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Abstract

We give a lower bound for the Ramsey number and the planar Ram-
sey number for C4 and complete graphs. We prove that the Ramsey
number for C4 and K7 is 21 or 22. Moreover we prove that the planar
Ramsey number for C4 and K6 is equal to 17.
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1 Introduction

Let F,G,H be simple graphs with at least two vertices. The Ramsey number
R(G,H) is the smallest integer n such that in arbitrary two-colouring (say
red and blue) of Kn a red copy of G or a blue copy of H is contained (as
subgraphs).

Let the planar Ramsey number PR(G,H) be the smallest integer n such
that any planar graph on n vertices contains a copy of G or its complement
contains a copy of H.

So we have an immediate inequality between planar and ordinary Ram-
sey number, i.e., PR(G,H) ≤ R(G,H).

Walker in [9] and Steinberg and Tovey in [8] studied the planar Ramsey
number but only in the case when both graphs are complete.

In this paper we will only consider the case when G is a cycle C4 of
order 4 and H is a complete graph Kt of order t. In that case one can say
that the Ramsey number is the smallest integer n such that any graph on
n vertices contains a copy of C4 or an independent set of cardinality t. The
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problem for the case when G, i.e., the first graph of the pair, is a cycle has
been studied by J.A. Bondy, P. Erdös in [3] and by P. Erdös, R.J. Faudree,
C.C. Rousseau, R.H. Schelp in [6]. We give a lower bound for the Ramsey
number and the planar Ramsey number for C4 and complete graphs. We
prove that the Ramsey number for C4 and K7 is 21 or 22.

Moreover in Theorem 6 we prove that PR(C4,K6) = 17.

A graph F is said to be a (G,Kt)-Ramsey-free graph if it does not contain
any copy of G and any independent set of cardinality t. For graphs G, H
the symbol G∪H denotes a disjoint union of graphs, tG a disjoint union of t
copies of the graph G, G a complement of G, G−S a subgraph of G induced
by a subset V (G) − S of the vertices of G where S ⊂ V (G), and G ⊃ H
express the fact that a graph H is a subgraph of G. Then degG(x) denotes
the degree of the vertex x in the graph G, and δ(G) is the minimum vertex
degree over all vertices of G. Moreover N(x) is the set of vertices adjacent
to x, and N [x] is the closed neighbourhood, i.e., N [x] = N(x) ∪ {x}.

The following theorems summarises the results for ordinary and planar
Ramsey numbers known so far referring to the cases when the first graph is
a cycle of order 4 and the second one is a complete graph.

Theorem 1 [4], [5], [7]. (i) R(C4,K3) = 7;
(ii) R(C4,K4) = 10;

(iii) R(C4,K5) = 14;

(iv) R(C4,K6) = 18.

Theorem 2 [1]. (i) PR(C4,K3) = 7;

(ii) PR(C4,K4) = 10;

(iii) PR(C4,K5) = 13.

2 Main Results

We use the following lemma to prove some further results for the Ramsey
and the planar Ramsey number of pair of graphs.

Lemma 3 [2]. Let G be a graph of order 17 with independence number less

than 6 and without C4. Then G is isomorphic to one of the graphs presented

in Figure 1.

Therefore we have the following simple general observation.
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Figure 1. Graphs of order 17 without C4 and with α(G) < 6.
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Proposition 4. For each integer t ≥ 6, R(C4,Kt+1) ≥ 3t + 2[ t

5
] + 1.

Proof. Let H be a graph of order 17 presented in Figure 1. Note that
H does not contain any subgraph C4 and α(H) = 5. Therefore [ t

5
]H∪

(t − [ t

5
]5)K3, t ≥ 5, shows that R(C4,Kt+1) ≥ 3t + 2[ t

5
] + 1.

Theorem 5. 21 ≤ R(C4,K7) ≤ 22.

Proof. Immediately by Proposition 4 we get 21 ≤ R(C4,K7). Suppose for
the contrary that R(C4,K7) > 22. Let G be a (C4,K7)-Ramsey-free graph
of order 22. Note that δ(G) < 5, else a C4 should be a subgraph of G.

Let m be an arbitrary vertex of G of the minimum degree δ(G).
Suppose that δ(G) ≤ 3. Then deleting a 3-degree vertex m and all its

neighbours we get a graph F of the order at least 18. By Theorem 1(iv) the
graph F contains an independent set S of cardinality 6. Thus S ∪{m} is an
independent set of cardinality 7, a contradiction.

Therefore δ(G) = 4. Let mi, i = 1, 2, 3, 4 be the neighbours of m in G.
Let us consider the graph F obtained from G by deleting the vertex m and
all its neighbours. Since G does not contain any C4 then by degree condition
each mi, i = 1, 2, 3, 4 has at least two neighbours in F . Evidently the order
of F equals 17 and F must be isomorphic to one of the (C4,K6)-Ramsey-
free graphs presented in Figure 1 (else we get a contradiction as before).
Suppose that F is isomorphic to H1 or H2. Since the vertex w has degree 3
in F then it must be adjacent to one of the neighbours of m, say m1. Let
us consider the graph Y = G − N [w]. Note that the vertex m has degree
3 in Y . Hence Y must be one of the (C4,K6)-Ramsey-free graphs H1 or
H2 presented in Figure 1. Evidently m is not adjacent to any vertex of the
set {d, v, b, h}. Therefore each of the four vertices must be adjacent to a
vertex of the set {m2,m3,m4}. It is impossible without creating C4 because
each two vertices of the set {d, v, b, h} are at distance 2. A contradiction.
Therefore we can assume that F is not isomorphic to Hi, i = 1, 2.

Suppose that F is isomorphic to B1. Let the vertex x be adjacent to m1.
Then 1m1 ∈ E(G), else deg(m1) < 4. Moreover without loss of generality
m1m2 ∈ E(G). Note that deg(m1) = 4. So we consider the graph Y =
G − N [m1]. Since Y cannot be isomorphic to Hi, i = 1, 2 then each of the
vertices of the set {2, 3, 4, 5} must be adjacent to m3 or m4 and we get C4,
a contradiction. Therefore xmi /∈ E(G), for i = 1, 2, 3, 4. By symmetry,
ymi /∈ E(G), for i = 1, 2, 3, 4.

Suppose that f is adjacent to m1. Since C4 cannot be a subgraph then
b, v, e or 4 is not adjacent to mi, i = 2, 3, 4. Therefore deg(m1) > 4, else
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the graph G − N [m1] has a 3-degree vertex, so it should be isomorphic to
Hi, i = 1, 2 and we get a case above. Then m1 should be adjacent to 3
and h, and without loss of generality m1m2 ∈ E(G). Note that m2 can be
adjacent to one of the vertices d, 1 or u. So deg(m2) < 4 or a C4 exists, a
contradiction.

Hence fmi /∈ E(G), for i = 1, 2, 3, 4. By symmetry bmi /∈ E(G), for
i = 1, 2, 3, 4.

If the vertex 2 is adjacent to m1 then deg(m1) > 4, else G −N [m1] has
a 3-degree vertex, and we get a case above. Then m1 must be adjacent to
e and to one of g, u. Moreover without loss of generality m1m2 ∈ E(G).
Note that deg(m2) < 4 or a C4 exists, a contradiction.

Hence 2mi /∈ E(G), for i = 1, 2, 3, 4. By symmetry emi /∈ E(G), for
i = 1, 2, 3, 4.

Similar arguments give that 5 and h cannot be adjacent to mi, i =
1, 2, 3, 4.

Now without loss of generality we can assume that m1,m2 and u create
an independent set. Therefore {m1,m2, 2, 5, y, f, u} is an independent set.

Suppose that F is isomorphic to B2. Let g be adjacent to m1. Then m1

must be adjacent to 3 and y, and without loss of generality m1m2 ∈ E(G),
else the graph G − N [m1] has a 3-degree vertex, so it should be isomorphic
to Hi, i = 1, 2 and we get a case above. So m2 must be adjacent to 4 and
e, and it has degree four. Therefore the vertices 5, b, u, f must be adjacent
to m3 or m4, else we get a 3-degree vertex in G − N [m2]. Without loss
of generality we can assume that the vertex m3 is adjacent to b, f , and the
vertex m4 is adjacent to 5, u. Note that m4 has only these two neighbours
in B2. Hence m4 must be adjacent to m3 and deg(m4) = 4. Since h cannot
be adjacent to mi, i = 1, 2, 3, 4 the graph G − N [m4] has a 3-degree vertex
and we get a case above.

Hence gmi /∈ E(G), for i = 1, 2, 3, 4. By symmetry ymi /∈ E(G), for
i = 1, 2, 3, 4.

Let 2 be adjacent to m1. Then m1 should be adjacent to one of the
vertices u, a, b. So the graph G − N [m1] contains a 3-degree vertex g or y,
and we get a case above. Hence 2mi /∈ E(G), for i = 1, 2, 3, 4. By symmetry
cmi /∈ E(G), for i = 1, 2, 3, 4.

Now without loss of generality we can assume that m1,m2 and 4 create
an independent set. Therefore {m1,m2, 4, c, 2, g, y} is an independent set.

Suppose that F is isomorphic to B3. Let d be adjacent to m1. Then m1 must
be adjacent to one of the vertices 3,b, g, h, and without loss of generality
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m1m2 ∈ E(G). Since deg(m1) = 4 and m2 cannot be adjacent to 3,h, f, u,
then the graph G − N [m1] has a 3-degree vertex, and we get a case above.

Hence dmi /∈ E(G), for i = 1, 2, 3, 4. By symmetry gmi /∈ E(G), for
i = 1, 2, 3, 4.

Let a be adjacent to m1. Then m1 must be adjacent to one of the vertices
u, f, 4. As before deg(m1) = 4. Note that one of the vertices 2, b, h, y has
3-degree in G − N [m1], and we get a case above.

Hence a and 4 (by symmetry ) cannot be adjacent to mi, i = 1, 2, 3, 4.
Now without loss of generality we can assume that m1,m2 and 1 create an
independent set. Therefore {m1,m2, 1, 4, a, d, g} is an independent set.

All cases lead to a contradiction

For the planar case we get the following theorem.

Theorem 6. PR(C4,K6) = 17.

Proof. Since by Lemma 3 each (C4,K6)-Ramsey-free graph of order
17 is not planar and R(C4,K6) = 18 we get PR(C4,K6) ≤ 17. The
graph presented in Figure 2 is (C4,K6)-Ramsey-free planar graph. So PR
(C4,K6) > 16.
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Figure 2. A planar graph of order 16 with independence number less than 6 and

without C4.

Proposition 7. For each integer t ≥ 5, PR(C4,Kt+1) ≥ 3t + [ t

5
] + 1.
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Proof. Let H be a graph of order 16 presented in Figure 2. Note that
H does not contain any subgraph C4 and α(H) = 5. Therefore [ t

5
]H∪

(t − [ t

5
]5)K3, t ≥ 6, shows that PR(C4,Kt+1) ≥ 3t + [ t

5
] + 1.

Added in Proof. The result cited in Lemma 3 can be also find in:
C.J. Jayawardene, C.C. Rousseau, An upper bound for Ramsey number
of a quadrilateral versus a complete graph on seven vertices, Congressus
Numerantium 130 (1998) 175–188.
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