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Abstract

This paper contains a number of results in the theory of star par-
titions of graphs. We illustrate a variety of situations which can arise
when the Reconstruction Theorem for graphs is used, considering in
particular galaxy graphs — these are graphs in which every star set
is independent. We discuss a recursive ordering of graphs based on
the Reconstruction Theorem, and point out the significance of galaxy
graphs in this connection.
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0. Introduction

We take G to be an undirected graph without loops or multiple edges,
with vertex set V (G) = {1, . . . , n}, and with (0, 1)-adjacency matrix A(G).
Let P denote the orthogonal projection of Rn onto the eigenspace E(µ)
corresponding to the eigenvalue µ of A(G), and let {e1, . . . , en} be the
standard orthonormal basis of Rn. Since E(µ) is spanned by the vectors
Pej (j = 1, . . . , n) there exists X ⊆ V (G) such that the vectors Pej (j ∈ X)
form a basis for E(µ). Such a subset X of V (G) is called a star set for µ

in G. A partition of V (G) such that each cell is a star set for a different
eigenvalue is called a star partition. (The terminology reflects the fact that
the vectors Pe1, . . . , Pen form a eutactic star in the sense of Seidel [15]. In
the context of star partitions [5, Section 7.1], star sets are called star cells.)

An equivalent definition of star set, needed below, is the following: if
µ has multiplicity k then a star set for µ in G is a set X of k vertices of
G such that µ is not an eigenvalue of G − X. Here G − X, called the star

complement for µ corresponding to X, is the subgraph of G induced by X,

the complement of X in V (G).
The paper consists of the following sections: 1. Some consequences of

the Reconstruction Theorem; 2. Canonical star complements; 3. Graphs
with prescribed star sets; 4. Ordering of graphs.

1. Some Consequences of the Reconstruction Theorem

The Reconstruction Theorem ([5, Theorem 7.4.1]) enables us to reconstruct
a graph G from knowledge of an eigenvalue µ, a star complement H (=
G − X) for µ, and the H-neighbourhoods of vertices in X. The theorem
has a converse which is also valid ([5, Theorem 7.4.4]), and the two can be
combined as follows (see also [13, Theorem 3.1]):

Theorem 1.1. Let G be a graph with adjacency matrix of the form

A(G) =

(

A BT

B C

)

,(1)

where the principal submatrix A is determined by the vertex set X. Then X

is a star set for µ in G if and only if µ is not an eigenvalue of C and

µI − A = BT (µI − C)−1B.(2)

In this section we discuss various questions involving relations (1) and (2).
We may regard (2) as a matrix equation with one real parameter where
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some of the matrices are fixed, and the remaining matrices need to be de-
termined. We are interested in solutions to this equation in which A and
C are symmetric (0, 1)-matrices with diagonal entries zero. Here A is to be
the adjacency matrix of the graph induced by a star set X, while C is to be
the adjacency matrix of the star complement H = G −X; we shall also say
that the (0, 1)-matrix B corresponds to the interconnection graph of these
two graphs. Accordingly, we will denote the three graphs by G(A), G(B)
and G(C), respectively.

Given a graph H = G(C), it is of interest to determine all possible
graphs G for which H is a star complement in G for some eigenvalue µ : such
indeed was the main purpose in the series of papers [11, 12, 13]. It is known
[5] that, given an eigenvalue µ 6∈ {−1, 0}, there are only finitely many graphs
G with a prescribed star complement H = G−X. If µ = 0, X may contain
arbitrarily many independent vertices with the same open neighbourhood
in G, while if µ = −1, X may contain arbitrarily many pairwise adjacent
vertices with the same closed neighbourhood in G. If these so-called duplicate

and co-duplicate vertices are excluded then again only finitely many graphs
arise for a given H, and these graphs are referred to by Ellingham [8] as
reduced (µ = 0) and co-reduced (µ = −1).

For an arbitrary graph H we are here interested in answers to the fol-
lowing questions:

• what are the possible values for µ in (2)?

• for each such value of µ, how many vertices may be added? (i.e., what
is the maximum possible value of |X|?)

Motivated by these questions, we make the following definitions:

Definition 1.1. µ is an exterior eigenvalue of a graph H if there exists
a graph G in which H is a star complement for the eigenvalue µ. The ex-
terior multiplicity of µ is the maximum multiplicity of µ as an eigenvalue
of any such graph G (reduced if µ = 0, co-reduced if µ = −1). The exte-
rior spectrum of H is the set of all exterior eigenvalues together with their
multiplicities.

Note that every graph H possesses exterior eigenvalues. This can be seen
by taking G to be a connected graph obtained from H by adding a single
vertex with a suitable H-neighbourhood. Then (see [3, Theorem 0.6, p. 19])
the index of G (i.e., the largest eigenvalue µ of G) is not an eigenvalue of H,

and since its multiplicity in G is 1, H is a star complement for µ.

As noted earlier, the multiplicity of µ as an eigenvalue of a graph G is
equal to |X|, where X is a star set for µ in G. Any graph with H as a star
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complement for µ is an induced subgraph of such a graph G for which X

is maximal. There may, however, be a number of different graphs G with
the same star complement H but different maximal star sets X for µ, and
these sets X may be of different sizes (see [12, Section 3]). The multiplicity
of µ as an exterior eigenvalue of H is the largest of these various sizes.
Equivalently, it is the largest size of a maximal clique in the extendability

graph Γ(H,µ) [12].

We consider now some bounds for the multiplicity k of an exterior eigen-
value µ of a graph H, in terms of t, the number of vertices of H. In general, k

has a quadratic bound in t, but if µ is non-integral there are linear bounds:

Theorem 1.2. Let k be the exterior multiplicity of an eigenvalue µ of a

t-vertex graph (t > 1, µ 6∈ {−1, 0}). Then

k ≤ 1

2
(t − 1)(t + 4),(3)

k ≤ t − 1 (µ 6∈ Z).(4)

Proof. A proof of (3) may be found in [13, Theorem 2.1].

For (4), let G be an extension of H with µ as an eigenvalue of multiplicity
k. Note that, since µ is non-integral, its algebraic degree is at least 2, and
because any conjugate of µ is also an eigenvalue of G of multiplicity k,
we have k ≤ t. Suppose that k = t. Then, in any star partition of G,

there are just two star cells, each containing t vertices. The index of G

must therefore have multiplicity t, and since the index of any connected
graph has multiplicity 1, G must have t components. It follows (e.g. by
consideration of the characteristic polynomial of G) that each component of
G is isomorphic to P2, and this contradicts the fact that µ is non-integral.
Thus k ≤ t − 1.

As noted in [13], the bound in (3) is asymptotically best possible. The
bound in (4) is best possible, being attained by any of the infinite family of
Paley graphs.

Remark 1.1. We may establish in a similar way the following bounds:

(i) If µ (or one of its conjugates) is the index of G, then k ≤ α, where α

is the number of components of H;

(ii) If µ 6∈ Z, and the index of G is not equal to µ or any of its conjugates,
then k ≤ t−1

l−1
, where l is the algebraic degree of µ.
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(For (ii), note that in a star partition, the star cells for eigenvalues 6= µ

include l − 1 cells for algebraic conjugates of µ and one for the index.)

We have seen that every graph is isomorphic to a star complement in some
graph. We now show that an analogous result holds when ‘star complement’
is replaced by ‘star set’. We write ‘u ∼ v’ to mean that vertices u, v are
adjacent.

Theorem 1.3. Every graph is isomorphic to the subgraph induced by a star

set in some graph.

Proof. Let G be a graph with vertex set {u1, . . . , un}, and consider the
strong product G′ of G and K2. This graph G′ has vertices (ui, v1), (ui, v2),
(1 ≤ i ≤ n), where v1 and v2 are the vertices of K2, and (u, v) is adjacent
to (u′, v′) if and only if u = u′, v ∼ v′ or u ∼ u′, v = v′ or u ∼ u′, v ∼ v′.
Let G1 be the subgraph of G′ induced by vertices of the form (ui, v1) and
G2 that induced by vertices of the form (ui, v2): then G1 and G2 are both
isomorphic to G. If G has eigenvalues λ1, λ2, . . . , λn (repeated according to
multiplicity) then G′ has eigenvalues λi · 1 + λi + 1 and λi · (−1) + λi − 1
(i = 1, . . . , n) (see [5, p. 70]), i.e., 2λi + 1 (i = 1, . . . , n) and −1 (n times).

Suppose first that −1 is not an eigenvalue of G: then 2λi + 1 6= −1, so
the multiplicity of −1 as an eigenvalue of G′ is n. In this case V (G1) (or
V (G2)) is a star set for −1 in G′. Now suppose that −1 is an eigenvalue
of G of multiplicity m; then the multiplicity of −1 as an eigenvalue of G′ is
m + n. Let X be a star set for −1 in G1. Then X ∪ V (G2) contains m + n

vertices, and its complement in G′ does not have −1 as an eigenvalue since
it coincides with the star complement of X in G1. X ∪ V (G2) is therefore a
star set for −1 in G′, and it follows that V (G2) is a star set for −1 in the
graph G′ − X. This establishes the result in general.

Remark 1.2. We may consider, instead of the strong product, the NEPS

of G and K2 with respect to the basis {(1, 0), (1, 1)}. (See [5, p. 66].) This
leads to a proof in which the rôle of −1 in the above proof is played by 0.

In the remainder of this section we provide some examples to illustrate the
variety of situations captured by the Reconstruction Theorem. For the sake
of clarity, we shall assume that matrices A,B,C (as in (1)) correspond to
labelled graphs, in contrast to the unlabelled graphs G(A), G(B), G(C). We
have seen that if B,C and µ are given then there is at most one corresponding
graph G. We now consider three other types of partial information, and ask
whether G is uniquely determined.
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(i) B and C given
Note first that if B and C are matrices corresponding to some non-

integral eigenvalue µ of a graph G, then any conjugate of µ will yield the
same matrix A, and therefore a graph isomorphic to G. This is a simple
consequence of the fact that any star set for µ is also a star set for any
conjugate of µ (see [5, p. 187]). Suppose next that matrices B and C are
given, along with two values of µ which are not conjugates of each other; is
it possible that the matrices A obtained from (2) give rise to non-isomorphic
graphs G? This can indeed happen, as the following example shows.

Example 1. Let X = {1, 2} and X = {3, 4, 5, 6, 7}. If we take µ = 1 in
equation (2), we get a graph in which vertices 1 and 2 are non-adjacent, as

in Figure 1(a). In contrast, when µ = −1±
√

5

2
, a graph is obtained in which

vertices 1 and 2 are adjacent, as shown in Figure 1(b).

r

r

r r r

r

r
@

@
@

�
�
��

�
�

@
@

@

1

2

3 4 5

6

7

(a)

r

r

r r r

r

r
@

@
@

�
�
��

�
�

@
@

@

1

2

3 4 5

6

7

(b)

Figure 1. The graphs of Example 1

(ii) G(C) and µ given
We show that in this case G(A) and G(B) need not be uniquely deter-

mined: it is even possible to choose G(C) and µ in such a way that different

choices of G(A) and G(B) yield the same graph G.

Example 2. Let G = L(G′), where G′ is a connected bipartite graph
containing two isomorphic spanning trees T1, T2, which are differently em-
bedded in G′. We can label the edges of T1 and T2 in such a way that L(T1)
and L(T2) have the same adjacency matrix C; the corresponding matrices
B are different, however. From [7], −2 is an eigenvalue of G of multiplicity
m−n+1, where m and n are the numbers of edges and vertices, respectively,
of G′. Since C does not have −2 as an eigenvalue, each of L(T1) and L(T2) is
a star complement in G. The graph G obtained by using the Reconstruction
Theorem is the same in the two cases. An example is illustrated in Figure 2,
in which the edges of trees T1 and T2 appear as bold lines.
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Figure 2. The graphs of Example 2

(iii) A, C and µ given
We first show that different matrices B may result in graphs G which

are isomorphic.

Example 3. In Figure 3 we have a graph G with two different embeddings of
G(A) and G(C): in (a) the embeddings are determined by X = {4, 5, 8} and
X = {1, 2, 3, 6, 7, 9, 10}), while in (b) they are determined by X = {2, 4, 8}
and X = {1, 3, 5, 6, 7, 9, 10}). In each case, the edges of star complements
are given by bold lines, and µ is equal to 1 or −2. The corresponding graphs
G(B) are non-isomorphic.
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Figure 3. The graphs of Example 3

We next show that the graphs G obtained may be cospectral but non-
isomorphic. To this end, take G1 and G2 to be respectively L(K8), the
line graph of the complete graph on 8 vertices, and the Chang graph Ch2

(see [5, p. 5]). (G2 can be obtained from G1 by switching with respect to
the subgraph isomorphic to C3 ∪ C5, which is for both graphs a star com-
plement for the eigenvalue −2.) Since switching does not change the star
set, the matrices A and C are the same. It may be checked that the corre-
sponding graphs G(B) are, like the graphs L(K8) and Ch2 we started with,
cospectral but non-isomorphic.
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2. Canonical Star Complements

In general a graph has non-isomorphic star complements for the same eigen-
value. For this and other reasons (in particular in addressing the graph
isomorphism problem), it is useful to seek a star complement which is canon-
ical in some way. Moreover it is desirable for such a star complement to be
determined by solving optimization problems; for example, one could first
find the star complements with maximal (or minimal) index. Further, one
could order star complements lexicographically, thereafter by graph angles
and other invariants.

Optimization problems in our case are of the following type: find ex-
tremal values of a function defined on a finite set (the set of all star com-
plements of a graph for a given eigenvalue). Such problems are known as
problems of combinatorial optimization. The (computational) complexity
of such a problem, selected to determine the canonical star complement, is
crucial; it would of course be convenient to have a polynomial algorithm
to solve the problem. The complexity of finding extremal graphs for an
eigenvalue in a set of graphs is not much studied in the literature. A brute
force method is not promising in the general case; although an eigenvalue
can be determined in polynomial time, the number of graphs grows expo-
nentially with the number of vertices. Hence the cardinality of the set of
star complements is important.

One means of reducing the complexity of relevant optimization problems
is to consider line star complements instead of star complements.

The edge set of a graph G is denoted by E(G). Let µ be an eigenvalue
of the line graph L(G), and let Y be a subset of E(G). In accordance with
the definition of line star partitions in [5, Section 7.8.3] we say that Y is a
line star set for µ in G if it is a star set for µ in L(G). In this situation G\Y

is the corresponding line star complement for µ in G.
The following definitions appear in [6, Section 1].

Definition 2.1. Let G be a graph whose line graph has least eigenvalue
−2. A foundation for G is a line star complement for −2 in G.

Definition 2.2. An orchid is a unicyclic graph whose cycle has odd length
and an orchid garden is a graph whose components are orchids.

Let G be a connected graph which is neither a tree nor an orchid. Then
the least eigenvalue of L(G) is −2 [7]; moreover a foundation of G is a
spanning tree of G if G is bipartite and a spanning orchid garden in G if G

is non-bipartite [5, Theorem 7.8.13].
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In the context of foundations, we can expect the complexity of the
optimization process to be reduced in so far as the family of graphs to
be considered is restricted to trees or orchid gardens. For example, among
the spanning trees of the complete bipartite graph Km,n the corresponding
double star has maximal index [1]. (In this connection it would be of interest
to identify families of bipartite graphs in which the number of spanning trees
grows polynomially with the number of vertices.) In the following example
we identify possible canonical foundations for K6.

Example 4. The graph L(K6) has spectrum 8, 25, − 29 and the star com-
plements for −2 have the form L(F ) where F is one of the graphs illustrated
in Figure 4, where they are shown in order of increasing index (cf. [4]). The
foundation with maximal index has the form of a star with one edge added,
but that with minimal index among connected graphs F is not a 6-cycle
because C6 has −2 as an eigenvalue.
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Figure 4. The foundations for K6

In seeking a canonical foundation we could choose instead to maximize or
minimize spectral moments (ordered lexicographically, cf. [5, Section 8.2]).
For trees, the first three spectral moments are fixed, and for any graph the
fourth moment S4 is equal to 2m+4p+8q, where m is the number of edges, p

is the number of paths of length 2 and q is the number of quadrilaterals. For a
tree with n vertices, we have m = n−1 and q = 0, and so the corresponding
foundations F are first distinguished by p, which is the number of edges
in L(F ). Now a canonical star complement for −2 in L(G) (G bipartite)
would have an extremal number of edges. In the case of a non-bipartite
graph G, if we apply the same criterion, the foundations are ordered first
by the number t of triangles (since S3 = 6t) and then by p as above. For
the graph in Example 4, we see that we obtain the same candidates for a
canonical foundation as before.

In the case that G is bipartite, we could first restrict ourselves to founda-
tions realized as minimal spanning trees in a weighted graph associated with
G (the corresponding optimization problem having polynomial complexity).
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Explicitly, let the adjacency matrix A of G have spectral decomposition

A = µ1P1 + µ2P2 + · · · + µmPm (µ1 < µ2 < · · · < µm)

and let Wi(G) be the weighted graph obtained from G by weighting each
edge uv with the (u, v)-entry of Pi (i = 1, . . . ,m). We can first find minimal
spanning trees in W1(G) and among them those which are of least weight in
W2(G), . . . ,Wm(G) in turn. If more than one foundation remains, we apply
one of the criteria described above. In the case that G is non-bipartite we
can carry out an analogous procedure to find a minimal spanning orchid.
Indeed a spanning unicyclic subgraph which contains the vertex v is called a
v-tree, and a minimal v-tree can be found by first finding a minimal spanning
tree T of G − v and then adding two edges of least weight joining v to T .
It is customary in the traveling salesperson problem literature to take v = 1
and to find a minimal 1-tree (cf. [10]). The procedure described in this
paragraph affords no refinement in cases where for each i all weights in
Wi(G) are the same, in particular for strongly regular graphs.

3. Graphs With Prescribed Star Sets

It is easy to find examples of graphs for which the star cells are independent
sets (i.e., they induce graphs without edges), and also ones for which they
induce complete graphs. Motivated by considerations of ordering of graphs
(which we come to in Section 4), we now ask whether there exist graphs in
which all star sets (for all eigenvalues) are independent, or induce complete
graphs (cf. [14, p. 96]). The answer is obvious for null graphs (graphs
without edges) and for complete graphs, and also for graphs with all their
eigenvalues simple. In order to discuss some non-trivial examples, we next
prove a lemma which provides a necessary and sufficient condition for all
star sets to be independent.

Note first that if P is the projection matrix corresponding to an eigen-
value µ, then a vertex v belongs to some star set for µ if and only if Pev 6= 0
(see e.g. [5, p. 166]). Thus {v ∈ V (G) : Pev = 0} consists of all vertices
which do not lie in any star set for µ.

Lemma 3.1. Let µ be an eigenvalue of G, and P the corresponding pro-

jection matrix. Let V0 = {v ∈ V (G) : Pev = 0}, and write 〈Pev〉 for the

subspace spanned by Pev. Then the following is a necessary and sufficient

condition for all star sets for µ to be independent:

〈Peu〉 = 〈Pev〉 for all adjacent vertices u, v of G − V0.(5)
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Proof. Suppose that all star sets for µ are independent. Let u, v be adjacent
vertices of G − V0. If 〈Peu〉 6= 〈Pev〉 then (see [12, Theorem 7.4.6]) there is
a star cell containing u and v, and this is a contradiction.

Conversely, suppose (5) holds, and let u, v ∈ X, where X is a star set
for µ. Then u, v cannot belong to V0. Suppose that u and v are adjacent.
Then, by (5), 〈Peu〉 = 〈Pev〉, and this contradicts the linear independence
of Peu, Pev. Thus u and v are not adjacent. It follows that the star set X

has no edges.

Graphs such that all star sets, for all eigenvalues, are independent will be
referred to as galaxy graphs. Lemma 3.1 shows that a graph G is a galaxy
graph if and only if (5) holds for each eigenvalue of G.

Condition (5) tells us the following fact about the structure of a galaxy
graph G. For a given eigenvalue µ, all vertices u in the same connected
component of G − V0 have their star arms (the vectors Peu) in the same
direction. Vertices in different components may have their star arms in the
same or different directions. We may observe also that each component of
G− V0 itself has µ as an eigenvalue. This is because the condition Peu = 0
implies that each eigenvector of G corresponding to µ has its u-th entry
equal to 0, and it follows that the eigenvector equation continues to hold at
each vertex of G even when the vertices of V0 have been deleted.

We now give some examples of galaxy graphs.

Example 5. Trees with 0 as the only multiple eigenvalue. Let T be a
tree on n vertices which has 0 as an eigenvalue of multiplicity s > 1, all
other eigenvalues being simple. We show that T is a galaxy graph. Note
first that the multiplicity m(F ) of the eigenvalue 0 in a forest F is given by
m(F ) = n − 2k, where n is the number of vertices and k is the cardinality
of a largest matching (cf. [3, p. 233]). Suppose that T has a star set X

for 0 which is not independent — i.e. the graph induced by X contains at
least one edge. Then m(T −X) = 2{k(T )−k(T −X)} > 0, a contradiction.
Hence all star sets (for all eigenvalues of T ) are independent, i.e., T is a
galaxy graph.

In particular, all stars and all double stars (i.e. graphs consisting of
an edge plus pendant edges at its ends) are galaxy graphs. For stars, this
result is immediate, since it is well known that the star K1,n−1 has simple
eigenvalues ±

√
n − 1, and 0 as an eigenvalue of multiplicity n − 2. We may

note that the set V0 in Lemma 3.1 is the center of the tree. For double stars,
we have similarly that any double star has 4 non-zero simple eigenvalues and
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0 as an eigenvalue of multiplicity n − 4, as may be seen by using divisors.
The only possible star complement for 0 is a graph isomorphic to P4, and
the set V0 consists of the two central vertices. (To verify this last statement,
note that deletion of a central vertex increases the multiplicity of 0 by 1,
whereas the deletion of any vertex in a star set decreases the multiplicity
of 0 by 1.)

It is interesting to observe that there exist infinite families of mutually
cospectral galaxy graphs. This can be seen from [3, p. 161, Figure 6.7],
which contains a pair of trees on 3s + 8 vertices (s ≥ 0), one a double star.

Example 6. Trees having more than one multiple eigenvalue. We show first
that the subdivision graph S(K1,n) (n ≥ 3) is a galaxy graph. The spectrum
of this graph consists of three simple eigenvalues (0 and ±

√
n + 1), and the

numbers ±1, each of multiplicity n − 1. By an argument similar to that
used in Example 5, the central vertex cannot belong to a star set for either
1 or −1, and for each of these eigenvalues V0 consists of this one vertex. If
a star set for 1 or for −1 contained an edge — say that between vertices u

and v — then deletion of vertices u and v would reduce the multiplicity of
the relevant eigenvalue by 2, whereas in fact it is reduced by just 1. Thus
the graph is a galaxy graph.

A more complicated example is that shown in Figure 5 with a+2b+3c+1
vertices, where c = c1 + c2. In general, this has ±

√
2,±1, 0 as eigenvalues

of multiplicities c − 1, b − 1, a + c − 1, respectively, in addition to six simple
eigenvalues. Arguments similar to those above can be used to show that
this is a galaxy graph for all values of a, b, c1, c2.
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Figure 5. An example of a galaxy graph

Example 7. Book graphs. A book graph Bn is a graph obtained as a sum of
K1,n and K2: it consists of a common edge (denoted by 00′) and n “pages”
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(4-cycles whose free edges are denoted by ii′, where i = 1, . . . , n). Its simple
eigenvalues are ±√

n± 1, while ±1 are eigenvalues of multiplicity n− 1. By
virtue of symmetry, in order to show that the graph is a galaxy graph, we
have only to check whether three types of edges can be present in a star set.
If this were the case for the edge 00′, then deletion of vertices 0, 0′, would
result in the multiplicity of ±1 changing to n − 3, whereas in fact it would
be increased to n. Similarly, if vertices i, i′ were in the same star set, then
their deletion would reduce the multiplicity of ±1 to n − 3, whereas in fact
it would become n− 2. Likewise, if we delete vertices 0, i (or 0′, i′), then we
get a graph in which ±1 is an eigenvalue of multiplicity not n− 3 but n− 2.
This can be seen by constructing n − 2 linearly independent eigenvectors,
say in Bn − {0′, n′}, for µ = 1 (resp. for µ = −1) in the following way: the
k-th eigenvector xk (1 ≤ k ≤ n− 2) has all entries equal to 0, except for the
entries corresponding to vertices k, k ′, (n − 1), (n − 1)′ which are given by
+1,−1,−1,+1 (resp. −1,−1,+1,+1). It follows that Bn is a galaxy graph
for each n.

It was mentioned at the start of this section that graphs in which all
star sets induce complete graphs are also of interest. For such graphs an
analogue of Lemma 3.1, with ‘adjacent’ replaced by ‘non-adjacent’, is easily
established.

4. Ordering of Graphs

Let G be a graph with n vertices and m edges, and adjacency matrix A.
We shall define recursively a procedure of canonical vertex labelling (CVL),
with notation

CVL(G) = CVL(A) = A∗,

where A∗ is a unique canonical adjacency matrix of G.

Let µ be an eigenvalue of G with a star set X and a star complement
X. Then we can write A in the form

A =

(

A BT

B C

)

,(6)

where A and C are the adjacency matrices of the subgraphs induced by X

and X respectively. We may assume that

CVL
(

O BT

B O

)

=

(

O B′T

B′ O

)

.



132 F.K. Bell, D. Cvetković, P. Rowlinson and S.K. Simić

(If the resulting matrix is not in the block-diagonal form as above we can
perform a uniquely defined relabelling of vertices of the corresponding bi-
partite graph so that the adjacency matrix takes this form.)

We can take permutations P and Q such that

(

P O

O Q

)T (

O BT

B O

)(

P O

O Q

)

=

(

O P T BT Q

QT BP O

)

=

(

O B′T

B′ O

)

.

(We choose P and Q to be the “smallest” such permutations, in some or-
dering of permutations.) Now we have

(

P O

O Q

)T (

A BT

B C

)(

P O

O Q

)

=

(

A1 B′T

B′ C1

)

,

where A1 = P T AP , C1 = QT CQ.

Again, we may assume that C∗ = CVL(C) = CVL(C1) has already
been defined, and we now find the “smallest” permutation Q1 such that
QT

1 C1Q1 = C∗.

Finally, we consider the matrix

A′ =

(

I O

O QT
1

)(

A1 B′T

B′ C1

)(

I O

O Q1

)

=

(

A1 B′T
1

B′
1 C∗

)

,(7)

where B1 = QT
1 B′.

Of course, the bipartition X,X of G which gives rise to (6) needs to be
uniquely defined, so we select a canonical star complement from the collec-
tion of all star complements of G. (See Section 2 for a method of doing this.)
We classify star complements by the number of edges and spectra. For star
complements C ′, C ′′ which are cospectral we find CVL(C ′) and CVL(C ′′),
and choose the smaller one (i.e., the smaller of the two binary numbers2

determined by adjacency matrices of these graphs). In this way we obtain
a canonical star complement up to isomorphism, but it is necessary to se-
lect a unique one from amongst the isomorphic copies. In order to do this,
consider (for each canonical C) the graph

(

O BT

B C

)

,

2By concatenating the rows of the upper triangle of an adjacency matrix (of a graph)
we get a binary number. Adjacency matrices will be ordered by this binary number.
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and determine a canonical choice by the same procedure by which we have
determined a canonical choice of C. Again, there may be several isomorphic
possibilities. For each of these, consider the subgraph corresponding to A,

and for the third time determine a canonical choice.

For each resulting bipartition (X,X), we use (6) to determine the matrix
A′, and we select from these matrices the one with the smallest (or the
largest) corresponding binary number. In this way we define A∗ = CVL(G).

The recursive procedure described above makes sense if the graph G(A)
induced by the star set for the eigenvalue µ has at least one edge. This
suggests that we adopt the following rules for choosing µ:

• select the eigenvalues which have the largest multiplicity;

• from these eigenvalues, find the ones whose star sets induce the largest
number of edges;

• from amongst these, choose µ to be the largest.

However, the reduction procedure will break down if all star sets are inde-
pendent sets — i.e., if the graph is a galaxy graph, as discussed in Section 3.
Therefore for galaxy graphs G we need to define CVL(G) independently (for
example, by the canonical star basis, cf. [2] or [5, Chap. 8]).

Corresponding to the canonical vertex labelling defined above, we can
order graphs lexicographically by their adjacency matrices. Such a graph
ordering, similar to that suggested in [14, p. 97], may be useful in studying
the graph isomorphism problem.
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[7] M. Doob, An inter-relation between line graphs, eigenvalues and matroids,
J. Combin. Theory (B) 15 (1973) 40–50.

[8] M.N. Ellingham, Basic subgraphs and graph spectra, Australasian J. Combin.
8 (1993) 247–265.

[9] C.D. Godsil, Matching and walks in graphs, J. Graph Theory 5 (1981) 285–297.

[10] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnoy Kan, D.B. Schmoys, eds., The
traveling salesman problem (John Wiley and Sons, Chichester – New York
– Brisbane – Toronto – Singapore, 1985).

[11] P. Rowlinson, Dominating sets and eigenvalues of graphs, Bull. London Math.
Soc. 26 (1994) 248–254.

[12] P. Rowlinson, Star sets and star complements in finite graphs: a spectral con-

struction technique, in: Proc. DIMACS Workshop on Discrete Mathematical
Chemistry (March 1998), to appear.

[13] P. Rowlinson, On graphs with multiple eigenvalues, Linear Algebra and Appl.
283 (1998) 75–85.

[14] P. Rowlinson, Linear Algebra, in: eds. L.W. Beineke and R.J. Wilson, Graph
Connections (Oxford Lecture Series in Mathematics and its Applications 5,
Oxford University Press, Oxford, 1997) 86–99.

[15] J.J. Seidel, Eutactic stars, in: eds. A. Hajnal and V.T. Sós, Combinatorics
(North-Holland, Amsterdam, 1978) 983–999.

Received 4 January 1999
Revised 6 August 1999

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

