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Abstract

Let H be a fixed finite graph and let → H be a hom-property, i.e.
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1. Definitions

In general we follow the notation and terminology of [1]. Denote by I the set
of all finite undirected simple graphs. Any isomorphism-closed subset P of I
is called a property of graphs. A property P is hereditary if whenever a graph
G is in P, then all subgraphs of G are also in P. A property P is additive

if whenever graphs G and H are in P, then their disjoint union, denoted by
G ∪ H, is in P too. When partially ordered under set inclusion, the poset
of all additive hereditary properties forms a complete distributive lattice,
which we will denote by La. We use L to denote the lattice of hereditary
properties. A property is called non-trivial if it contains at least one non-null
graph and it is not equal to I.

Let P1,P2, ...,Pn be any properties of graphs. A vertex (P1,P2, ...,Pn)-
partition of a graph G is a partition (V1, V2, ..., Vn) of V (G) such that for
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each i = 1, 2, ..., n, the induced subgraph G[Vi] has the property Pi. Any of
the Vi may be empty. The property P1 ◦ P2 ◦ ... ◦ Pn is defined as the set
of all graphs having a vertex (P1,P2, ...,Pn)-partition. If P1,P2, ...,Pn are
all (additive) hereditary properties, then P1 ◦ P2 ◦ ... ◦ Pn is an (additive)
hereditary property too. For convenience, we will write P1 ◦ P2 ◦ ... ◦ Pn as
P1P2...Pn, omitting the binary operation symbol.

An additive hereditary property R is called reducible in La if there exist
non-trivial properties P and Q in La such that R = PQ. Otherwise R is
called irreducible. A reducible property R ∈ La is called a minimal reducible

bound for property P ∈ La if P ⊆ R and there is no reducible property R1

satisfying P ⊆ R1 ⊆6 R. From this definition, each reducible property is the
unique minimal reducible bound for itself. We use the symbol B(P) to
denote the class of all minimal reducible bounds for property P. We do not
know whether a minimal reducible bound exists for every property P, and
B(P) is known for only a few properties P. Similar definitions hold in L.

Given any P ∈ La (or in L), we define the class of all P-maximal graphs
by M(P) = {G ∈ P : G + e /∈ P for any e ∈ E(G)}. M(P) determines P
in the sense that H ∈ P iff there exists some P-maximal graph G such that
H ⊆ G.

A homomorphism from a graph G to a graph H is a mapping f of
the vertex set V (G) to the vertex set V (H) which preserves edges, i.e. if
{u, v} ∈ E(G), then {f(u), f(v)} ∈ E(H). We say that G is homomorphic

to H if there exists a homomorphism from G to H, and we write G → H.
If G → H, then χ(G) ≤ χ(H). If H is a finite graph, then the hom-property

generated by H is the set → H = {G ∈ I : G → H}. Note that → H is an
additive hereditary property for any H ∈ I.

In Section 2 we summarise some fundamental properties of hom-
properties. In Section 3 we extend the definition of hom-properties to include
→ H where H may be an infinite union of finite graphs. We then describe
B(→ H) in the lattice La in Section 4 and consider some applications of
these results in Section 5. Section 6 describes B(→ H) in the lattice L.

2. Fundamental Properties of Hom-Properties

Given a graph G, a core of G is any subgraph G
′

of G such that G → G
′

,
and such that G is not homomorphic to any proper subgraph of G

′

. Every
graph G has a unique core up to isomorphism (see [2]) which is denoted
by C(G). If G = C(G), i.e. if G is not homomorphic to any of its proper
subgraphs, then we call G a core. Since any graph homomorphic to G is
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also homomorphic to C(G), and any element of → C(G) is in → G, we have
that → G =→ C(G). Hence, given any hom-property, we can assume it is
of the form → H where H is a core.

The (→ H)-maximal graphs are known and described in [4]:

Given any G ∈ I, with V (G) = {v1, v2, ..., vn}, its multiplications G::

are defined as follows:

1. V (G::) = W1 ∪ W2 ∪ ... ∪ Wn,

2. for each 1 ≤ i ≤ n, |Wi| ≥ 1,

3. for any pair 1≤ i < j ≤ n,Wi ∩ Wj = ∅,

4. The only edges of G:: are all the edges of the form {u, v} where u ∈
Wi, v ∈ Wj and {vi, vj} ∈ E(G).

Thus each vertex vi of G is replaced by a non-empty set of vertices Wi

(also denoted by v::
i ) and if u ∈ Wi, v ∈ Wj, then u and v are adjacent

in G:: iff vi and vj are adjacent in G. W1,W2, ...,Wn are independent sets
called the multivertices of G::. We also write G:: as G::(W1,W2, ...,Wn)
to emphasize its structure, and G::(k) for G::(W1,W2, ...,Wn) if |Wi| = k
for each i = 1, 2, ..., n. By mapping all the vertices in Wi to vi for each
i = 1, 2, ..., n, it is readily seen that G:: → G, i.e. G:: ∈→ G and that
C( G::) = G if G is a core.

Kratochv́ıl, Mihók and Semanǐsin proved in [4] that every (→ H)-
maximal graph is a multiplication of a subgraph of H that is itself a core.
Thus for every (→ H)-maximal graph G, there exists an integer k ≥ 1 such
that G is contained in H ::(k).

The following lemma describes properties of hom-properties that will be
used often in what follows. We use the notation H + G for the join of two
graphs H and G, i.e. for the graph obtained from H ∪G by adding all edges
joining vertices of H to vertices of G. A graph that is the join of two non-
nul graphs is called decomposable, while a graph that is not decomposable
is called indecomposable.

Lemma 1. 1. → K1 is the set of all edgeless graphs, also denoted by O.
We have → K1 =→ H for any edgeless graph H, since C(H) = K1.

2. → K2 is the set of all bipartite graphs and → K2 =→ H for any graph

H with chromatic number 2, since C(H) = K2.

3. For any graphs H and G,→ (H + G) = (→ H)(→ G) (see [3]).

4. → H is irreducible in La
iff H is indecomposable (see [3]).

5. For any graphs H and G,→ H ⊆→ G iff H → G iff H ∈→ G (see [2]).
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3. The Hom-Property → H for Infinite H

Although each hom-property is an additive hereditary property and is thus
an element of the complete lattice La, the hom-properties do not form a
complete sublattice of La. For example ∨{→ R : R is a triangle-free core}
cannot be a hom-property: If ∨{→ R : R is a triangle-free core} =→ H
for some graph H, then → R ⊆→ H for each triangle-free core R. This
would imply that χ(R) ≤ χ(H) for each triangle-free core R, which is not
true, since triangle-free graphs of arbitrarily high chromatic number can be
constructed.

To enable the supremum and infimum (intersection) of an arbitrary set
of hom-properties to again be a hom-property, we extend the definition of
hom-properties by including → H, where H is any union of finite graphs.
For such a graph H we define → H by → H = {G ∈ I : G → H}, i.e.
→ H is the set of all finite graphs admitting a homomorphism into H.
Since the set of all finite graphs is countable, and since only one copy of
each connected component of H is sufficient, we can always assume that H
is a countable union of finite cores and that these cores are pairwise non-
isomorphic. Unlike in the case where H is finite, H itself need no longer
have a core e.g. K1 ∪K2 ∪K3 ∪ ... has no core, and H need not have a finite
chromatic number.

Extending the definition of hom-properties to allow → H where H is
either finite or a countable union of finite graphs makes the hom-properties
a complete sublattice of La, i.e. the supremum and infimum of any set of
hom-properties is again a hom-property, as the following two results show.

Theorem 2. Let {Hα : α ∈ A} be a set of graphs, each of which is finite

or a countable union of finite graphs. Then ∨{→ Hα : α ∈ A} =→ (∪{Hα :
α ∈ A}).

Proof. In the lattice La, ∨{→ Hα : α ∈ A} is the least additive hereditary
property which contains each → Hα, α ∈ A. We show that → (∪{Hα :
α ∈ A}) satisfies this.

Clearly, if G ∈→ Hα for any α ∈ A, then G ∈→ (∪{Hα : α ∈ A}).
Therefore → Hα ⊆→ (∪{Hα : α ∈ A}) for each α ∈ A.

Now suppose that → Hα ⊆ P for each α ∈ A, for some property P ∈ La.
We show that → (∪{Hα : α ∈ A}) ⊆ P : Let G ∈→ (∪{Hα : α ∈ A}). By
definition, G is finite, and hence there is a homomorphism from G to a finite
union of Hα’s, say G ∈→ H1∪H2∪...∪Hn. Since each connected component
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of G is homomorphically mapped to exactly one Hi, G has a decomposition
G = G1 ∪ G2 ∪ ... ∪ Gn, such that Gi → Hi, for i = 1, 2, ..., n. But then we
have Gi ∈→ Hi ∈ P for i = 1, 2, ..., n. As each Gi is in P, by the additivity
of P, G is in P too.

Theorem 3. Let {Hα : α ∈ A} be a set of graphs, each of which is finite or

a countable union of finite graphs. Then ∧{→ Hα : α ∈ A} =→ (∪{R : R
is a core contained in a multiplication of a finite subgraph of Hα for each

α ∈ A}).

Proof. Suppose G ∈ ∩{→ Hα : α ∈ A}. Then G → C(G) and C(G) ∈
∩{→ Hα : α ∈ A}. Then for each α ∈ A,C(G) ∈→ Hα and so C(G)
is contained in a multiplication of a finite subgraph of Hα. So we have
G ∈→ C(G) ⊆→ (∪{R : R is a core contained in a multiplication of a finite
subgraph of Hα for each α ∈ A}).

Conversely, suppose G ∈→ (∪{R : R is a core contained in a multi-
plication of a finite subgraph of Hα for each α ∈ A}). Then there exists a
homomorphism f : G → (∪{ R : R is a core contained in a multiplication of a
finite subgraph of Hα for each α ∈ A}). Consider any connected component
K of G : It is mapped by f to one of these cores, say R. By the definition
of R, R ∈ ∩{→ Hα : α ∈ A} and so K ∈→ R ⊆ ∩{→ Hα : α ∈ A}. But
then ∩{→ Hα : α ∈ A} is an additive property containing each connected
component of G and we conclude that G itself is in ∩{→ Hα : α ∈ A}.

4. Minimal Reducible Bounds for → H in La

In this section we describe the set of all minimal reducible bounds for → H
in the lattice La, first dealing with the case where H is finite, and then with
the infinite case. The following lemma and its corollary are useful for both
cases.

Lemma 4. Let H be a finite core or a countable union of finite cores. If

P and Q are non-trivial properties in L with O ⊆ P and O ⊆ Q such that

→ H ⊆ PQ then there exists a partition (V1, V2) of V (H) with V1 6= ∅ and

V2 6= ∅ such that → H ⊆ (→ H[V1])(→ H[V2]) ⊆ PQ and → H[V1] ⊆ P
and → H[V2] ⊆ Q.

Proof. First suppose that H is finite and let V (H) = {v1, v2, ..., vn}. We
will show that there exists a partition (V1, V2) of V (H) with V1 6= ∅ and
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V2 6= ∅ such that H[V1]
::(k) ∈ P for all k ≥ 1 and H[V2]

::(k) ∈ Q for all
k ≥ 1. Then all maximal elements of → H[V1] are in P and so → H[V1]
⊆ P, and similarly → H[V2] ⊆ Q.

Fix k ≥ 1. Since H ::(2k − 1) ∈→ H ⊆ PQ, H ::(2k − 1) has a (P,Q)-
partition. For each i = 1, 2, ..., n, v::

i (2k − 1) has at least k vertices in the
P part or at least k vertices in the Q part. By deleting k − 1 vertices from
each v::

i (2k−1), we can ensure that the remaining v ::
i (k) is completely in the

P part or completely in the Q part. We can also ensure that neither the P
nor the Q part is empty: One of the v::

i (k) can be moved to the empty part
if necessary.

We now have disjoint sets I1and I2 such that I1 ∪ I2 = {1, 2, ..., n} and
({v : v ∈ v::

i (k), i ∈ I1}, {v : v ∈ v::
i (k), i ∈ I2}) forms a (P,Q) partition of

H ::(k).
Since P and Q are hereditary properties, each such pair (I1, I2) induces

a (P,Q)-partition of H ::(r) for each r ≤ k,with each v::

i (r) entirely in the P
part or entirely in the Q part. Since there are only finitely many partitions
(I1, I2) of {1, 2, ..., n}, there exists a pair (I∗

1 , I∗2 ) which serves for infinitely
many values of k, and hence for every value of k. Let V1 = {vi ∈ V (H) : i ∈
I∗1} and V2 = {vi ∈ V (H) : i ∈ I∗2}. Then H[V1]

::(k) ∈ P for all k ≥ 1 and
H[V2]

::(k) ∈ Q for all k ≥ 1.
Suppose now that H is a countable union of finite graphs, H = H1 ∪

H2 ∪ .... Denote by Gn the graph H1 ∪ H2 ∪ .... ∪ Hn, n ≥ 1, and let G be
the set of all Gn i.e. G = { Gn : n ≥ 1}.

For each n ≥ 1,→ Gn ⊆ PQ and so by the finite case above, there
exists a partition (W n

1 ,W n
2 ) of V (Gn) with neither part empty such that

→ Gn[W n
1
] ⊆ P and → Gn[W n

2
] ⊆ Q. Restricted to V (H1), each (W n

1
,W n

2
)

induces a partition of V (H1) such that → H1[W
n
1 ] ⊆ P and → H1[W

n
2 ] ⊆ Q.

Since V (H1) has only finitely many partitions, there exists a partition of
V (H1) with these properties induced by infinitely many (W n

1 ,W n
2 ). Call

this partition (V 1
1 , V 1

2 ) and note that → H1[V
1
1 ] ⊆ P and → H1[V

1
2 ] ⊆ Q.

Now delete from G all those Gn whose corresponding (W n
1 ,W n

2 ) do not
induce (V 1

1 , V 1
2 ) and call the resulting set G ′. Suppose that i ≥ 2 is the least

integer such that Gi is in G′. For each n ≥ i for which Gn ∈ G′, the parti-
tion (W n

1 ,W n
2 ) of V (Gn) restricted to V (Gi) induces a partition of V (Gi).

Since V (Gi) has only finitely many partitions, there exists a partition of
V (Gi) induced by infinitely many (W n

1 ,W n
2 ). This partition of V (Gi) in-

duces (V 1
1
, V 1

2
) in V (H1). Label the partitions induced by this partition of

V (Gi) in V (H2), V (H3), ..., V (Hi) by (V 2
1 , V 2

2 )(V 3
1 , V 3

2 ), ..., (V i
1 , V i

2 ), respec-
tively. For each k = 1, 2, ..., i we have → Hk[V

k
1 ] ⊆ P and → Hk[V

k
2 ] ⊆ Q.
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We now repeat the procedure: delete from G ′ all those Gn whose corre-
sponding (W n

1 ,W n
2 ) do not induce (V 1

1 , V 1
2 ), (V 2

1 , V 2
2 ), ..., (V i

1 , V i
2 ) and call

the resulting set G ′′. If j ≥ i+1 is the least integer such that Gj ∈ G′′, choose
a partition of V (Gj) that is induced by infinitely many of the (W n

1 ,W n
2 )

which satisfy Gn ∈ G′′, etc.

Following this procedure, we obtain for each n ≥ 1 a partition (V n
1 , V n

2 )
of V (Hn) which satisfies → Hn[V n

1 ] ⊆ P and → Hn[V n
2 ] ⊆ Q. With V1 =

⋃

n≥1

V n
1 and V2 =

⋃

n≥1

V n
2 , we have a partition of V (H). If either V1 or V2

is empty, move an arbitrary vertex into this set. By the construction of V1

and V2, → H[V1] ⊆ P and → H[V2] ⊆ Q.

Corollary 5. Let H be a finite core or a countable union of finite cores.

If P and Q are non-trivial properties in La
such that → H ⊆ PQ then

there exists a partition (V1, V2) of V (H) with V1 6= ∅ and V2 6= ∅ such that

→ H ⊆ (→ H[V1])(→ H[V2]) ⊆ PQ and → H[V1] ⊆ P and → H[V2] ⊆ Q.

We can now describe the minimal reducible bounds for the hom-properties
in La.

4.1. Finite H

Let H be a finite core such that → H is irreducible in La (i.e. H is indecom-
posable). Let H be the set of all hom-properties → C1+C2 = (→ C1)(→ C2)
formed as follows:

For each partition (V1, V2) of V (H) with V1 6= ∅, V2 6= ∅, let C1 =
C(H[V1]) and C2 = C(H[V2]).

Lemma 6. → H ⊆→ C1 + C2 for each → C1 + C2 ∈ H.

Proof. This will follow if we can show that there is a homomorphism from
H to C1 + C2. By the definition of C1 and C2, there exist homomorphisms
f1 : V1 → V (C1) and f2 : V2 → V (C2). Define f : V (H) → V (C1 + C2) by
f(x) = fi(x) if x ∈ Vi, i = 1, 2.

Since H is a finite graph, the set H is finite and thus minimal elements (under
inclusion of properties) exist. These minimal elements of H are precisely all
the minimal reducible bounds of → H, i.e. they form B(→ H).

Theorem 7. B(→ H) = Min⊆H.
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Proof. We must show that if there are non-trivial properties P and Q
in La such that → H ⊂ PQ, then there exists a → C1 + C2 ∈ H such
that → H ⊂→ C1 + C2 ⊆ PQ. This follows immediately by Corollary 5:
there exists a (P,Q) partition (V1, V2) of V (H) with V1 6= ∅, V2 6= ∅ such
that → H ⊆→ H[V1] → H[V2] ⊆ PQ, and so → H ⊆ (→ C(H[V1]))
(→ C(H[V2])) ⊆ PQ.

All the minimal reducible bounds in La for a hom-property → H, where H
is finite, can thus be found by forming the finite set H (by considering all
partitions (V1, V2) of V (H) with V1 6= ∅ and V2 6= ∅, and then forming the
hom-properties → (C(H[V1]) + C(H[V2])) and then determining which of
these reducible properties are minimal under inclusion.

4.2. Infinite H

We now consider minimal reducible bounds in La for an irreducible → H,
where H is an infinite union of finite cores. By Corollary 5, if a minimal
reducible bounds exists for such a → H, it is of the same form as in the
finite case, i.e. it has the form (→ H[V1])(→ H[V2]) for some partition
(V1, V2) of V (H) with V1 6= ∅ and V2 6= ∅. We can again form the set H

for an infinite graph H, H = {(→ H[V1])(→ H[V2]) : (V1, V2) is a partition
of V (H) and V1 6= ∅, V2 6= ∅} and clearly → H ⊆ (→ H[V1])(→ H[V2])
for each (→ H[V1])(→ H[V2]) in H. However H will now be an infinite set
and the existence of minimal elements is no longer trivial. In the following
theorem we show that H has minimal elements and that every element of H

contains a minimal element. These minimal elements thus form B(→ H),
the set of all minimal reducible bounds for → H.

Theorem 8. Let H be an countable union of finite cores. Then the set

H contains minimal elements, and each element of H contains a minimal

element of H.

Proof. We will first use Zorn’s lemma to show that H = {(→ H[V1])(→
H[V2]) : (V1, V2) is a partition of V (H), V1 6= ∅, V2 6= ∅} has minimal ele-
ments. This will follow if we can show that every chain in H has a lower
bound in H.

Suppose to the contrary that C = {(→ H[V α
1

])(→ H[V α
2

]) : α ∈ A} is an
infinite chain in H that does not have a lower bound in H. Then given any
element of the chain, there exists an infinite chain of elements of C below it.
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Suppose H = H1∪H2∪ .... For each α ∈ A, the partition (V α
1 , V α

2 ) of V (H)
induces a partition of V (H1). Since V (H1) has only finitely many partitions,
there exists a partition (V1,1, V2,1) of V (H1) that is induced infinitely many
times and that satisfies: given any α ∈ A, there exists α′ ∈ A such that
(→ H[V α′

1 ])(→ H[V α′

2 ]) ⊂ (→ H[V α
1 ])(→ H[V α

2 ]) and (V α′

1 , V α′

2 ) induces
(V1,1, V2,1) in V (H1). (If for each induced partition of V (H1) occuring in-
finitely many times, there exists an α such that every α′ ∈ A satisfying
(→ H[V α′

1 ])(→ H[V α′

2 ]) ⊂ (→ H[V α
1 ])(→ H[V α

2 ]) induces some different
partition of V (H1), then, since these α are finite, we can choose the one
among them corresponding to the least element of C. This element of C
contains only finitely many other elements of C below it, contradicting our
hypothesis.) We have H1[V1,1] ∈→ H[V α′

1 ] and H2[V1,2] ∈→ H[V α′

2 ].

Now form A′ from A by deleting all those α for which (V α
1 , V α

2 ) does
not induce (V1,1, V2,1). For any α ∈ A, there exists α′ in A′ such that (→
H[V α′

1 ])(→ H[V α′

2 ]) ⊂ (→ H[V α
1 ])(→ H[V α

2 ]) and H1[V1,1] ∈→ H[V α′

1 ]
and H1[V2,1] ∈→ H[V α′

2 ]. We now have a new infinite chain, C ′ = {(→
H[V α

1
])(→ H[V α

2
]) : α ∈ A′}, and we repeat the procedure using H2 and C′,

to form C′′, etc. For each Hi we obtain a partition (V1,i, V2,i) of V (Hi) and
after completing the procedure i times, we have a chain of (→ H[V α

1 ])(→
H[V α

2 ]) such that for all α in the new index set, the partition (V α
1 , V α

2 )
of V (H) induces the partition (V1,j, V2,j) of V (Hj) for all j = 1, 2, ..., i.
Also, for any α ∈ A, there exists α′ in the new index set such that (→
H[V α′

1 ])(→ H[V α′

2 ]) ⊂ (→ H[V α
1 ])(→ H[V α

2 ]) and Hj[V1,j ] ∈→ H[V α′

1 ] and
Hj[V2,j ] ∈→ H[V α′

2 ] for all j = 1, 2, ..., i.

Now let V1 =
⋃

i≥1

V1,i and let V2 =
⋃

i≥1

V2,i. There are now two possibili-

ties: either both V1 and V2 are non-empty, or one of them (say V2) is empty
while the other (V1) equals V (H).

Suppose first that both V1 and V2 are non-empty. Then (→ H[V1])(→
H[V2]) is itself in H. We will show that (→ H[V1])(→ H[V2]) is a lower
bound for the chain C.

Let α ∈ A and let G ∈ (→ H[V1])(→ H[V2]). Then there exists a
partition (A,B) of V (G) such that G[A] → H[V1] and G[B] → H[V2].
Since both G[A] and G[B] are finite, there exists an integer n such that
G[A] → ∪{Hi[V1,i] : i = 1, 2, ..., n} and G[B] → ∪{Hi[V2,i] : i = 1, 2, ..., n}.
Now by the remark at the end of the previous paragraph, after n steps of
the procedure,there exists an α′ in the modified index set of the chain with
(→ H[V α′

1 ])(→ H[V α′

2 ]) ⊂ (→ H[V α
1 ])(→ H[V α

2 ]) and such that Hi[V1,i] ∈→
H[V α′

1 ] and Hi[V2,i] ∈→ H[V α′

2 ] for i = 1, 2, ..., n . Hence G[A] ∈→ H[V α′

1 ]
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and G[B] ∈→ H[V α′

2 ], so G ∈ (→ H[V α′

1 ])(→ H[V α′

2 ]) ⊂ (→ H[V α
1 ])(→

H[V α
2 ]), i.e. (→ H[V1])(→ H[V2]) ⊆ (→ H[V α

1 ])(→ H[V α
2 ]).

Now suppose that V2 is empty and that V1 = V (H). We claim that in
this case, any element of H of the form (→ H[W1])(→ H[W2]) where W2 is
independent, is a lower bound for the chain C. To prove this, fix such an
element of H. Suppose it is (→ H[W1])(→ H[W2]), with W2 independent.
Let α ∈ A and let G ∈ (→ H[W1])(→ H[W2]). We must show that G ∈
(→ H[V α

1 ])(→ H[V α
2 ] : Since G is finite, there exists an integer n such that

G ∈ (→ (H1 ∪ H2 ∪ ... ∪ Hn)[W1])(→ (H1 ∪ H2 ∪ ... ∪ Hn)[W2]). Now there
exists an α′ ∈ A such that (→ H[V α′

1 ])(→ H[V α′

2 ]) ⊂ (→ H[V α
1 ])(→ H[V α

2 ])
and (V α′

1 , V α′

2 ) induces (V1,i, V2,i) = (V (Hi), ∅) for each i = 1, 2, ..., n. Then
(H1 ∪H2 ∪ ...∪Hn)[W1] → H[V α′

1 ] (the inclusion map) and (H1 ∪H2 ∪ ...∪
Hn)[W2] → H[V α′

2 ] (since W2 is independent and V α′

2 is non-empty.) Hence
G ∈ (→ H[V α′

1
])(→ H[V α′

2
]) ⊂ (→ H[V α

1
])(→ H[V α

2
]).

We can conclude by Zorn’s lemma that the set H has minimal elements.
By fixing an element of H and considering only chains of elements of H

each of which is contained in that fixed element, the same argument as
above shows that each element of H contains at least one of these minimal
elements of H. Hence, as in the case where H is finite, the minimal elements
of H form B(→ H) when H is an infinite union of finite graphs.

5. Some Applications

In the following applications, we allow the graph H to be either finite or
a countable union of finite graphs and we show the existence of minimal
reducible bounds of certain types in La for → H. In this section we assume
throughout that → H is irreducible, while if H is finite it is assumed to be
a core.

Proposition 9. If H is a graph with chromatic number 3, then O3 is the

unique minimal reducible bound for → H.

Proof. Since χ(H) = 3, there exists a partition (V1, V2) of V (H) such that
H[V1] is an independent set of vertices and H[V2] has chromatic number 2,
i.e.→ C(H[V1]) → C(H[V2])=→ K1 + K2 =→ K3 = O3.

If → H ⊂→ C1 → C2 for any other → C1 → C2 ∈ H, then either C1 or
C2 must contain an edge (since χ(C1) + χ(C2) ≥ 3) and hence K1 + K2 ∈
→ C1 → C2, i.e. → H ⊂→ K1 + K2 = O3 ⊆→ C1 → C2.
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Proposition 10. If H is a graph with chromatic number 4, then all minimal

reducible bounds of → H are of the form O(→ X) for some graph X ⊂ H.

Proof. Since χ(H) = 4, there exists a partition (V1, V2) of V (H) such
that χ(H[V1]) = 2 and χ(H[V2]) = 2, i.e. → C(H[V1]) → C(H[V2]) =→
K2 + K2 =→ K1 + K3 = O(→ K3).

Consider all partitions (V1, V2) of V (H). If H[V1] or H[V2] is inde-
pendent, we get a reducible bound for → H of the form O(→ H[V1]) or
O(→ H[V2]). If neither H[V1] nor H[V2] is independent, then K2 → H[V1]
and K2 → H[V2], so → K2 + K2 = O(→ K3) ⊆→ H[V1] → H[V2].

We can now conclude that all the minimal elements of H are of the form
O(→ X) for some graph X ⊂ H.

Proposition 11. If H is a graph with chromatic number 5, then → H has

a minimal reducible bound of the form O(→ X) for some graph X ⊂ H.

Proof. Since χ(H) = 5, there exists a bound of the form O(→ X) = (→
K1)(→ X) for → H with X ⊂ H and χ(X) = 4. Suppose that → X1 → X2

is any other element of H satisfying → H ⊆→ X1 → X2 ⊆ O(→ X). Since
χ(H) = χ(K1) + χ(X) = 5, we must have χ(X1) + χ(X2) = 5 and this is
only possible if one of X1 or X2 has chromatic number at most 2.

Say χ(X1) ≤ 2. Then we can assume that X1 = K1 or X1 = K2. In the
first case, → X1 → X2 =→ K1 → X2 = O(→ X2), while in the second,
→ X1 → X2 =(→ K1)(→ K1 → X2). By Corollary 5, there exists a bound
for → H of the form O(→ Y ) with Y ⊂ H satisfying → H ⊆ O(→ Y ) ⊆
(→ K1)(→ K1 → X2). In either case there exists a bound for → H of the
form O(→ Y ) with Y ⊂ H satisfying → H ⊆ O(→ Y ) ⊆→ X1 → X2, so
we conclude that H has a minimal element of the form O(→ Y ) for some
Y ⊂ H.

Proposition 12. If H is a graph with chromatic number either infinite or

finite and greater than or equal to 6, and if K4 is not a subgraph of H, then

→ H has a minimal reducible bound of the form O(→ X) for some X ⊂ H.

Proof. There exists a bound for → H of the form O(→ X) where X ⊂ H,
and χ(X) ≥ 5, which is minimal of this type.

Suppose → H ⊂ (→ X1)(→ X2) ⊆ O(→ X) where (→ X1)(→ X2) ∈ H

is not of the form O(→ Y ) for any graph Y. If the chromatic number of
either X1 or X2 is one, say χ(X1) = 1, then (→ X1)(→ X2) = O(→ X2),
contradicting our assumption on the form of (→ X1)(→ X2). If one of X1

or X2 has chromatic number 2, say χ(X1) = 2, then (→ X1)(→ X2) = O
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(O(→ X2)) and by Corollary 5 there exists an element of H of the form
O(→ Y ) between → H and O(O(→ X2)), contradicting the minimality of
O(→ X).

Thus χ(X1) ≥ 3 and χ(X2) ≥ 3 so that both X1 and X2 contain an
odd cycle, say S1 and S2 respectively. But then S1 + S2 ∈ (→ X1)(→ X2)
⊆ O(→ X), so V (S1+ S2) has an (O, (→ X))-partition, say (V1, V2). Thus
(S1+ S2)[V1] is an independent subgraph of either S1 or S2, and (since
χ(S1) = 3 and χ(S2) = 3), (S1+ S2)[V2] must contain K4 as a subgraph, a
contradiction since (S1+ S2)[V2] ∈→ X, and any K4 in (S1 + S2)[V2] would
force a K4 in X ⊂ H.

We conclude that H has a minimal element of the form O(→ Y ) for
some Y ⊂ H.

Proposition 13. If H is a graph with finite chromatic number satisfying

χ(H) = n ≥ 6, and Kn−1 ⊂ H, then → H has a minimal reducible bound of

the form O(→ X) for some X ⊂ H.

Proof. There exists an element O(→ X) ∈ H with χ(X) = n−1. Suppose
now that → H ⊂ (→ H[V1])(→ H[V2]) ⊆ O(→ X), with (→ H[V1])(→
H[V2]) ∈ H. Then χ(H[V1]) + χ(H[V2]) = n. Since Kn−1 ⊂ H, there exists
Ki ⊆ H[V1] and Kj ⊆ H[V2] with i + j = n − 1.

If i ≥ χ(H[V1]), then C(H[V1]) = Ki, so (→ H[V1])(→ H[V2]) = (→
K1)(→ Ki−1 → H[V2]) and by Corollary 5, there exists a bound for → H
of the form O(→ Y ) for some Y ⊂ H, contained in (→ H[V1])(→ H[V2]).
However if i < χ(H[V1]), then j ≥ χ(H[V2]) and C(H[V2]) = Kj , and once
again (→ H[V1])(→ H[V2]) contains a bound for → H of the form O(→ Y )
for some Y ⊂ H.

We conclude that H has a minimal element of the form O(→ Y ) for
some Y ⊂ H.

Proposition 14. If H is a triangle-free graph with finite chromatic number

satisfying χ(H) ≥ 6, then → H has a minimal reducible bound not of the

form OP for any P ∈ La.

Proof. Since χ(H) ≥ 6, there exists (→ X1)(→ X2) ∈ H such that
χ(X1) ≥ 3, χ(X2) ≥ 3, χ(X1) + χ(X2) = χ(H). Suppose (→ X1)(→ X2) =
O(→ X) for some X ⊂ H. X1and X2 each contain an odd cycle, say S1, and
S2 respectively. We then have that S1 + S2 ∈ O(→ X) so V (S1 + S2) has
an (O,→ X)-partition, say (V1, V2). Since (S1 + S2)[V1] is an independent
subset of either S1 or S2, (S1 +S2)[V2] must contain a triangle, forcing H to
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contain a triangle, contradicting our hypothesis. So (→ X1)(→ X2) is not
of the form OP for any P ∈ La.

Suppose now that → H ⊂ O(→ X) ⊂ (→ X1)(→ X2) for some X ⊂ H.
Since χ(H) = χ(X1)+χ(X2), it must be true that χ(X) = χ(H)−1. Let G be
any finite subgraph of X with χ(G) = χ(X). The graph G+{v} is in O(→ X)
and therefore in (→ X1)(→ X2), and so V (G + {v}) has a (→ X1,→ X2)-
partition (V1, V2). Suppose that v ∈ V1. If {w ∈ V (G) : w ∈ V1} is not
an independent set of vertices, then (G + v)[V1] contains a triangle, and
so X1 contains a triangle, which is not possible. If {w ∈ V (G) : w ∈ V1}
is an independent set of vertices, then χ((G + v)[V2]) ≥ χ(H) − 2. But
(G+ v)[V2] ∈→ X2 and χ(X2) ≤ χ(H)− 3, again a contradiction. Hence no
bound of the form OP with P ∈ La can occur between → H and (→ X1)
(→ X2).

We conclude that H has a minimal element not of the form O(→ Y ) for
any Y ⊂ H.

The previous result is not true if we allow χ(H) to be infinite since the set
of all triangle-free graphs, I1, has the unique minimal reducible bound OI1

(see [1], [6]). I1 is the hom-property → ∪{R : R is a triangle free core}, with
infinite chromatic number.

Corollaries 12 and 14 show that if H has a finite chromatic number
greater than or equal to 6, and H is triangle-free, then → H has a minimal
reducible bound of the form OP for some P ∈ La and a minimal reducible
bound not of this form.

6. Minimal Reducible Bounds for → H in L

We now describe the minimal reducible bounds of a hom-property → H in
the lattice of hereditary properties, L. Again, we will describe the case for a
finite H first, and then draw conclusions about an infinite H. The following
lemma and its corollary are useful in both the finite and infinite cases.

Lemma 15. Let H be a finite graph or a countable union of finite graphs.

If → H ⊆ PQ, where P and Q are non-trivial properties in L such that

O 6⊆ Q, then → H ⊆ P.

Proof. Suppose first that H is finite, and suppose that the cardinality of
the largest edgeless graph in Q is k. For any m > k, H ::(m) ∈ PQ and by
the restriction on Q, H ::(m − k) must be in P. This is true for any m > k
so that H ::(r) ∈ P for all r ≥ 1, i.e. → H ⊆ P.



156 A. Berger and I. Broere

If H is infinite, then since → H ′ ⊆ PQ for any finite subgraph H ′ of H, by
the finite case we can conclude that → H ′ ⊆ P for every finite subgraph H ′

of H. Since any graph in → H is contained in some → H ′ where H ′ is a
finite subgraph of H, we can conclude that → H ⊆ P.

Corollary 16. Let H be a finite graph or a countable union of finite graphs.

If → H ⊆ PQ, where P and Q are non-trivial properties in L such that

O " Q, then → H ⊆ (→ H)({K1}) ⊆ PQ.

Proof. The proof is immediate as → H ⊆ P and, since Q is non-trivial,
K1 ∈ Q.

We now describe the minimal reducible bounds for hom-properties in L.

6.1. Finite H

Theorem 17. If H is a finite indecomposable core then the minimal re-

ducible bounds for → H in L are the minimal elements of H as well as the

property (→ H)({K1}).

Proof. By Lemma 4 and Corollary 16 we know that if → H ⊂ PQ, where
P and Q are non-trivial properties in L, then if O ⊆ P and O ⊆ Q, we
have a minimal element of H between → H and PQ, while if O 6⊆ Q, then
(→ H)({K1}) lies between → H and PQ. Note that the case O 6⊆ P and
O 6⊆ Q cannot occur since by Lemma 15, if O 6⊆ Q, then → H ⊆ P, and
since H is assumed to have at least one vertex, all multiplications of this
vertex must be in P i.e. O ⊆ P.

To complete the proof of the theorem, we must show that (→ H)({K1})
is not contained in any minimal element of H, and that no minimal element
of H is contained in (→ H)({K1}).

First suppose to the contrary that → H[V1]+H[V2] is a minimal element
of H satisfying → H[V1] + H[V2] ⊆ (→ H)({K1}). By Lemma 15 we then
have → H[V1] + H[V2] ⊆→ H, and so H[V1] + H[V2] → H. If this homo-
morphism is a surjection, then H is decomposable, a contradiction, while if
this homomorphism is not a surjection, then we can use it to map H into a
proper subgraph of itself, a contradiction to the fact that H is a core.

Now suppose that → (H[V1] + H[V2]) is a minimal element of H and
that (→ H)({K1}) ⊆→ (H[V1] + H[V2]). Now H + K1 ∈ (→ H)({K1}) ⊆→
(H[V1] + H[V2]), so we have the inclusions → H ⊆→ (H + K1) =
(→ H)(O) ⊆→ (H[V1] + H[V2]). By Lemma 4 there exists an element
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→ (H[W1] + H[W2]) in H satisfying → H ⊆→ (H[W1] + H[W2]) ⊆ (→ H)
(O) ⊆→ (H[V1] + H[V2]), and → H[W1] ⊆→ H and → H[W2] = O. By
the minimality of → (H[V1] + H[V2]) in H, the two elements of H must be
equal, and so we have (→ H)(O) =→ (H[W1] + H[W2]) i.e. (→ H)(O) =→
H[W1] → H[W2]. By the unique factorisation theorem [3], and the fact that
→ H[W2] = O, we can conclude that → H =→ H[W1] and O =→ H[W2].
But then we have a homomorphism from H to H[W1], a proper subgraph
of H, contradicting the fact that H is a core.

6.2. Infinite H

Theorem 18. If H is an infinite union of finite graphs, then the minimal

elements of the set H ∪{(→ H)({K1})} are the minimal reducible bounds

for → H in L.

This result immediately follows from Lemma 4 and Corollary 16. The
sharper result from the finite case is no longer true since when H is infinite,
it may be possible that (→ H)({K1}) is properly contained in a minimal ele-
ment of H e.g. I1 has the unique minimal reducible bound in La of I1O , the
unique minimal element of H. In L however, we have I1 ⊆6 I1{K1} ⊆6 I1O ,
so that I1 has unique minimal reducible bound I1{K1}.

It is not true that (→ H)({K1}) is contained in every minimal element
of H, since if (→ H)({K1}) ⊆ (→ H[V1])(→ H[V2]) where (→ H[V1])(→
H[V2]) is minimal in H, then we have → H ⊆ (→ H)(O) ⊆ (→ H[V1])(→
H[V2]). (The second inclusion follows since any graph G in (→ H)(O) is
in → (H ′ + K1) for some finite subgraph H ′ of H, and since H ′ + K1 ∈→
H[V1] → H[V2], we have that → (H ′+K1) ∈→ H[V1] → H[V2].) By Lemma
4 there should be another element of H between → H and (→ H)(O). By
the minimality of → (H[V1] + H[V2]), we now have that (→ H)(O) = (→
H[V1])(→ H[V2]). However (Corollary 14) if H is infinite and triangle-free
with finite chromatic number at least six, H contains at least one minimal
element which does not contain the factor O.
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