTITIONABLE PLANAR GRAPHS

Mieczys law Borowiecki

Institute of Mathematics
Technical University Zielona Góra, Poland
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Abstract

We consider the problem of the existence of uniquely partitionable
planar graphs. We survey some recent results and we prove the nonex-
istence of uniquely (D1,D1)-partitionable planar graphs with respect
to the property D1 ”to be a forest”.
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1. Introduction and Notation

Let us denote by I the class of all simple finite graphs. A graph property
is any isomorphism closed nonempty proper subclass P of I. A graph
property is said to be hereditary if whenever G ∈ P and H ⊆ G (H is a
subgraph of G), then also H ∈ P and P is additive if P is closed under
disjoint union of graphs.

Every additive and hereditary property P is uniquely determined by the
set F (P) of its minimal forbidden subgraphs. A property P is said to be
degenerate if there exists a bipartite graph in F (P) , very degenerate if there
is a forbidden tree for P and defective if the forbidden tree is a star K1,n.

The lattice (La,⊆) of all additive and hereditary graph properties par-
tially ordered by set-inclusion is investigated in the survey [5].

For an arbitrary hereditary property there exists a number c(P), called
the completeness of P defined in the following way: c(P) = max{k : Kk+1 ∈
P}. It is easy to see that the unique hereditary additive property whose
completeness is zero, is the property of all edgeless graphs, denoted by O,
while the class D1 of all acyclic graphs has completeness 1.

Let P1,P2, . . . ,Pn be properties of graphs. A vertex (P1,P2, . . . ,Pn)-
partition of a graph G is a partition {V1, V2, . . . , Vn} of V (G) such that each
partition class Vi induces a subgraph G[Vi] of property Pi, i = 1, 2, ..., n. A
graph G is said to be uniquely (P1,P2, . . . ,Pn)-partitionable if G has exactly
one vertex (P1,P2, . . . ,Pn)-partition. Let us denote by P1◦P2◦ . . . ◦Pn the
class of all graphs which have a vertex (P1,P2, . . . ,Pn)-partition and by
U(P1◦P2◦ . . . ◦Pn) the set of uniquely (P1,P2, . . . ,Pn)-partitionable graphs.

Some basic results on uniquely partitionable graphs may be found in
[11, 10, 14, 4, 5, 7, 12].

It is easy to prove that if P1,P2, . . . ,Pn ∈ L
a, then P1◦P2◦ . . . ◦Pn ∈ L

a,
too.

A graph property R ∈ L
a is said to be reducible in L

a if there exist
P,Q ∈ L

a such that R = P◦Q and irreducible otherwise.

We say that a property P ∈ L
a is generated by a set G of graphs if

G ∈ P if and only if there is a graph F ∈ G such that G ⊆ F .

In [12, 13] the following general results have been presented:

Theorem 1. Let P1,P2, . . . ,Pn be irreducible properties of graphs. Then
the property R = P1◦P2◦ . . . ◦Pn is generated by the class U (P1◦P2◦ . . . ◦Pn)
of uniquely (P1,P2, . . . ,Pn)-partitionable graphs. Moreover the factorization
of R = P1◦P2◦ . . . ◦Pn into irreducible factors is unique apart from the order
of the factors.
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A necessary and sufficient condition of the existence of uniquely (P1,

P2, . . . ,Pn)-partitionable graphs in general is presented in [6].
In this paper we consider the problem of the existence of uniquely

(P,Q)-partitionable planar graphs for P,Q 6= O. We shall show that there
are no uniquely (D1,D1)-partitionable planar graphs proving that every
(D1,D1)-partitionable planar graph G has at least three different (D1,D1)-
partitions. We shall show that the above mentioned result is sharp i.e., for
any P◦Q ⊂ D1◦D1 the class U(P◦Q) ∩ P lanar 6= ∅.

Concerning (D1,D1)-partitionable planar graphs from the algorithmic
point of view, it is an interesting open problem whether a second (D1,D1)-
partition can be found in polynomial time if one such partition is given. (As
we prove here, at least two others exist.) The background of this problem
and approximation results can be found in [1].

2. Existence of Uniquely Partitionable Planar Graphs

Since the maximal uniquely (P1,P2, . . . ,Pn)-partitionable graphs generating
the property R = P1◦P2◦ . . . ◦Pn are joins of graphs of order at least 3, they
contain subgraphs isomorphic to K3,3 and therefore they are not planar. The
problem of the existence of uniquely (P1,P2, . . . ,Pn)-partitionable planar
graphs has been investigated in [9] and [8]. In this section we summarize
the known results:

Proposition 1 [9]. Let P1,P2, . . . ,Pn be any additive and hereditary prop-
erties of graphs. Then

1. if U(P1◦P2◦ . . . ◦Pn) ∩ P lanar 6= ∅, then n ≤ 4

2. U(P1◦P2◦P3◦P4)∩P lanar 6= ∅ if and only if P1 = P2 = P3 = P4 = O.

Theorem 2 [9]. If F (P) contains a star K1,k+1, k ≥ 1 (i.e., P is defective),
then there exists a uniquely (O,P)-partitionable outerplanar graph G.

Theorem 3 [9]. If c(P) = 1 and F (P) contains a tree T (P is very
degenerate), then there exists a uniquely (O,P)-partitionable outerplanar
graph G.

Theorem 4 [9]. Let P be an additive hereditary property of completeness 1.
Then there exists a uniquely (O,P)-partitionable planar graph G if and only
if some odd cycle C2q+1 has property P or there is a bipartite planar graph
H in F (P).

Theorem 2 was generalized by Bucko and Ivančo:
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Theorem 5 [8]. Let P be an additive hereditary property. If there is a
tree T ∈ F (P) (i.e., P is very degenerate), then there exists a uniquely
(O,P)-partitionable planar graph.

They also present a construction of uniquely (P,Q)-partitionable planar
graphs for properties of completeness 1 provided that one of them is very
degenerate.

Theorem 6 [8]. Let P, Q be the additive hereditary properties of graphs
with completeness 1. If there is a tree T ∈ F (P) , then there exists a uniquely
(P,Q)-partitionable planar graph.

The next result presents the existence of uniquely (P,Q)-partitionable
graphs with respect to the defective properties P and Q of arbitrary large
completeness.

Theorem 7. Let P,Q ∈ L
a be defective properties of graphs. Then there

exists a uniquely (P,Q)-partitionable planar graph.

Proof. Let K1,r ∈F (P) and K1,s ∈F (Q) and without loss of generality let
us assume r ≤ s. Let us denote by H the graph consisting of s − 1 disjoint
copies of K1,2s−1. Then (see Figure 1 for r = s = 4) the planar graph
K1 +H is uniquely (P,Q)-partitionable. Indeed, the vertex v of K1 and the
s− 1 centers of the stars K1,2s−1 must belong into the same partition class,
forcing the remaining vertices of H to be in the other.

3. Non-Existence of Uniquely (P,Q)-Partitionable Planar

Graphs

The Four Colour Theorem immediately implies that every planar graph has
at least three (O2,O2)-partitions. We are going to prove the following

Theorem 8. If a planar graph of order n ≥ 3 is (D1,D1)-partitionable,
then it has at least three (D1,D1)-partitions.



Remarks on the Existence of Uniquely ... 163

t

t

t

t
t

t

t
t

dt
t

t

t
t

t

ttttttt

v

Figure 1

Proof. The assertion is trivial for n = 3. Below we assume that G = (V,E)
is a (D1,D1)-partitionable plane graph of order n ≥ 4 with a fixed planar
embedding, and denote by V1 and V2 the partition classes in one of its
(D1,D1)-partitions. For i = 1, 2 let Gi = G[Vi] = (Vi, Ei) be the subgraphs
of G induced by Vi.

Lemma 1. If Theorem 8 holds true for all triangulations, then it is valid
for all planar graphs.

Proof. We apply induction on 3|V |− |E|− 6. One can clearly assume that
G is connected (and even 2-connected). If G is not a triangulation, then
it has a face F with four consecutive vertices v1, v2, v3, v4 such that v2 and
v3 belong to distinct partition classes. Say, v2 ∈ V2 and v3 ∈ V1. If the
new edge e1 := v1v3 cannot be inserted without destroying the (D1,D1)-
partition V1 ∪V2, then v1 ∈ V1, and v1 and v3 belong to the same connected
component of G1. Similarly, if the edge e2 := v2v4 cannot be inserted, then
v2 and v4 belong to the same component of G2. But then the v1–v3 path of
G1 and the v2–v4 path of G2 share a vertex by planarity, a contradiction.

Consequently, there is an edge e (either e1 or e2) such that G + e is
(D1,D1)-partitionable. By the induction hypothesis, G + e has at least
three (D1,D1)-partitions. Observe that removing e, each of them remains a
(D1,D1)-partition of G.
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From now on we assume that G is a triangulation, and together with its
planar embedding we also draw the planar dual G∗ in the natural way (one
dual vertex inside each face, one dual edge crossing each edge of G, no
two dual edges cross, each dual edge lies in the interior of the quadrangle
formed by the union of the corresponding two triangles). Note that |V | = n,
|E| = |E∗| = 3n − 6, |V ∗| = 2n − 4, and G∗ is 3-regular. Denote E3 :=
E \ (E1 ∪ E2).

Lemma 2. We have |E3| = 2n − 4, and Gi is connected for i = 1, 2.

Proof. The inequality |E3| ≤ 2n−4 follows from the fact that the edges of
E3 form a planar bipartite graph on (at most) n vertices. This also implies
|E1| + |E2| ≥ n − 2. On the other hand, G1 and G2 are acyclic, therefore
|E1| + |E2| = n − c, where c ≥ 2 is the number of connected components
in G1 ∪ G2. As G1 and G2 are vertex disjoint, this implies c = 2 and
connectivity for both Gi.

Denote by E∗

3 the set of dual edges corresponding to E3.

Lemma 3. The edges of E∗

3 form a Hamiltonian cycle in G∗.

Proof. As the vertex set of each triangle of G is 2-colored, each triangle
contains precisely two edges of E3. Therefore, E∗

3 forms a 2-regular subgraph
in G∗. We have to show that it consists of precisely one cycle. Observe that
the cycles of E∗

3 are drawn as mutually disjoint Jordan curves, therefore k

such curves divide the plane into k + 1 regions. By the conventions as G∗ is
drawn, each region contains at least one vertex of G, therefore k = 1 follows
from the fact that each Gi (i = 1, 2) is connected.

Next, we apply a well-known theorem of Smith 1946 (see in: Berge [2] p. 185,
or [3] p. 190) to find further Hamiltonian cycles in G∗.

Lemma 4. The graph G∗ contains at least three distinct Hamiltonian cycles.

Proof. By Smith’s theorem, every edge of a cubic graph is contained in
an even number of Hamiltonian cycles. We have already found one, namely
E∗

3 , in the graph G∗. Choosing one of its edges arbitrarily, we find a second
Hamiltonian cycle, say E ′

3

∗. Finally, taking any edge in the symmetric
difference of E∗

3 and E′

3

∗, we get a third cycle.

The proof of Theorem 8 will be completed by the following observation.
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Lemma 5. If E ′∗ is a Hamiltonian cycle of G∗ for some E ′ ⊆ E, then
the subgraph formed by the edges of E \ E ′ is acyclic and has exactly two
connected components; i.e., it defines a (D1,D1)-partition of G.

Proof. We have seen that the curve E ′∗ splits the plane into two regions,
each containing at least one vertex of G. Moreover, the two subgraphs
induced by the vertices belonging to the corresponding regions have precisely
n − 2 edges altogether. Thus, in order to prove that they are acyclic, it
suffices to show that they are connected.

Let G′ be any one of the two induced subgraphs whose vertex set V ′

contains two or more vertices, and let v1, v2 ∈ V ′ be arbitrary. Choose
any two triangles Ti incident to vi (i = 1, 2). By assumption, E ′ contains
precisely two edges from each Ti. Let ei ∈ E′ ∩E(Ti) be an edge containing
vi. Since E′∗ is a Hamiltonian cycle in G∗, the dual edges e∗1 and e∗2 are
joined by a path along E ′∗. Each dual edge e∗ of this path corresponds to
an edge e ∈ E having precisely one vertex ve in G′. For any two consecutive
edges e∗, e′

∗, the edges e and e′ are contained in a triangle of G, therefore in
such a situation ve and ve′ are either identical or adjacent; and in the latter
case, the edge joining them belongs to G′. Consequently, the path from e∗1
to e∗2 defines a walk (possibly with repeated vertices) from v1 to v2. Thus,
G′ is connected.

As distinct edge-cuts E3 cannot belong to the same (D1,D1)-partition, the
three Hamiltonian cycles found above yield three distinct (D1,D1)-partitions
of G. The proof of Theorem 8 is complete.

The sharpness of Theorem 8 follows by Theorem 6 and next Theorem pre-
sented in [5].

Theorem 9 [5]. Let R1 and R2 be additive degenerate hereditary properties
and suppose that P1◦P2 ⊆ R1◦R2 for P1,P2 ∈ L

a. Then P1 ⊆ R1 and
P2 ⊆ R2 or P1 ⊆ R2 and P2 ⊆ R1.
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