MINIMAL REDUCIBLE BOUNDS FOR HOM-PROPERTIES OF GRAPHS

Amelie Berger and Izak Broere
Department of Mathematics
Rand Afrikaans University
P.O. Box 524, Auckland Park
2006 South Africa
e-mail: abe@raua.rau.ac.za
e-mail: ib@na.rau.ac.za

Abstract

Let H be a fixed finite graph and let $\rightarrow H$ be a hom-property, i.e. the set of all graphs admitting a homomorphism into H. We extend the definition of $\rightarrow H$ to include certain infinite graphs H and then describe the minimal reducible bounds for $\rightarrow H$ in the lattice of additive hereditary properties and in the lattice of hereditary properties.

Keywords: graph homomorphisms, minimal reducible bounds, additive hereditary graph property.
1991 Mathematics Subject Classification: 05C15, 05C55, 06B05.

1. Definitions

In general we follow the notation and terminology of [1]. Denote by \mathcal{I} the set of all finite undirected simple graphs. Any isomorphism-closed subset \mathcal{P} of \mathcal{I} is called a property of graphs. A property \mathcal{P} is hereditary if whenever a graph G is in \mathcal{P}, then all subgraphs of G are also in \mathcal{P}. A property \mathcal{P} is additive if whenever graphs G and H are in \mathcal{P}, then their disjoint union, denoted by $G \cup H$, is in \mathcal{P} too. When partially ordered under set inclusion, the poset of all additive hereditary properties forms a complete distributive lattice, which we will denote by \mathbb{L}^{a}. We use \mathbb{L} to denote the lattice of hereditary properties. A property is called non-trivial if it contains at least one non-null graph and it is not equal to \mathcal{I}.

Let $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{n}$ be any properties of graphs. A vertex $\left(\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{n}\right)$ partition of a graph G is a partition $\left(V_{1}, V_{2}, \ldots, V_{n}\right)$ of $V(G)$ such that for
each $i=1,2, \ldots, n$, the induced subgraph $G\left[V_{i}\right]$ has the property \mathcal{P}_{i}. Any of the V_{i} may be empty. The property $\mathcal{P}_{1} \circ \mathcal{P}_{2} \circ \ldots \circ \mathcal{P}_{n}$ is defined as the set of all graphs having a vertex $\left(\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{n}\right)$-partition. If $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{n}$ are all (additive) hereditary properties, then $\mathcal{P}_{1} \circ \mathcal{P}_{2} \circ \ldots \circ \mathcal{P}_{n}$ is an (additive) hereditary property too. For convenience, we will write $\mathcal{P}_{1} \circ \mathcal{P}_{2} \circ \ldots \circ \mathcal{P}_{n}$ as $\mathcal{P}_{1} \mathcal{P}_{2} \ldots \mathcal{P}_{n}$, omitting the binary operation symbol.

An additive hereditary property \mathcal{R} is called reducible in \mathbb{L}^{a} if there exist non-trivial properties \mathcal{P} and \mathcal{Q} in \mathbb{L}^{a} such that $\mathcal{R}=\mathcal{P} \mathcal{Q}$. Otherwise \mathcal{R} is called irreducible. A reducible property $\mathcal{R} \in \mathbb{L}^{a}$ is called a minimal reducible bound for property $\mathcal{P} \in \mathbb{L}^{a}$ if $\mathcal{P} \subseteq \mathcal{R}$ and there is no reducible property \mathcal{R}_{1} satisfying $\mathcal{P} \subseteq \mathcal{R}_{1} \varsubsetneqq \mathcal{R}$. From this definition, each reducible property is the unique minimal reducible bound for itself. We use the $\operatorname{symbol} \mathbf{B}(\mathcal{P})$ to denote the class of all minimal reducible bounds for property \mathcal{P}. We do not know whether a minimal reducible bound exists for every property \mathcal{P}, and $\mathbf{B}(\mathcal{P})$ is known for only a few properties \mathcal{P}. Similar definitions hold in \mathbb{L}.

Given any $\mathcal{P} \in \mathbb{L}^{a}$ (or in \mathbb{L}), we define the class of all \mathcal{P}-maximal graphs by $\mathbf{M}(\mathcal{P})=\{G \in \mathcal{P}: G+e \notin \mathcal{P}$ for any $e \in E(\bar{G})\}$. $\mathbf{M}(\mathcal{P})$ determines \mathcal{P} in the sense that $H \in \mathcal{P}$ iff there exists some \mathcal{P}-maximal graph G such that $H \subseteq G$.

A homomorphism from a graph G to a graph H is a mapping f of the vertex set $V(G)$ to the vertex set $V(H)$ which preserves edges, i.e. if $\{u, v\} \in E(G)$, then $\{f(u), f(v)\} \in E(H)$. We say that G is homomorphic to H if there exists a homomorphism from G to H, and we write $G \rightarrow H$. If $G \rightarrow H$, then $\chi(G) \leq \chi(H)$. If H is a finite graph, then the hom-property generated by H is the set $\rightarrow H=\{G \in \mathcal{I}: G \rightarrow H\}$. Note that $\rightarrow H$ is an additive hereditary property for any $H \in \mathcal{I}$.

In Section 2 we summarise some fundamental properties of homproperties. In Section 3 we extend the definition of hom-properties to include $\rightarrow H$ where H may be an infinite union of finite graphs. We then describe $\mathbf{B}(\rightarrow H)$ in the lattice \mathbb{L}^{a} in Section 4 and consider some applications of these results in Section 5. Section 6 describes $\mathbf{B}(\rightarrow H)$ in the lattice \mathbb{L}.

2. Fundamental Properties of Hom-Properties

Given a graph G, a core of G is any subgraph G^{\prime} of G such that $G \rightarrow G^{\prime}$, and such that G is not homomorphic to any proper subgraph of G^{\prime}. Every graph G has a unique core up to isomorphism (see [2]) which is denoted by $C(G)$. If $G=C(G)$, i.e. if G is not homomorphic to any of its proper subgraphs, then we call G a core. Since any graph homomorphic to G is
also homomorphic to $C(G)$, and any element of $\rightarrow C(G)$ is in $\rightarrow G$, we have that $\rightarrow G=\rightarrow C(G)$. Hence, given any hom-property, we can assume it is of the form $\rightarrow H$ where H is a core.

The $(\rightarrow H)$-maximal graphs are known and described in [4]:
Given any $G \in \mathcal{I}$, with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, its multiplications $G:$ are defined as follows:

1. $V\left(G^{\because}\right)=W_{1} \cup W_{2} \cup \ldots \cup W_{n}$,
2. for each $1 \leq i \leq n,\left|W_{i}\right| \geq 1$,
3. for any pair $1 \leq i<j \leq n, W_{i} \cap W_{j}=\emptyset$,
4. The only edges of $G^{\prime \prime}$ are all the edges of the form $\{u, v\}$ where $u \in$ $W_{i}, v \in W_{j}$ and $\left\{v_{i}, v_{j}\right\} \in E(G)$.
Thus each vertex v_{i} of G is replaced by a non-empty set of vertices W_{i} (also denoted by v_{i}^{*}) and if $u \in W_{i}, v \in W_{j}$, then u and v are adjacent in $G^{:=}$iff v_{i} and v_{j} are adjacent in $G . W_{1}, W_{2}, \ldots, W_{n}$ are independent sets called the multivertices of $G^{!}$. We also write $G^{!:}$as $G^{:!}\left(W_{1}, W_{2}, \ldots, W_{n}\right)$ to emphasize its structure, and $G^{:!}(k)$ for $G^{:!}\left(W_{1}, W_{2}, \ldots, W_{n}\right)$ if $\left|W_{i}\right|=k$ for each $i=1,2, \ldots, n$. By mapping all the vertices in W_{i} to v_{i} for each $i=1,2, \ldots, n$, it is readily seen that $G^{:!} \rightarrow G$, i.e. $G^{:!} \in \rightarrow G$ and that $C\left(G^{: \prime}\right)=G$ if G is a core.

Kratochvíl, Mihók and Semanišin proved in [4] that every $(\rightarrow H$)maximal graph is a multiplication of a subgraph of H that is itself a core. Thus for every $(\rightarrow H)$-maximal graph G, there exists an integer $k \geq 1$ such that G is contained in $H::(k)$.

The following lemma describes properties of hom-properties that will be used often in what follows. We use the notation $H+G$ for the join of two graphs H and G, i.e. for the graph obtained from $H \cup G$ by adding all edges joining vertices of H to vertices of G. A graph that is the join of two nonnul graphs is called decomposable, while a graph that is not decomposable is called indecomposable.

Lemma 1. 1. $\rightarrow K_{1}$ is the set of all edgeless graphs, also denoted by \mathcal{O}. We have $\rightarrow K_{1}=\rightarrow H$ for any edgeless graph H, since $C(H)=K_{1}$.
2. $\rightarrow K_{2}$ is the set of all bipartite graphs and $\rightarrow K_{2}=\rightarrow H$ for any graph H with chromatic number 2 , since $C(H)=K_{2}$.
3. For any graphs H and $G, \rightarrow(H+G)=(\rightarrow H)(\rightarrow G)$ (see [3]).
4. $\rightarrow H$ is irreducible in \mathbb{L}^{a} iff H is indecomposable (see [3]).
5. For any graphs H and $G, \rightarrow H \subseteq \rightarrow G$ iff $H \rightarrow G$ iff $H \in G$ (see [2]).

3. The Hom-Property $\rightarrow H$ for Infinite H

Although each hom-property is an additive hereditary property and is thus an element of the complete lattice \mathbb{L}^{a}, the hom-properties do not form a complete sublattice of \mathbb{L}^{a}. For example $\vee\{\rightarrow R: R$ is a triangle-free core $\}$ cannot be a hom-property: If $\vee\{\rightarrow R: R$ is a triangle-free core $\}=\rightarrow H$ for some graph H, then $\rightarrow R \subseteq \rightarrow H$ for each triangle-free core R. This would imply that $\chi(R) \leq \chi(H)$ for each triangle-free core R, which is not true, since triangle-free graphs of arbitrarily high chromatic number can be constructed.

To enable the supremum and infimum (intersection) of an arbitrary set of hom-properties to again be a hom-property, we extend the definition of hom-properties by including $\rightarrow H$, where H is any union of finite graphs. For such a graph H we define $\rightarrow H$ by $\rightarrow H=\{G \in \mathcal{I}: G \rightarrow H\}$, i.e. $\rightarrow H$ is the set of all finite graphs admitting a homomorphism into H. Since the set of all finite graphs is countable, and since only one copy of each connected component of H is sufficient, we can always assume that H is a countable union of finite cores and that these cores are pairwise nonisomorphic. Unlike in the case where H is finite, H itself need no longer have a core e.g. $K_{1} \cup K_{2} \cup K_{3} \cup \ldots$ has no core, and H need not have a finite chromatic number.

Extending the definition of hom-properties to allow $\rightarrow H$ where H is either finite or a countable union of finite graphs makes the hom-properties a complete sublattice of \mathbb{L}^{a}, i.e. the supremum and infimum of any set of hom-properties is again a hom-property, as the following two results show.

Theorem 2. Let $\left\{H_{\alpha}: \alpha \in A\right\}$ be a set of graphs, each of which is finite or a countable union of finite graphs. Then $\vee\left\{\rightarrow H_{\alpha}: \alpha \in A\right\}=\rightarrow\left(\cup\left\{H_{\alpha}\right.\right.$: $\alpha \in A\}$).

Proof. In the lattice $\mathbb{L}^{a}, \vee\left\{\rightarrow H_{\alpha}: \alpha \in A\right\}$ is the least additive hereditary property which contains each $\rightarrow H_{\alpha}, \alpha \in A$. We show that $\rightarrow\left(\cup\left\{H_{\alpha}\right.\right.$: $\alpha \in A\})$ satisfies this.

Clearly, if $G \in \rightarrow H_{\alpha}$ for any $\alpha \in A$, then $G \in \rightarrow\left(\cup\left\{H_{\alpha}: \alpha \in A\right\}\right)$. Therefore $\rightarrow H_{\alpha} \subseteq \rightarrow\left(\cup\left\{H_{\alpha}: \alpha \in A\right\}\right)$ for each $\alpha \in A$.

Now suppose that $\rightarrow H_{\alpha} \subseteq \mathcal{P}$ for each $\alpha \in A$, for some property $\mathcal{P} \in \mathbb{L}^{a}$. We show that $\rightarrow\left(\cup\left\{H_{\alpha}: \alpha \in A\right\}\right) \subseteq \mathcal{P}:$ Let $G \in \rightarrow\left(\cup\left\{H_{\alpha}: \alpha \in A\right\}\right)$. By definition, G is finite, and hence there is a homomorphism from G to a finite union of H_{α} 's, say $G \in \rightarrow H_{1} \cup H_{2} \cup \ldots \cup H_{n}$. Since each connected component
of G is homomorphically mapped to exactly one H_{i}, G has a decomposition $G=G_{1} \cup G_{2} \cup \ldots \cup G_{n}$, such that $G_{i} \rightarrow H_{i}$, for $i=1,2, \ldots, n$. But then we have $G_{i} \in \rightarrow H_{i} \in \mathcal{P}$ for $i=1,2, \ldots, n$. As each G_{i} is in \mathcal{P}, by the additivity of \mathcal{P}, G is in \mathcal{P} too.

Theorem 3. Let $\left\{H_{\alpha}: \alpha \in A\right\}$ be a set of graphs, each of which is finite or a countable union of finite graphs. Then $\wedge\left\{\rightarrow H_{\alpha}: \alpha \in A\right\}=\rightarrow(\cup\{R: R$ is a core contained in a multiplication of a finite subgraph of H_{α} for each $\alpha \in A\})$.

Proof. Suppose $G \in \cap\left\{\rightarrow H_{\alpha}: \alpha \in A\right\}$. Then $G \rightarrow C(G)$ and $C(G) \in$ $\cap\left\{\rightarrow H_{\alpha}: \alpha \in A\right\}$. Then for each $\alpha \in A, C(G) \in \rightarrow H_{\alpha}$ and so $C(G)$ is contained in a multiplication of a finite subgraph of H_{α}. So we have $G \in \rightarrow C(G) \subseteq \rightarrow(\cup\{R: R$ is a core contained in a multiplication of a finite subgraph of H_{α} for each $\left.\alpha \in A\right\}$).

Conversely, suppose $G \in \rightarrow(\cup\{R: R$ is a core contained in a multiplication of a finite subgraph of H_{α} for each $\left.\alpha \in A\right\}$). Then there exists a homomorphism $f: G \rightarrow(\cup\{R: R$ is a core contained in a multiplication of a finite subgraph of H_{α} for each $\left.\alpha \in A\right\}$). Consider any connected component K of $G:$ It is mapped by f to one of these cores, say R. By the definition of $R, R \in \cap\left\{\rightarrow H_{\alpha}: \alpha \in A\right\}$ and so $K \in \rightarrow R \subseteq \cap\left\{\rightarrow H_{\alpha}: \alpha \in A\right\}$. But then $\cap\left\{\rightarrow H_{\alpha}: \alpha \in A\right\}$ is an additive property containing each connected component of G and we conclude that G itself is in $\cap\left\{\rightarrow H_{\alpha}: \alpha \in A\right\}$.

4. Minimal Reducible Bounds for $\rightarrow H$ in \mathbb{L}^{a}

In this section we describe the set of all minimal reducible bounds for $\rightarrow H$ in the lattice \mathbb{L}^{a}, first dealing with the case where H is finite, and then with the infinite case. The following lemma and its corollary are useful for both cases.

Lemma 4. Let H be a finite core or a countable union of finite cores. If \mathcal{P} and \mathcal{Q} are non-trivial properties in \mathbb{L} with $\mathcal{O} \subseteq \mathcal{P}$ and $\mathcal{O} \subseteq \mathcal{Q}$ such that $\rightarrow H \subseteq \mathcal{P Q}$ then there exists a partition $\left(V_{1}, V_{2}\right)$ of $V(H)$ with $V_{1} \neq \emptyset$ and $V_{2} \neq \emptyset$ such that $\rightarrow H \subseteq\left(\rightarrow H\left[V_{1}\right]\right)\left(\rightarrow H\left[V_{2}\right]\right) \subseteq \mathcal{P Q}$ and $\rightarrow H\left[V_{1}\right] \subseteq \mathcal{P}$ and $\rightarrow H\left[V_{2}\right] \subseteq \mathcal{Q}$.

Proof. First suppose that H is finite and let $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. We will show that there exists a partition $\left(V_{1}, V_{2}\right)$ of $V(H)$ with $V_{1} \neq \emptyset$ and
$V_{2} \neq \emptyset$ such that $H\left[V_{1}\right]: \because(k) \in \mathcal{P}$ for all $k \geq 1$ and $H\left[V_{2}\right]: \because(k) \in \mathcal{Q}$ for all $k \geq 1$. Then all maximal elements of $\rightarrow H\left[V_{1}\right]$ are in \mathcal{P} and so $\rightarrow H\left[V_{1}\right]$ $\subseteq \mathcal{P}$, and similarly $\rightarrow H\left[V_{2}\right] \subseteq \mathcal{Q}$.

Fix $k \geq 1$. Since $H^{: \because}(2 k-1) \in \rightarrow H \subseteq \mathcal{P} \mathcal{Q}, H^{:}(2 k-1)$ has a $(\mathcal{P}, \mathcal{Q})$ partition. For each $i=1,2, \ldots, n, v_{i}^{:!}(2 k-1)$ has at least k vertices in the \mathcal{P} part or at least k vertices in the \mathcal{Q} part. By deleting $k-1$ vertices from each $v_{i}^{:}(2 k-1)$, we can ensure that the remaining $v_{i}^{:}(k)$ is completely in the \mathcal{P} part or completely in the \mathcal{Q} part. We can also ensure that neither the \mathcal{P} nor the \mathcal{Q} part is empty: One of the $v_{i}^{: \prime}(k)$ can be moved to the empty part if necessary.

We now have disjoint sets I_{1} and I_{2} such that $I_{1} \cup I_{2}=\{1,2, \ldots, n\}$ and $\left(\left\{v: v \in v_{i}^{:}(k), i \in I_{1}\right\},\left\{v: v \in v_{i}^{:}(k), i \in I_{2}\right\}\right)$ forms a $(\mathcal{P}, \mathcal{Q})$ partition of $H^{\because:}(k)$.

Since \mathcal{P} and \mathcal{Q} are hereditary properties, each such pair $\left(I_{1}, I_{2}\right)$ induces a $(\mathcal{P}, \mathcal{Q})$-partition of $H^{::}(r)$ for each $r \leq k$, with each $v_{i}^{:}(r)$ entirely in the \mathcal{P} part or entirely in the \mathcal{Q} part. Since there are only finitely many partitions $\left(I_{1}, I_{2}\right)$ of $\{1,2, \ldots, n\}$, there exists a pair $\left(I_{1}^{*}, I_{2}^{*}\right)$ which serves for infinitely many values of k, and hence for every value of k. Let $V_{1}=\left\{v_{i} \in V(H): i \in\right.$ $\left.I_{1}^{*}\right\}$ and $V_{2}=\left\{v_{i} \in V(H): i \in I_{2}^{*}\right\}$. Then $H\left[V_{1}\right]::(k) \in \mathcal{P}$ for all $k \geq 1$ and $H\left[V_{2}\right]::(k) \in \mathcal{Q}$ for all $k \geq 1$.

Suppose now that H is a countable union of finite graphs, $H=H_{1} \cup$ $H_{2} \cup \ldots$ Denote by G_{n} the graph $H_{1} \cup H_{2} \cup \ldots \cup H_{n}, n \geq 1$, and let \mathcal{G} be the set of all G_{n} i.e. $\mathcal{G}=\left\{G_{n}: n \geq 1\right\}$.

For each $n \geq 1, \rightarrow G_{n} \subseteq \mathcal{P Q}$ and so by the finite case above, there exists a partition $\left(W_{1}^{n}, W_{2}^{n}\right)$ of $V\left(G_{n}\right)$ with neither part empty such that $\rightarrow G_{n}\left[W_{1}^{n}\right] \subseteq \mathcal{P}$ and $\rightarrow G_{n}\left[W_{2}^{n}\right] \subseteq \mathcal{Q}$. Restricted to $V\left(H_{1}\right)$, each $\left(W_{1}^{n}, W_{2}^{n}\right)$ induces a partition of $V\left(H_{1}\right)$ such that $\rightarrow H_{1}\left[W_{1}^{n}\right] \subseteq \mathcal{P}$ and $\rightarrow H_{1}\left[W_{2}^{n}\right] \subseteq \mathcal{Q}$. Since $V\left(H_{1}\right)$ has only finitely many partitions, there exists a partition of $V\left(H_{1}\right)$ with these properties induced by infinitely many $\left(W_{1}^{n}, W_{2}^{n}\right)$. Call this partition $\left(V_{1}^{1}, V_{2}^{1}\right)$ and note that $\rightarrow H_{1}\left[V_{1}^{1}\right] \subseteq \mathcal{P}$ and $\rightarrow H_{1}\left[V_{2}^{1}\right] \subseteq \mathcal{Q}$.

Now delete from \mathcal{G} all those G_{n} whose corresponding $\left(W_{1}^{n}, W_{2}^{n}\right)$ do not induce $\left(V_{1}^{1}, V_{2}^{1}\right)$ and call the resulting set \mathcal{G}^{\prime}. Suppose that $i \geq 2$ is the least integer such that G_{i} is in \mathcal{G}^{\prime}. For each $n \geq i$ for which $G_{n} \in \mathcal{G}^{\prime}$, the partition $\left(W_{1}^{n}, W_{2}^{n}\right)$ of $V\left(G_{n}\right)$ restricted to $V\left(G_{i}\right)$ induces a partition of $V\left(G_{i}\right)$. Since $V\left(G_{i}\right)$ has only finitely many partitions, there exists a partition of $V\left(G_{i}\right)$ induced by infinitely many $\left(W_{1}^{n}, W_{2}^{n}\right)$. This partition of $V\left(G_{i}\right)$ induces $\left(V_{1}^{1}, V_{2}^{1}\right)$ in $V\left(H_{1}\right)$. Label the partitions induced by this partition of $V\left(G_{i}\right)$ in $V\left(H_{2}\right), V\left(H_{3}\right), \ldots, V\left(H_{i}\right)$ by $\left(V_{1}^{2}, V_{2}^{2}\right)\left(V_{1}^{3}, V_{2}^{3}\right), \ldots,\left(V_{1}^{i}, V_{2}^{i}\right)$, respectively. For each $k=1,2, \ldots, i$ we have $\rightarrow H_{k}\left[V_{1}^{k}\right] \subseteq \mathcal{P}$ and $\rightarrow H_{k}\left[V_{2}^{k}\right] \subseteq \mathcal{Q}$.

We now repeat the procedure: delete from \mathcal{G}^{\prime} all those G_{n} whose corresponding (W_{1}^{n}, W_{2}^{n}) do not induce (V_{1}^{1}, V_{2}^{1}), $\left(V_{1}^{2}, V_{2}^{2}\right), \ldots,\left(V_{1}^{i}, V_{2}^{i}\right)$ and call the resulting set $\mathcal{G}^{\prime \prime}$. If $j \geq i+1$ is the least integer such that $G_{j} \in \mathcal{G}^{\prime \prime}$, choose a partition of $V\left(G_{j}\right)$ that is induced by infinitely many of the (W_{1}^{n}, W_{2}^{n}) which satisfy $G_{n} \in \mathcal{G}^{\prime \prime}$, etc.

Following this procedure, we obtain for each $n \geq 1$ a partition $\left(V_{1}^{n}, V_{2}^{n}\right)$ of $V\left(H_{n}\right)$ which satisfies $\rightarrow H_{n}\left[V_{1}^{n}\right] \subseteq \mathcal{P}$ and $\rightarrow H_{n}\left[V_{2}^{n}\right] \subseteq \mathcal{Q}$. With $V_{1}=$ $\bigcup_{n \geq 1} V_{1}^{n}$ and $V_{2}=\bigcup_{n \geq 1} V_{2}^{n}$, we have a partition of $V(H)$. If either V_{1} or V_{2} is empty, move an arbitrary vertex into this set. By the construction of V_{1} and $V_{2}, \rightarrow H\left[V_{1}\right] \subseteq \mathcal{P}$ and $\rightarrow H\left[V_{2}\right] \subseteq \mathcal{Q}$.

Corollary 5. Let H be a finite core or a countable union of finite cores. If \mathcal{P} and \mathcal{Q} are non-trivial properties in \mathbb{L}^{a} such that $\rightarrow H \subseteq \mathcal{P Q}$ then there exists a partition $\left(V_{1}, V_{2}\right)$ of $V(H)$ with $V_{1} \neq \emptyset$ and $V_{2} \neq \emptyset$ such that $\rightarrow H \subseteq\left(\rightarrow H\left[V_{1}\right]\right)\left(\rightarrow H\left[V_{2}\right]\right) \subseteq \mathcal{P Q}$ and $\rightarrow H\left[V_{1}\right] \subseteq \mathcal{P}$ and $\rightarrow H\left[V_{2}\right] \subseteq \mathcal{Q}$.

We can now describe the minimal reducible bounds for the hom-properties in \mathbb{L}^{a}.

4.1. Finite H

Let H be a finite core such that $\rightarrow H$ is irreducible in \mathbb{L}^{a} (i.e. H is indecomposable). Let \mathbf{H} be the set of all hom-properties $\rightarrow C_{1}+C_{2}=\left(\rightarrow C_{1}\right)\left(\rightarrow C_{2}\right)$ formed as follows:

For each partition $\left(V_{1}, V_{2}\right)$ of $V(H)$ with $V_{1} \neq \emptyset, V_{2} \neq \emptyset$, let $C_{1}=$ $C\left(H\left[V_{1}\right]\right)$ and $C_{2}=C\left(H\left[V_{2}\right]\right)$.

Lemma 6. $\rightarrow H \subseteq \rightarrow C_{1}+C_{2}$ for each $\rightarrow C_{1}+C_{2} \in \mathbf{H}$.
Proof. This will follow if we can show that there is a homomorphism from H to $C_{1}+C_{2}$. By the definition of C_{1} and C_{2}, there exist homomorphisms $f_{1}: V_{1} \rightarrow V\left(C_{1}\right)$ and $f_{2}: V_{2} \rightarrow V\left(C_{2}\right)$. Define $f: V(H) \rightarrow V\left(C_{1}+C_{2}\right)$ by $f(x)=f_{i}(x)$ if $x \in V_{i}, i=1,2$.
Since H is a finite graph, the set \mathbf{H} is finite and thus minimal elements (under inclusion of properties) exist. These minimal elements of \mathbf{H} are precisely all the minimal reducible bounds of $\rightarrow H$, i.e. they form $\mathbf{B}(\rightarrow H)$.

Theorem 7. B $(\rightarrow H)=\operatorname{Min}_{\subseteq} \mathbf{H}$.

Proof. We must show that if there are non-trivial properties \mathcal{P} and \mathcal{Q} in \mathbb{L}^{a} such that $\rightarrow H \subset \mathcal{P Q}$, then there exists a $\rightarrow C_{1}+C_{2} \in \mathbf{H}$ such that $\rightarrow H \subset \rightarrow C_{1}+C_{2} \subseteq \mathcal{P Q}$. This follows immediately by Corollary 5: there exists a $(\mathcal{P}, \mathcal{Q})$ partition $\left(V_{1}, V_{2}\right)$ of $V(H)$ with $V_{1} \neq \emptyset, V_{2} \neq \emptyset$ such that $\rightarrow H \subseteq \rightarrow H\left[V_{1}\right] \rightarrow H\left[V_{2}\right] \subseteq \mathcal{P Q}$, and so $\rightarrow H \subseteq\left(\rightarrow C\left(H\left[V_{1}\right]\right)\right)$ $\left(\rightarrow C\left(H\left[V_{2}\right]\right)\right) \subseteq \mathcal{P Q}$.
All the minimal reducible bounds in \mathbb{L}^{a} for a hom-property $\rightarrow H$, where H is finite, can thus be found by forming the finite set \mathbf{H} (by considering all partitions $\left(V_{1}, V_{2}\right)$ of $V(H)$ with $V_{1} \neq \emptyset$ and $V_{2} \neq \emptyset$, and then forming the hom-properties $\rightarrow\left(C\left(H\left[V_{1}\right]\right)+C\left(H\left[V_{2}\right]\right)\right)$ and then determining which of these reducible properties are minimal under inclusion.

4.2. Infinite H

We now consider minimal reducible bounds in \mathbb{L}^{a} for an irreducible $\rightarrow H$, where H is an infinite union of finite cores. By Corollary 5 , if a minimal reducible bounds exists for such a $\rightarrow H$, it is of the same form as in the finite case, i.e. it has the form $\left(\rightarrow H\left[V_{1}\right]\right)\left(\rightarrow H\left[V_{2}\right]\right)$ for some partition $\left(V_{1}, V_{2}\right)$ of $V(H)$ with $V_{1} \neq \emptyset$ and $V_{2} \neq \emptyset$. We can again form the set \mathbf{H} for an infinite graph $H, \mathbf{H}=\left\{\left(\rightarrow H\left[V_{1}\right]\right)\left(\rightarrow H\left[V_{2}\right]\right):\left(V_{1}, V_{2}\right)\right.$ is a partition of $V(H)$ and $\left.V_{1} \neq \emptyset, V_{2} \neq \emptyset\right\}$ and clearly $\rightarrow H \subseteq\left(\rightarrow H\left[V_{1}\right]\right)\left(\rightarrow H\left[V_{2}\right]\right)$ for each $\left(\rightarrow H\left[V_{1}\right]\right)\left(\rightarrow H\left[V_{2}\right]\right)$ in \mathbf{H}. However \mathbf{H} will now be an infinite set and the existence of minimal elements is no longer trivial. In the following theorem we show that \mathbf{H} has minimal elements and that every element of \mathbf{H} contains a minimal element. These minimal elements thus form $\mathbf{B}(\rightarrow H)$, the set of all minimal reducible bounds for $\rightarrow H$.

Theorem 8. Let H be an countable union of finite cores. Then the set \mathbf{H} contains minimal elements, and each element of \mathbf{H} contains a minimal element of \mathbf{H}.

Proof. We will first use Zorn's lemma to show that $\mathbf{H}=\left\{\left(\rightarrow H\left[V_{1}\right]\right)(\rightarrow\right.$ $\left.H\left[V_{2}\right]\right):\left(V_{1}, V_{2}\right)$ is a partition of $\left.V(H), V_{1} \neq \emptyset, V_{2} \neq \emptyset\right\}$ has minimal elements. This will follow if we can show that every chain in \mathbf{H} has a lower bound in \mathbf{H}.

Suppose to the contrary that $\mathcal{C}=\left\{\left(\rightarrow H\left[V_{1}^{\alpha}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha}\right]\right): \alpha \in A\right\}$ is an infinite chain in \mathbf{H} that does not have a lower bound in \mathbf{H}. Then given any element of the chain, there exists an infinite chain of elements of \mathcal{C} below it.

Suppose $H=H_{1} \cup H_{2} \cup \ldots$. For each $\alpha \in A$, the partition $\left(V_{1}^{\alpha}, V_{2}^{\alpha}\right)$ of $V(H)$ induces a partition of $V\left(H_{1}\right)$. Since $V\left(H_{1}\right)$ has only finitely many partitions, there exists a partition $\left(V_{1,1}, V_{2,1}\right)$ of $V\left(H_{1}\right)$ that is induced infinitely many times and that satisfies: given any $\alpha \in A$, there exists $\alpha^{\prime} \in A$ such that $\left(\rightarrow H\left[V_{1}^{\alpha^{\prime}}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha^{\prime}}\right]\right) \subset\left(\rightarrow H\left[V_{1}^{\alpha}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha}\right]\right)$ and $\left(V_{1}^{\alpha^{\prime}}, V_{2}^{\alpha^{\prime}}\right)$ induces $\left(V_{1,1}, V_{2,1}\right)$ in $V\left(H_{1}\right)$. (If for each induced partition of $V\left(H_{1}\right)$ occuring infinitely many times, there exists an α such that every $\alpha^{\prime} \in A$ satisfying $\left(\rightarrow H\left[V_{1}^{\alpha^{\prime}}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha^{\prime}}\right]\right) \subset\left(\rightarrow H\left[V_{1}^{\alpha}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha}\right]\right)$ induces some different partition of $V\left(H_{1}\right)$, then, since these α are finite, we can choose the one among them corresponding to the least element of \mathcal{C}. This element of \mathcal{C} contains only finitely many other elements of \mathcal{C} below it, contradicting our hypothesis.) We have $H_{1}\left[V_{1,1}\right] \in H\left[V_{1}^{\alpha^{\prime}}\right]$ and $H_{2}\left[V_{1,2}\right] \in \rightarrow H\left[V_{2}^{\alpha^{\prime}}\right]$.

Now form A^{\prime} from A by deleting all those α for which $\left(V_{1}^{\alpha}, V_{2}^{\alpha}\right)$ does not induce $\left(V_{1,1}, V_{2,1}\right)$. For any $\alpha \in A$, there exists α^{\prime} in A^{\prime} such that (\rightarrow $\left.H\left[V_{1}^{\alpha^{\prime}}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha^{\prime}}\right]\right) \subset\left(\rightarrow H\left[V_{1}^{\alpha}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha}\right]\right)$ and $H_{1}\left[V_{1,1}\right] \in H\left[V_{1}^{\alpha^{\prime}}\right]$ and $H_{1}\left[V_{2,1}\right] \in \rightarrow H\left[V_{2}^{\alpha^{\prime}}\right]$. We now have a new infinite chain, $\mathcal{C}^{\prime}=\{(\rightarrow$ $\left.\left.H\left[V_{1}^{\alpha}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha}\right]\right): \alpha \in A^{\prime}\right\}$, and we repeat the procedure using H_{2} and \mathcal{C}^{\prime}, to form $\mathcal{C}^{\prime \prime}$, etc. For each H_{i} we obtain a partition $\left(V_{1, i}, V_{2, i}\right)$ of $V\left(H_{i}\right)$ and after completing the procedure i times, we have a chain of $\left(\rightarrow H\left[V_{1}^{\alpha}\right]\right)(\rightarrow$ $\left.H\left[V_{2}^{\alpha}\right]\right)$ such that for all α in the new index set, the partition $\left(V_{1}^{\alpha}, V_{2}^{\alpha}\right)$ of $V(H)$ induces the partition $\left(V_{1, j}, V_{2, j}\right)$ of $V\left(H_{j}\right)$ for all $j=1,2, \ldots, i$. Also, for any $\alpha \in A$, there exists α^{\prime} in the new index set such that $(\rightarrow$ $\left.H\left[V_{1}^{\alpha^{\prime}}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha^{\prime}}\right]\right) \subset\left(\rightarrow H\left[V_{1}^{\alpha}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha}\right]\right)$ and $H_{j}\left[V_{1, j}\right] \in \rightarrow H\left[V_{1}^{\alpha^{\prime}}\right]$ and $H_{j}\left[V_{2, j}\right] \in \rightarrow H\left[V_{2}^{\alpha^{\prime}}\right]$ for all $j=1,2, \ldots, i$.

Now let $V_{1}=\bigcup_{i \geq 1} V_{1, i}$ and let $V_{2}=\bigcup_{i \geq 1} V_{2, i}$. There are now two possibilities: either both V_{1} and V_{2} are non-empty, or one of them (say V_{2}) is empty while the other $\left(V_{1}\right)$ equals $V(H)$.

Suppose first that both V_{1} and V_{2} are non-empty. Then $\left(\rightarrow H\left[V_{1}\right]\right)(\rightarrow$ $\left.H\left[V_{2}\right]\right)$ is itself in \mathbf{H}. We will show that $\left(\rightarrow H\left[V_{1}\right]\right)\left(\rightarrow H\left[V_{2}\right]\right)$ is a lower bound for the chain \mathcal{C}.

Let $\alpha \in A$ and let $G \in\left(\rightarrow H\left[V_{1}\right]\right)\left(\rightarrow H\left[V_{2}\right]\right)$. Then there exists a partition (A, B) of $V(G)$ such that $G[A] \rightarrow H\left[V_{1}\right]$ and $G[B] \rightarrow H\left[V_{2}\right]$. Since both $G[A]$ and $G[B]$ are finite, there exists an integer n such that $G[A] \rightarrow \cup\left\{H_{i}\left[V_{1, i}\right]: i=1,2, \ldots, n\right\}$ and $G[B] \rightarrow \cup\left\{H_{i}\left[V_{2, i}\right]: i=1,2, \ldots, n\right\}$. Now by the remark at the end of the previous paragraph, after n steps of the procedure,there exists an α^{\prime} in the modified index set of the chain with $\left(\rightarrow H\left[V_{1}^{\alpha^{\prime}}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha^{\prime}}\right]\right) \subset\left(\rightarrow H\left[V_{1}^{\alpha}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha}\right]\right)$ and such that $H_{i}\left[V_{1, i}\right] \in \rightarrow$ $H\left[V_{1}^{\alpha^{\prime}}\right]$ and $H_{i}\left[V_{2, i}\right] \in H\left[V_{2}^{\alpha^{\prime}}\right]$ for $i=1,2, \ldots, n$. Hence $G[A] \in \rightarrow H\left[V_{1}^{\alpha^{\prime}}\right]$
and $G[B] \in \rightarrow H\left[V_{2}^{\alpha^{\prime}}\right]$, so $G \in\left(\rightarrow H\left[V_{1}^{\alpha^{\prime}}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha^{\prime}}\right]\right) \subset\left(\rightarrow H\left[V_{1}^{\alpha}\right]\right)(\rightarrow$ $\left.H\left[V_{2}^{\alpha}\right]\right)$, i.e. $\left(\rightarrow H\left[V_{1}\right]\right)\left(\rightarrow H\left[V_{2}\right]\right) \subseteq\left(\rightarrow H\left[V_{1}^{\alpha}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha}\right]\right)$.

Now suppose that V_{2} is empty and that $V_{1}=V(H)$. We claim that in this case, any element of \mathbf{H} of the form $\left(\rightarrow H\left[W_{1}\right]\right)\left(\rightarrow H\left[W_{2}\right]\right)$ where W_{2} is independent, is a lower bound for the chain \mathcal{C}. To prove this, fix such an element of \mathbf{H}. Suppose it is $\left(\rightarrow H\left[W_{1}\right]\right)\left(\rightarrow H\left[W_{2}\right]\right)$, with W_{2} independent. Let $\alpha \in A$ and let $G \in\left(\rightarrow H\left[W_{1}\right]\right)\left(\rightarrow H\left[W_{2}\right]\right)$. We must show that $G \in$ $\left(\rightarrow H\left[V_{1}^{\alpha}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha}\right]\right.$: Since G is finite, there exists an integer n such that $G \in\left(\rightarrow\left(H_{1} \cup H_{2} \cup \ldots \cup H_{n}\right)\left[W_{1}\right]\right)\left(\rightarrow\left(H_{1} \cup H_{2} \cup \ldots \cup H_{n}\right)\left[W_{2}\right]\right)$. Now there exists an $\alpha^{\prime} \in A$ such that $\left(\rightarrow H\left[V_{1}^{\alpha^{\prime}}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha^{\prime}}\right]\right) \subset\left(\rightarrow H\left[V_{1}^{\alpha}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha}\right]\right)$ and $\left(V_{1}^{\alpha^{\prime}}, V_{2}^{\alpha^{\prime}}\right)$ induces $\left(V_{1, i}, V_{2, i}\right)=\left(V\left(H_{i}\right), \emptyset\right)$ for each $i=1,2, \ldots, n$. Then $\left(H_{1} \cup H_{2} \cup \ldots \cup H_{n}\right)\left[W_{1}\right] \rightarrow H\left[V_{1}^{\alpha^{\prime}}\right]$ (the inclusion map) and $\left(H_{1} \cup H_{2} \cup \ldots \cup\right.$ $\left.H_{n}\right)\left[W_{2}\right] \rightarrow H\left[V_{2}^{\alpha^{\prime}}\right]$ (since W_{2} is independent and $V_{2}^{\alpha^{\prime}}$ is non-empty.) Hence $G \in\left(\rightarrow H\left[V_{1}^{\alpha^{\prime}}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha^{\prime}}\right]\right) \subset\left(\rightarrow H\left[V_{1}^{\alpha}\right]\right)\left(\rightarrow H\left[V_{2}^{\alpha}\right]\right)$.

We can conclude by Zorn's lemma that the set \mathbf{H} has minimal elements. By fixing an element of \mathbf{H} and considering only chains of elements of \mathbf{H} each of which is contained in that fixed element, the same argument as above shows that each element of \mathbf{H} contains at least one of these minimal elements of \mathbf{H}. Hence, as in the case where H is finite, the minimal elements of \mathbf{H} form $\mathbf{B}(\rightarrow H)$ when H is an infinite union of finite graphs.

5. Some Applications

In the following applications, we allow the graph H to be either finite or a countable union of finite graphs and we show the existence of minimal reducible bounds of certain types in \mathbb{L}^{a} for $\rightarrow H$. In this section we assume throughout that $\rightarrow H$ is irreducible, while if H is finite it is assumed to be a core.

Proposition 9. If H is a graph with chromatic number 3, then \mathcal{O}^{3} is the unique minimal reducible bound for $\rightarrow H$.

Proof. Since $\chi(H)=3$, there exists a partition $\left(V_{1}, V_{2}\right)$ of $V(H)$ such that $H\left[V_{1}\right]$ is an independent set of vertices and $H\left[V_{2}\right]$ has chromatic number 2, i.e. $\rightarrow C\left(H\left[V_{1}\right]\right) \rightarrow C\left(H\left[V_{2}\right]\right)=\rightarrow K_{1}+K_{2}=\rightarrow K_{3}=\mathcal{O}^{3}$.

If $\rightarrow H \subset \rightarrow C_{1} \rightarrow C_{2}$ for any other $\rightarrow C_{1} \rightarrow C_{2} \in \mathbf{H}$, then either C_{1} or C_{2} must contain an edge (since $\chi\left(C_{1}\right)+\chi\left(C_{2}\right) \geq 3$) and hence $K_{1}+K_{2} \in$ $\rightarrow C_{1} \rightarrow C_{2}$, i.e. $\rightarrow H \subset \rightarrow K_{1}+K_{2}=\mathcal{O}^{3} \subseteq \rightarrow C_{1} \rightarrow C_{2}$.

Proposition 10. If H is a graph with chromatic number 4 , then all minimal reducible bounds of $\rightarrow H$ are of the form $\mathcal{O}(\rightarrow X)$ for some graph $X \subset H$.

Proof. Since $\chi(H)=4$, there exists a partition $\left(V_{1}, V_{2}\right)$ of $V(H)$ such that $\chi\left(H\left[V_{1}\right]\right)=2$ and $\chi\left(H\left[V_{2}\right]\right)=2$, i.e. $\rightarrow C\left(H\left[V_{1}\right]\right) \rightarrow C\left(H\left[V_{2}\right]\right)=\rightarrow$ $K_{2}+K_{2}=\rightarrow K_{1}+K_{3}=\mathcal{O}\left(\rightarrow K_{3}\right)$.

Consider all partitions $\left(V_{1}, V_{2}\right)$ of $V(H)$. If $H\left[V_{1}\right]$ or $H\left[V_{2}\right]$ is independent, we get a reducible bound for $\rightarrow H$ of the form $\mathcal{O}\left(\rightarrow H\left[V_{1}\right]\right)$ or $\mathcal{O}\left(\rightarrow H\left[V_{2}\right]\right)$. If neither $H\left[V_{1}\right]$ nor $H\left[V_{2}\right]$ is independent, then $K_{2} \rightarrow H\left[V_{1}\right]$ and $K_{2} \rightarrow H\left[V_{2}\right]$, so $\rightarrow K_{2}+K_{2}=\mathcal{O}\left(\rightarrow K_{3}\right) \subseteq \rightarrow H\left[V_{1}\right] \rightarrow H\left[V_{2}\right]$.

We can now conclude that all the minimal elements of \mathbf{H} are of the form $\mathcal{O}(\rightarrow X)$ for some graph $X \subset H$.

Proposition 11. If H is a graph with chromatic number 5, then $\rightarrow H$ has a minimal reducible bound of the form $\mathcal{O}(\rightarrow X)$ for some graph $X \subset H$.
Proof. Since $\chi(H)=5$, there exists a bound of the form $\mathcal{O}(\rightarrow X)=(\rightarrow$ $\left.K_{1}\right)(\rightarrow X)$ for $\rightarrow H$ with $X \subset H$ and $\chi(X)=4$. Suppose that $\rightarrow X_{1} \rightarrow X_{2}$ is any other element of \mathbf{H} satisfying $\rightarrow H \subseteq \rightarrow X_{1} \rightarrow X_{2} \subseteq \mathcal{O}(\rightarrow X)$. Since $\chi(H)=\chi\left(K_{1}\right)+\chi(X)=5$, we must have $\chi\left(X_{1}\right)+\chi\left(X_{2}\right)=5$ and this is only possible if one of X_{1} or X_{2} has chromatic number at most 2.

Say $\chi\left(X_{1}\right) \leq 2$. Then we can assume that $X_{1}=K_{1}$ or $X_{1}=K_{2}$. In the first case, $\rightarrow X_{1} \rightarrow X_{2}=\rightarrow K_{1} \rightarrow X_{2}=\mathcal{O}\left(\rightarrow X_{2}\right)$, while in the second, $\rightarrow X_{1} \rightarrow X_{2}=\left(\rightarrow K_{1}\right)\left(\rightarrow K_{1} \rightarrow X_{2}\right)$. By Corollary 5 , there exists a bound for $\rightarrow H$ of the form $\mathcal{O}(\rightarrow Y)$ with $Y \subset H$ satisfying $\rightarrow H \subseteq \mathcal{O}(\rightarrow Y) \subseteq$ $\left(\rightarrow K_{1}\right)\left(\rightarrow K_{1} \rightarrow X_{2}\right)$. In either case there exists a bound for $\rightarrow H$ of the form $\mathcal{O}(\rightarrow Y)$ with $Y \subset H$ satisfying $\rightarrow H \subseteq \mathcal{O}(\rightarrow Y) \subseteq \rightarrow X_{1} \rightarrow X_{2}$, so we conclude that \mathbf{H} has a minimal element of the form $\mathcal{O}(\rightarrow Y)$ for some $Y \subset H$.

Proposition 12. If H is a graph with chromatic number either infinite or finite and greater than or equal to 6, and if K_{4} is not a subgraph of H, then $\rightarrow H$ has a minimal reducible bound of the form $\mathcal{O}(\rightarrow X)$ for some $X \subset H$.
Proof. There exists a bound for $\rightarrow H$ of the form $\mathcal{O}(\rightarrow X)$ where $X \subset H$, and $\chi(X) \geq 5$, which is minimal of this type.

Suppose $\rightarrow H \subset\left(\rightarrow X_{1}\right)\left(\rightarrow X_{2}\right) \subseteq \mathcal{O}(\rightarrow X)$ where $\left(\rightarrow X_{1}\right)\left(\rightarrow X_{2}\right) \in \mathbf{H}$ is not of the form $\mathcal{O}(\rightarrow Y)$ for any graph Y. If the chromatic number of either X_{1} or X_{2} is one, say $\chi\left(X_{1}\right)=1$, then $\left(\rightarrow X_{1}\right)\left(\rightarrow X_{2}\right)=\mathcal{O}\left(\rightarrow X_{2}\right)$, contradicting our assumption on the form of $\left(\rightarrow X_{1}\right)\left(\rightarrow X_{2}\right)$. If one of X_{1} or X_{2} has chromatic number 2, say $\chi\left(X_{1}\right)=2$, then $\left(\rightarrow X_{1}\right)\left(\rightarrow X_{2}\right)=\mathcal{O}$
$\left(\mathcal{O}\left(\rightarrow X_{2}\right)\right)$ and by Corollary 5 there exists an element of \mathbf{H} of the form $\mathcal{O}(\rightarrow Y)$ between $\rightarrow H$ and $\mathcal{O}\left(\mathcal{O}\left(\rightarrow X_{2}\right)\right)$, contradicting the minimality of $\mathcal{O}(\rightarrow X)$.

Thus $\chi\left(X_{1}\right) \geq 3$ and $\chi\left(X_{2}\right) \geq 3$ so that both X_{1} and X_{2} contain an odd cycle, say S_{1} and S_{2} respectively. But then $S_{1}+S_{2} \in\left(\rightarrow X_{1}\right)\left(\rightarrow X_{2}\right)$ $\subseteq \mathcal{O}(\rightarrow X)$, so $V\left(S_{1}+S_{2}\right)$ has an $(\mathcal{O},(\rightarrow X))$-partition, say $\left(V_{1}, V_{2}\right)$. Thus $\left(S_{1}+S_{2}\right)\left[V_{1}\right]$ is an independent subgraph of either S_{1} or S_{2}, and (since $\chi\left(S_{1}\right)=3$ and $\left.\chi\left(S_{2}\right)=3\right),\left(S_{1}+S_{2}\right)\left[V_{2}\right]$ must contain K_{4} as a subgraph, a contradiction since $\left(S_{1}+S_{2}\right)\left[V_{2}\right] \in \rightarrow X$, and any K_{4} in $\left(S_{1}+S_{2}\right)\left[V_{2}\right]$ would force a K_{4} in $X \subset H$.

We conclude that \mathbf{H} has a minimal element of the form $\mathcal{O}(\rightarrow Y)$ for some $Y \subset H$.

Proposition 13. If H is a graph with finite chromatic number satisfying $\chi(H)=n \geq 6$, and $K_{n-1} \subset H$, then $\rightarrow H$ has a minimal reducible bound of the form $\mathcal{O}(\rightarrow X)$ for some $X \subset H$.

Proof. There exists an element $\mathcal{O}(\rightarrow X) \in \mathbf{H}$ with $\chi(X)=n-1$. Suppose now that $\rightarrow H \subset\left(\rightarrow H\left[V_{1}\right]\right)\left(\rightarrow H\left[V_{2}\right]\right) \subseteq \mathcal{O}(\rightarrow X)$, with $\left(\rightarrow H\left[V_{1}\right]\right)(\rightarrow$ $\left.H\left[V_{2}\right]\right) \in \mathbf{H}$. Then $\chi\left(H\left[V_{1}\right]\right)+\chi\left(H\left[V_{2}\right]\right)=n$. Since $K_{n-1} \subset H$, there exists $K_{i} \subseteq H\left[V_{1}\right]$ and $K_{j} \subseteq H\left[V_{2}\right]$ with $i+j=n-1$.

If $i \geq \chi\left(H\left[V_{1}\right]\right)$, then $C\left(H\left[V_{1}\right]\right)=K_{i}$, so $\left(\rightarrow H\left[V_{1}\right]\right)\left(\rightarrow H\left[V_{2}\right]\right)=(\rightarrow$ $\left.K_{1}\right)\left(\rightarrow K_{i-1} \rightarrow H\left[V_{2}\right]\right)$ and by Corollary 5 , there exists a bound for $\rightarrow H$ of the form $\mathcal{O}(\rightarrow Y)$ for some $Y \subset H$, contained in $\left(\rightarrow H\left[V_{1}\right]\right)\left(\rightarrow H\left[V_{2}\right]\right)$. However if $i<\chi\left(H\left[V_{1}\right]\right)$, then $j \geq \chi\left(H\left[V_{2}\right]\right)$ and $\mathrm{C}\left(H\left[V_{2}\right]\right)=K_{j}$, and once again $\left(\rightarrow H\left[V_{1}\right]\right)\left(\rightarrow H\left[V_{2}\right]\right)$ contains a bound for $\rightarrow H$ of the form $\mathcal{O}(\rightarrow Y)$ for some $Y \subset H$.

We conclude that \mathbf{H} has a minimal element of the form $\mathcal{O}(\rightarrow Y)$ for some $Y \subset H$.

Proposition 14. If H is a triangle-free graph with finite chromatic number satisfying $\chi(H) \geq 6$, then $\rightarrow H$ has a minimal reducible bound not of the form $\mathcal{O P}$ for any $\mathcal{P} \in \mathbb{L}^{a}$.

Proof. Since $\chi(H) \geq 6$, there exists $\left(\rightarrow X_{1}\right)\left(\rightarrow X_{2}\right) \in \mathbf{H}$ such that $\chi\left(X_{1}\right) \geq 3, \chi\left(X_{2}\right) \geq 3, \chi\left(X_{1}\right)+\chi\left(X_{2}\right)=\chi(H)$. Suppose $\left(\rightarrow X_{1}\right)\left(\rightarrow X_{2}\right)=$ $\mathcal{O}(\rightarrow X)$ for some $X \subset H . X_{1}$ and X_{2} each contain an odd cycle, say S_{1}, and S_{2} respectively. We then have that $S_{1}+S_{2} \in \mathcal{O}(\rightarrow X)$ so $V\left(S_{1}+S_{2}\right)$ has an $(\mathcal{O}, \rightarrow X)$-partition, say $\left(V_{1}, V_{2}\right)$. Since $\left(S_{1}+S_{2}\right)\left[V_{1}\right]$ is an independent subset of either S_{1} or $S_{2},\left(S_{1}+S_{2}\right)\left[V_{2}\right]$ must contain a triangle, forcing H to
contain a triangle, contradicting our hypothesis. So $\left(\rightarrow X_{1}\right)\left(\rightarrow X_{2}\right)$ is not of the form $\mathcal{O P}$ for any $\mathcal{P} \in \mathbb{L}^{a}$.

Suppose now that $\rightarrow H \subset \mathcal{O}(\rightarrow X) \subset\left(\rightarrow X_{1}\right)\left(\rightarrow X_{2}\right)$ for some $X \subset H$. Since $\chi(H)=\chi\left(X_{1}\right)+\chi\left(X_{2}\right)$, it must be true that $\chi(X)=\chi(H)-1$. Let G be any finite subgraph of X with $\chi(G)=\chi(X)$. The graph $G+\{v\}$ is in $\mathcal{O}(\rightarrow X)$ and therefore in $\left(\rightarrow X_{1}\right)\left(\rightarrow X_{2}\right)$, and so $V(G+\{v\})$ has a $\left(\rightarrow X_{1}, \rightarrow X_{2}\right)$ partition $\left(V_{1}, V_{2}\right)$. Suppose that $v \in V_{1}$. If $\left\{w \in V(G): w \in V_{1}\right\}$ is not an independent set of vertices, then $(G+v)\left[V_{1}\right]$ contains a triangle, and so X_{1} contains a triangle, which is not possible. If $\left\{w \in V(G): w \in V_{1}\right\}$ is an independent set of vertices, then $\chi\left((G+v)\left[V_{2}\right]\right) \geq \chi(H)-2$. But $(G+v)\left[V_{2}\right] \in \rightarrow X_{2}$ and $\chi\left(X_{2}\right) \leq \chi(H)-3$, again a contradiction. Hence no bound of the form $\mathcal{O P}$ with $\mathcal{P} \in \mathbb{L}^{a}$ can occur between $\rightarrow H$ and $\left(\rightarrow X_{1}\right)$ $\left(\rightarrow X_{2}\right)$.

We conclude that \mathbf{H} has a minimal element not of the form $\mathcal{O}(\rightarrow Y)$ for any $Y \subset H$.

The previous result is not true if we allow $\chi(H)$ to be infinite since the set of all triangle-free graphs, \mathcal{I}_{1}, has the unique minimal reducible bound $\mathcal{O} \mathcal{I}_{1}$ (see [1], [6]). \mathcal{I}_{1} is the hom-property $\rightarrow \cup\{R: R$ is a triangle free core $\}$, with infinite chromatic number.

Corollaries 12 and 14 show that if H has a finite chromatic number greater than or equal to 6 , and H is triangle-free, then $\rightarrow H$ has a minimal reducible bound of the form $\mathcal{O P}$ for some $\mathcal{P} \in \mathbb{L}^{a}$ and a minimal reducible bound not of this form.

6. Minimal Reducible Bounds for $\rightarrow H$ in \mathbb{L}

We now describe the minimal reducible bounds of a hom-property $\rightarrow H$ in the lattice of hereditary properties, \mathbb{L}. Again, we will describe the case for a finite H first, and then draw conclusions about an infinite H. The following lemma and its corollary are useful in both the finite and infinite cases.

Lemma 15. Let H be a finite graph or a countable union of finite graphs. If $\rightarrow H \subseteq \mathcal{P Q}$, where \mathcal{P} and \mathcal{Q} are non-trivial properties in \mathbb{L} such that $\mathcal{O} \nsubseteq \mathcal{Q}$, then $\rightarrow H \subseteq \mathcal{P}$.

Proof. Suppose first that H is finite, and suppose that the cardinality of the largest edgeless graph in \mathcal{Q} is k. For any $m>k, H^{::}(m) \in \mathcal{P} \mathcal{Q}$ and by the restriction on $\mathcal{Q}, H^{:!}(m-k)$ must be in \mathcal{P}. This is true for any $m>k$ so that $H^{\because:}(r) \in \mathcal{P}$ for all $r \geq 1$, i.e. $\rightarrow H \subseteq \mathcal{P}$.

If H is infinite, then since $\rightarrow H^{\prime} \subseteq \mathcal{P Q}$ for any finite subgraph H^{\prime} of H, by the finite case we can conclude that $\rightarrow H^{\prime} \subseteq \mathcal{P}$ for every finite subgraph H^{\prime} of H. Since any graph in $\rightarrow H$ is contained in some $\rightarrow H^{\prime}$ where H^{\prime} is a finite subgraph of H, we can conclude that $\rightarrow H \subseteq \mathcal{P}$.

Corollary 16. Let H be a finite graph or a countable union of finite graphs. If $\rightarrow H \subseteq \mathcal{P Q}$, where \mathcal{P} and \mathcal{Q} are non-trivial properties in \mathbb{L} such that $\mathcal{O} \nsubseteq \mathcal{Q}$, then $\rightarrow H \subseteq(\rightarrow H)\left(\left\{K_{1}\right\}\right) \subseteq \mathcal{P} \mathcal{Q}$.

Proof. The proof is immediate as $\rightarrow H \subseteq \mathcal{P}$ and, since \mathcal{Q} is non-trivial, $K_{1} \in \mathcal{Q}$.

We now describe the minimal reducible bounds for hom-properties in \mathbb{L}.

6.1. Finite H

Theorem 17. If H is a finite indecomposable core then the minimal reducible bounds for $\rightarrow H$ in \mathbb{L} are the minimal elements of \mathbf{H} as well as the property $(\rightarrow H)\left(\left\{K_{1}\right\}\right)$.

Proof. By Lemma 4 and Corollary 16 we know that if $\rightarrow H \subset \mathcal{P} \mathcal{Q}$, where \mathcal{P} and \mathcal{Q} are non-trivial properties in \mathbb{L}, then if $\mathcal{O} \subseteq \mathcal{P}$ and $\mathcal{O} \subseteq \mathcal{Q}$, we have a minimal element of \mathbf{H} between $\rightarrow H$ and $\mathcal{P Q}$, while if $\mathcal{O} \nsubseteq \mathcal{Q}$, then $(\rightarrow H)\left(\left\{K_{1}\right\}\right)$ lies between $\rightarrow H$ and $\mathcal{P Q}$. Note that the case $\mathcal{O} \nsubseteq \mathcal{P}$ and $\mathcal{O} \nsubseteq \mathcal{Q}$ cannot occur since by Lemma 15 , if $\mathcal{O} \nsubseteq \mathcal{Q}$, then $\rightarrow H \subseteq \mathcal{P}$, and since H is assumed to have at least one vertex, all multiplications of this vertex must be in \mathcal{P} i.e. $\mathcal{O} \subseteq \mathcal{P}$.

To complete the proof of the theorem, we must show that $(\rightarrow H)\left(\left\{K_{1}\right\}\right)$ is not contained in any minimal element of \mathbf{H}, and that no minimal element of \mathbf{H} is contained in $(\rightarrow H)\left(\left\{K_{1}\right\}\right)$.

First suppose to the contrary that $\rightarrow H\left[V_{1}\right]+H\left[V_{2}\right]$ is a minimal element of \mathbf{H} satisfying $\rightarrow H\left[V_{1}\right]+H\left[V_{2}\right] \subseteq(\rightarrow H)\left(\left\{K_{1}\right\}\right)$. By Lemma 15 we then have $\rightarrow H\left[V_{1}\right]+H\left[V_{2}\right] \subseteq \rightarrow H$, and so $H\left[V_{1}\right]+H\left[V_{2}\right] \rightarrow H$. If this homomorphism is a surjection, then H is decomposable, a contradiction, while if this homomorphism is not a surjection, then we can use it to map H into a proper subgraph of itself, a contradiction to the fact that H is a core.

Now suppose that $\rightarrow\left(H\left[V_{1}\right]+H\left[V_{2}\right]\right)$ is a minimal element of \mathbf{H} and that $(\rightarrow H)\left(\left\{K_{1}\right\}\right) \subseteq \rightarrow\left(H\left[V_{1}\right]+H\left[V_{2}\right]\right)$. Now $H+K_{1} \in(\rightarrow H)\left(\left\{K_{1}\right\}\right) \subseteq \rightarrow$ $\left(H\left[V_{1}\right]+H\left[V_{2}\right]\right)$, so we have the inclusions $\rightarrow H \subseteq\left(H+K_{1}\right)=$ $(\rightarrow H)(\mathcal{O}) \subseteq \rightarrow\left(H\left[V_{1}\right]+H\left[V_{2}\right]\right)$. By Lemma 4 there exists an element
$\rightarrow\left(H\left[W_{1}\right]+H\left[W_{2}\right]\right)$ in \mathbf{H} satisfying $\rightarrow H \subseteq \rightarrow\left(H\left[W_{1}\right]+H\left[W_{2}\right]\right) \subseteq(\rightarrow H)$ $(\mathcal{O}) \subseteq \rightarrow\left(H\left[V_{1}\right]+H\left[V_{2}\right]\right)$, and $\rightarrow H\left[W_{1}\right] \subseteq \rightarrow H$ and $\rightarrow H\left[W_{2}\right]=\mathcal{O}$. By the minimality of $\rightarrow\left(H\left[V_{1}\right]+H\left[V_{2}\right]\right)$ in \mathbf{H}, the two elements of \mathbf{H} must be equal, and so we have $(\rightarrow H)(\mathcal{O})=\rightarrow\left(H\left[W_{1}\right]+H\left[W_{2}\right]\right)$ i.e. $(\rightarrow H)(\mathcal{O})=\rightarrow$ $H\left[W_{1}\right] \rightarrow H\left[W_{2}\right]$. By the unique factorisation theorem [3], and the fact that $\rightarrow H\left[W_{2}\right]=\mathcal{O}$, we can conclude that $\rightarrow H=\rightarrow H\left[W_{1}\right]$ and $\mathcal{O}=H\left[W_{2}\right]$. But then we have a homomorphism from H to $H\left[W_{1}\right]$, a proper subgraph of H, contradicting the fact that H is a core.

6.2. Infinite H

Theorem 18. If H is an infinite union of finite graphs, then the minimal elements of the set $\mathbf{H} \cup\left\{(\rightarrow H)\left(\left\{K_{1}\right\}\right)\right\}$ are the minimal reducible bounds for $\rightarrow H$ in \mathbb{L}.

This result immediately follows from Lemma 4 and Corollary 16. The sharper result from the finite case is no longer true since when H is infinite, it may be possible that $(\rightarrow H)\left(\left\{K_{1}\right\}\right)$ is properly contained in a minimal element of \mathbf{H} e.g. \mathcal{I}_{1} has the unique minimal reducible bound in \mathbb{L}^{a} of $\mathcal{I}_{1} O$, the unique minimal element of \mathbf{H}. In \mathbb{L} however, we have $\mathcal{I}_{1} \nsubseteq \mathcal{I}_{1}\left\{K_{1}\right\} \nsubseteq \mathcal{I}_{1} O$, so that \mathcal{I}_{1} has unique minimal reducible bound $\mathcal{I}_{1}\left\{K_{1}\right\}$.

It is not true that $(\rightarrow H)\left(\left\{K_{1}\right\}\right)$ is contained in every minimal element of \mathbf{H}, since if $(\rightarrow H)\left(\left\{K_{1}\right\}\right) \subseteq\left(\rightarrow H\left[V_{1}\right]\right)\left(\rightarrow H\left[V_{2}\right]\right)$ where $\left(\rightarrow H\left[V_{1}\right]\right)(\rightarrow$ $\left.H\left[V_{2}\right]\right)$ is minimal in \mathbf{H}, then we have $\rightarrow H \subseteq(\rightarrow H)(\mathcal{O}) \subseteq\left(\rightarrow H\left[V_{1}\right]\right)(\rightarrow$ $H\left[V_{2}\right]$). (The second inclusion follows since any graph G in $(\rightarrow H)(\mathcal{O})$ is in $\rightarrow\left(H^{\prime}+K_{1}\right)$ for some finite subgraph H^{\prime} of H, and since $H^{\prime}+K_{1} \in \rightarrow$ $H\left[V_{1}\right] \rightarrow H\left[V_{2}\right]$, we have that $\rightarrow\left(H^{\prime}+K_{1}\right) \in \rightarrow H\left[V_{1}\right] \rightarrow H\left[V_{2}\right]$. .) By Lemma 4 there should be another element of \mathbf{H} between $\rightarrow H$ and $(\rightarrow H)(\mathcal{O})$. By the minimality of $\rightarrow\left(H\left[V_{1}\right]+H\left[V_{2}\right]\right)$, we now have that $(\rightarrow H)(\mathcal{O})=(\rightarrow$ $\left.H\left[V_{1}\right]\right)\left(\rightarrow H\left[V_{2}\right]\right)$. However (Corollary 14) if H is infinite and triangle-free with finite chromatic number at least six, \mathbf{H} contains at least one minimal element which does not contain the factor \mathcal{O}.

References

[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of Hereditary Properties of Graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50.
[2] P. Hell and J. Nešetril, The core of a graph, Discrete Math. 109 (1992) 117-126.
[3] J. Kratochvíl and P. Mihók, Hom properties are uniquely factorisable into irreducible factors, to appear in Discrete Math.
[4] J. Kratochvíl, P. Mihók and G. Semanišin, Graphs maximal with respect to hom-properties, Discussiones Mathematicae Graph Theory 17 (1997) 77-88.
[5] J. Nešetril, Graph homomorphisms and their structure, in: Y. Alavi and A. Schwenk, eds., Graph Theory, Combinatorics and Applications: Proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs 2 (1995) 825-832.
[6] J. Nešetril, V. Rödl, Partitions of Vertices, Comment. Math. Univ. Carolin. 17 (1976) 675-681.

Received 19 January 1999
Revised 7 September 1999

