A NOTE ON THE RAMSEY NUMBER AND THE PLANAR RAMSEY NUMBER FOR C_{4} AND COMPLETE GRAPHS

Halina Bielak
Institute of Mathematics UMCS
M. Curie-Sktodowska University
Lublin, Poland
e-mail: hbiel@golem.umcs.lublin.pl

Abstract

We give a lower bound for the Ramsey number and the planar Ramsey number for C_{4} and complete graphs. We prove that the Ramsey number for C_{4} and K_{7} is 21 or 22. Moreover we prove that the planar Ramsey number for C_{4} and K_{6} is equal to 17 .

Keywords: planar graph, Ramsey number.
1991 Mathematics Subject Classification: 05C55.

1 Introduction

Let F, G, H be simple graphs with at least two vertices. The Ramsey number $R(G, H)$ is the smallest integer n such that in arbitrary two-colouring (say red and blue) of K_{n} a red copy of G or a blue copy of H is contained (as subgraphs).

Let the planar Ramsey number $P R(G, H)$ be the smallest integer n such that any planar graph on n vertices contains a copy of G or its complement contains a copy of H.

So we have an immediate inequality between planar and ordinary Ramsey number, i.e., $P R(G, H) \leq R(G, H)$.

Walker in [9] and Steinberg and Tovey in [8] studied the planar Ramsey number but only in the case when both graphs are complete.

In this paper we will only consider the case when G is a cycle C_{4} of order 4 and H is a complete graph K_{t} of order t. In that case one can say that the Ramsey number is the smallest integer n such that any graph on n vertices contains a copy of C_{4} or an independent set of cardinality t. The
problem for the case when G, i.e., the first graph of the pair, is a cycle has been studied by J.A. Bondy, P. Erdös in [3] and by P. Erdös, R.J. Faudree, C.C. Rousseau, R.H. Schelp in [6]. We give a lower bound for the Ramsey number and the planar Ramsey number for C_{4} and complete graphs. We prove that the Ramsey number for C_{4} and K_{7} is 21 or 22.

Moreover in Theorem 6 we prove that $\operatorname{PR}\left(C_{4}, K_{6}\right)=17$.
A graph F is said to be a $\left(G, K_{t}\right)$-Ramsey-free graph if it does not contain any copy of G and any independent set of cardinality t. For graphs G, H the symbol $G \cup H$ denotes a disjoint union of graphs, $t G$ a disjoint union of t copies of the graph G, \bar{G} a complement of $G, G-S$ a subgraph of G induced by a subset $V(G)-S$ of the vertices of G where $S \subset V(G)$, and $G \supset H$ express the fact that a graph H is a subgraph of G. Then $\operatorname{deg}_{G}(x)$ denotes the degree of the vertex x in the graph G, and $\delta(G)$ is the minimum vertex degree over all vertices of G. Moreover $N(x)$ is the set of vertices adjacent to x, and $N[x]$ is the closed neighbourhood, i.e., $N[x]=N(x) \cup\{x\}$.

The following theorems summarises the results for ordinary and planar Ramsey numbers known so far referring to the cases when the first graph is a cycle of order 4 and the second one is a complete graph.

Theorem 1 [4], [5], [7]. (i) $R\left(C_{4}, K_{3}\right)=7$;
(ii) $R\left(C_{4}, K_{4}\right)=10$;
(iii) $R\left(C_{4}, K_{5}\right)=14$;
(iv) $R\left(C_{4}, K_{6}\right)=18$.

Theorem 2 [1]. (i) $P R\left(C_{4}, K_{3}\right)=7$;
(ii) $P R\left(C_{4}, K_{4}\right)=10$;
(iii) $P R\left(C_{4}, K_{5}\right)=13$.

2 Main Results

We use the following lemma to prove some further results for the Ramsey and the planar Ramsey number of pair of graphs.

Lemma 3 [2]. Let G be a graph of order 17 with independence number less than 6 and without C_{4}. Then G is isomorphic to one of the graphs presented in Figure 1.

Therefore we have the following simple general observation.

B_{1}

B_{3}

Figure 1. Graphs of order 17 without C_{4} and with $\alpha(G)<6$.

Proposition 4. For each integer $t \geq 6, R\left(C_{4}, K_{t+1}\right) \geq 3 t+2\left[\frac{t}{5}\right]+1$.
Proof. Let H be a graph of order 17 presented in Figure 1. Note that H does not contain any subgraph C_{4} and $\alpha(H)=5$. Therefore [$\left[\frac{t}{5}\right] H \cup$ $\left(t-\left[\frac{t}{5}\right] 5\right) K_{3}, t \geq 5$, shows that $R\left(C_{4}, K_{t+1}\right) \geq 3 t+2\left[\frac{t}{5}\right]+1$.

Theorem 5. $21 \leq R\left(C_{4}, K_{7}\right) \leq 22$.
Proof. Immediately by Proposition 4 we get $21 \leq R\left(C_{4}, K_{7}\right)$. Suppose for the contrary that $R\left(C_{4}, K_{7}\right)>22$. Let G be a $\left(C_{4}, K_{7}\right)$-Ramsey-free graph of order 22 . Note that $\delta(G)<5$, else a C_{4} should be a subgraph of G.

Let m be an arbitrary vertex of G of the minimum degree $\delta(G)$.
Suppose that $\delta(G) \leq 3$. Then deleting a 3 -degree vertex m and all its neighbours we get a graph F of the order at least 18. By Theorem $1(i v)$ the graph F contains an independent set S of cardinality 6 . Thus $S \cup\{m\}$ is an independent set of cardinality 7 , a contradiction.

Therefore $\delta(G)=4$. Let $m_{i}, i=1,2,3,4$ be the neighbours of m in G. Let us consider the graph F obtained from G by deleting the vertex m and all its neighbours. Since G does not contain any C_{4} then by degree condition each $m_{i}, i=1,2,3,4$ has at least two neighbours in F. Evidently the order of F equals 17 and F must be isomorphic to one of the (C_{4}, K_{6})-Ramseyfree graphs presented in Figure 1 (else we get a contradiction as before). Suppose that F is isomorphic to H_{1} or H_{2}. Since the vertex w has degree 3 in F then it must be adjacent to one of the neighbours of m, say m_{1}. Let us consider the graph $Y=G-N[w]$. Note that the vertex m has degree 3 in Y. Hence Y must be one of the (C_{4}, K_{6})-Ramsey-free graphs H_{1} or H_{2} presented in Figure 1. Evidently m is not adjacent to any vertex of the set $\{d, v, b, h\}$. Therefore each of the four vertices must be adjacent to a vertex of the set $\left\{m_{2}, m_{3}, m_{4}\right\}$. It is impossible without creating C_{4} because each two vertices of the set $\{d, v, b, h\}$ are at distance 2. A contradiction. Therefore we can assume that F is not isomorphic to $H_{i}, i=1,2$.

Suppose that F is isomorphic to B_{1}. Let the vertex x be adjacent to m_{1}. Then $1 m_{1} \in E(G)$, else $\operatorname{deg}\left(m_{1}\right)<4$. Moreover without loss of generality $m_{1} m_{2} \in E(G)$. Note that $\operatorname{deg}\left(m_{1}\right)=4$. So we consider the graph $Y=$ $G-N\left[m_{1}\right]$. Since Y cannot be isomorphic to $H_{i}, i=1,2$ then each of the vertices of the set $\{2,3,4,5\}$ must be adjacent to m_{3} or m_{4} and we get C_{4}, a contradiction. Therefore $x m_{i} \notin E(G)$, for $i=1,2,3,4$. By symmetry, $y m_{i} \notin E(G)$, for $i=1,2,3,4$.

Suppose that f is adjacent to m_{1}. Since C_{4} cannot be a subgraph then b, v, e or 4 is not adjacent to $m_{i}, i=2,3,4$. Therefore $\operatorname{deg}\left(m_{1}\right)>4$, else
the graph $G-N\left[m_{1}\right]$ has a 3-degree vertex, so it should be isomorphic to $H_{i}, i=1,2$ and we get a case above. Then m_{1} should be adjacent to 3 and h, and without loss of generality $m_{1} m_{2} \in E(G)$. Note that m_{2} can be adjacent to one of the vertices $d, 1$ or u. So $\operatorname{deg}\left(m_{2}\right)<4$ or a C_{4} exists, a contradiction.

Hence $f m_{i} \notin E(G)$, for $i=1,2,3,4$. By symmetry $b m_{i} \notin E(G)$, for $i=1,2,3,4$.

If the vertex 2 is adjacent to m_{1} then $\operatorname{deg}\left(m_{1}\right)>4$, else $G-N\left[m_{1}\right]$ has a 3 -degree vertex, and we get a case above. Then m_{1} must be adjacent to e and to one of g, u. Moreover without loss of generality $m_{1} m_{2} \in E(G)$. Note that $\operatorname{deg}\left(m_{2}\right)<4$ or a C_{4} exists, a contradiction.

Hence $2 m_{i} \notin E(G)$, for $i=1,2,3,4$. By symmetry $e m_{i} \notin E(G)$, for $i=1,2,3,4$.

Similar arguments give that 5 and h cannot be adjacent to $m_{i}, i=$ $1,2,3,4$.

Now without loss of generality we can assume that m_{1}, m_{2} and u create an independent set. Therefore $\left\{m_{1}, m_{2}, 2,5, y, f, u\right\}$ is an independent set.

Suppose that F is isomorphic to B_{2}. Let g be adjacent to m_{1}. Then m_{1} must be adjacent to 3 and y, and without loss of generality $m_{1} m_{2} \in E(G)$, else the graph $G-N\left[m_{1}\right]$ has a 3 -degree vertex, so it should be isomorphic to $H_{i}, i=1,2$ and we get a case above. So m_{2} must be adjacent to 4 and e, and it has degree four. Therefore the vertices $5, b, u, f$ must be adjacent to m_{3} or m_{4}, else we get a 3 -degree vertex in $G-N\left[m_{2}\right]$. Without loss of generality we can assume that the vertex m_{3} is adjacent to b, f, and the vertex m_{4} is adjacent to $5, u$. Note that m_{4} has only these two neighbours in B_{2}. Hence m_{4} must be adjacent to m_{3} and $\operatorname{deg}\left(m_{4}\right)=4$. Since h cannot be adjacent to $m_{i}, i=1,2,3,4$ the graph $G-N\left[m_{4}\right]$ has a 3-degree vertex and we get a case above.

Hence $g m_{i} \notin E(G)$, for $i=1,2,3,4$. By symmetry $y m_{i} \notin E(G)$, for $i=1,2,3,4$.

Let 2 be adjacent to m_{1}. Then m_{1} should be adjacent to one of the vertices u, a, b. So the graph $G-N\left[m_{1}\right]$ contains a 3 -degree vertex g or y, and we get a case above. Hence $2 m_{i} \notin E(G)$, for $i=1,2,3,4$. By symmetry $c m_{i} \notin E(G)$, for $i=1,2,3,4$.

Now without loss of generality we can assume that m_{1}, m_{2} and 4 create an independent set. Therefore $\left\{m_{1}, m_{2}, 4, c, 2, g, y\right\}$ is an independent set.

Suppose that F is isomorphic to B_{3}. Let d be adjacent to m_{1}. Then m_{1} must be adjacent to one of the vertices $3, b, g, h$, and without loss of generality
$m_{1} m_{2} \in E(G)$. Since $\operatorname{deg}\left(m_{1}\right)=4$ and m_{2} cannot be adjacent to $3, h, f, u$, then the graph $G-N\left[m_{1}\right]$ has a 3 -degree vertex, and we get a case above.

Hence $d m_{i} \notin E(G)$, for $i=1,2,3,4$. By symmetry $g m_{i} \notin E(G)$, for $i=1,2,3,4$.

Let a be adjacent to m_{1}. Then m_{1} must be adjacent to one of the vertices $u, f, 4$. As before $\operatorname{deg}\left(m_{1}\right)=4$. Note that one of the vertices $2, b, h, y$ has 3 -degree in $G-N\left[m_{1}\right]$, and we get a case above.

Hence a and 4 (by symmetry) cannot be adjacent to $m_{i}, i=1,2,3,4$. Now without loss of generality we can assume that m_{1}, m_{2} and 1 create an independent set. Therefore $\left\{m_{1}, m_{2}, 1,4, a, d, g\right\}$ is an independent set.

All cases lead to a contradiction
For the planar case we get the following theorem.
Theorem 6. $P R\left(C_{4}, K_{6}\right)=17$.
Proof. Since by Lemma 3 each $\left(C_{4}, K_{6}\right)$-Ramsey-free graph of order 17 is not planar and $R\left(C_{4}, K_{6}\right)=18$ we get $P R\left(C_{4}, K_{6}\right) \leq 17$. The graph presented in Figure 2 is $\left(C_{4}, K_{6}\right)$-Ramsey-free planar graph. So $P R$ $\left(C_{4}, K_{6}\right)>16$.

Figure 2. A planar graph of order 16 with independence number less than 6 and without C_{4}.

Proposition 7. For each integer $t \geq 5, P R\left(C_{4}, K_{t+1}\right) \geq 3 t+\left[\frac{t}{5}\right]+1$.

Proof. Let H be a graph of order 16 presented in Figure 2. Note that H does not contain any subgraph C_{4} and $\alpha(H)=5$. Therefore $\left[\frac{t}{5}\right] H \cup$ $\left(t-\left[\frac{t}{5}\right] 5\right) K_{3}, t \geq 6$, shows that $P R\left(C_{4}, K_{t+1}\right) \geq 3 t+\left[\frac{t}{5}\right]+1$.

Added in Proof. The result cited in Lemma 3 can be also find in: C.J. Jayawardene, C.C. Rousseau, An upper bound for Ramsey number of a quadrilateral versus a complete graph on seven vertices, Congressus Numerantium 130 (1998) 175-188.

References

[1] H. Bielak, I. Gorgol, The Planar Ramsey Number for C_{4} and K_{5} is 13, to appear in Discrete Math.
[2] H. Bielak, Ramsey-Free Graphs of Order 17 for C_{4} and K_{6}, submitted.
[3] J.A. Bondy, P. Erdös, Ramsey Numbers for Cycles in Graphs, J. Combin. Theory (B) 14 (1973) 46-54.
[4] V. Chvátal, F. Harary, Generalized Ramsey Theory for Graphs, III. Small Off-Diagonal Numbers, Pacific J. Math. 41 (1972) 335-345.
[5] M. Clancy, Some Small Ramsey Numbers, J. Graph Theory 1 (1977) 89-91.
[6] P. Erdös, R.J. Faudree, C.C. Rousseau, R.H. Schelp, On Cycle-Complete Graph Ramsey Numbers, J. Graph Theory 2 (1978) 53-64.
[7] C.C. Rousseau, C.J. Jayawardene, The Ramsey number for a quadrilateral vs. a complete graph on six vertices, Congressus Numerantium 123 (1997) 97-108.
[8] R. Steinberg, C.A. Tovey, Planar Ramsey Number, J. Combin. Theory (B) 59 (1993) 288-296.
[9] K. Walker, The Analog of Ramsey Numbers for Planar Graphs, Bull. London Math. Soc. 1 (1969) 187-190.

