ON 1-DEPENDENT RAMSEY NUMBERS FOR GRAPHS

E.J. Cockayne
Department of Mathematics, University of Victoria P.O. Box 3045, Victoria, BC, CANADA V8W 3P4
AND
C.M. Mynhardt
Department of Mathematics, University of South Africa P.O. Box 392, Pretoria, South Africa 0003

Abstract

A set X of vertices of a graph G is said to be 1-dependent if the subgraph of G induced by X has maximum degree one. The 1-dependent Ramsey number $t_{1}(l, m)$ is the smallest integer n such that for any 2-edge colouring (R, B) of K_{n}, the spanning subgraph B of K_{n} has a 1 -dependent set of size l or the subgraph R has a 1-dependent set of size m. The 2-edge colouring (R, B) is a $t_{1}(l, m)$ Ramsey colouring of K_{n} if B (R, respectively) does not contain a 1-dependent set of size $l(m$, respectively); in this case R is also called a (l, m, n) Ramsey graph. We show that $t_{1}(4,5)=9, t_{1}(4,6)=11, t_{1}(4,7)=16$ and $t_{1}(4,8)=17$. We also determine all $(4,4,5),(4,5,8),(4,6,10)$ and $(4,7,15)$ Ramsey graphs.

Keywords: 1-dependence, irredundance, CO-irredundance, Ramsey numbers.
1991 Mathematics Subject Classification: 05C55, 05C70.

1 Introduction

Undefined notation and terminology can be found in [6]. The open and closed neighbourhoods of the vertex subset X of a simple graph $G=(V, E)$ are denoted by $N(X)$ and $N[X]$, respectively, and $N(\{x\})$ and $N[\{x\}]$ are abbreviated to $N(x)$ and $N[x]$. The set X is 1 -dependent if $\Delta(\langle X\rangle) \leq 1$, that is, if $\langle X\rangle \cong \lambda K_{1} \cup \mu K_{2}$. Further, X is irredundant if for all $x \in X$, the private neighbourhood $p n(x, X)$ of x relative to X, defined by $p n(x, X)=$
$N[x]-N[X-\{x\}]$, is nonempty. Further, X is called $C O-($ Closed-Open) irredundant if the CO-private neighbourhood $P N(x, X)$ of x relative to X, defined by $P N(x, X)=N[x]-N(X-\{x\})$, is nonempty for each $x \in X$.
Note that for $v \in V$ we have $v \in p n(x, X)$ if and only if
(i) $v=x$ and x is isolated in $G[X]$, or
(ii) $v \in V-X$ and $N(v) \cap X=\{x\}$.

Further, $v \in P N(x, X)$ if and only if (i), (ii) or (iii) holds, with
(iii) $v \in X$ and $N(v) \cap X=\{x\}$.

A vertex of $P N(x, X)$ of types (i) or (iii) is called an internal $X P N$ of x while a vertex of type (ii) is called an external $X P N$ of x. The definitions imply that $p n(x, X) \subseteq P N(x, X)$ and since $x \in p n(x, X)$ for any vertex x of an independent set X, we have

$$
\begin{equation*}
X \text { independent } \Rightarrow X \text { irredundant } \Rightarrow X \text { CO-irredundant. } \tag{1}
\end{equation*}
$$

Clearly, X is 1-dependent if and only if (i) or (iii) holds for each $x \in X$ and so we also have
(2) $\quad X$ independent $\Rightarrow X$ 1-dependent $\Rightarrow X$ CO-irredundant.

Let $\beta(G), \operatorname{IR}(G), \operatorname{COIR}(G)$ and $D(G)$ be respectively the largest cardinality among the independent, irredundant, CO-irredundant and 1-dependent sets of G. Then for any graph G, (1) implies that

$$
\operatorname{COIR}(G) \geq\left\{\begin{array}{c}
\operatorname{IR}(G) \tag{3}\\
D(G)
\end{array}\right\} \geq \beta(G) .
$$

Various generalisations of irredundance, based on the private neighbour properties (i), (ii) and (iii) and the associated generalised Ramsey theory were discussed in [3]. Suppose that each edge of the complete graph K_{n} is assigned a colour from $\{1, \ldots, k\}$. For $i=1, \ldots, k$, let G_{i} be the spanning subgraph of K_{n} induced by the edges with colour i. Then $\left(G_{1}, \ldots, G_{k}\right)$ is called a k-edge colouring of K_{n}.

The classical Ramsey numbers are usually defined in terms of complete graphs in G_{i}. However, since complete graphs in G_{i} correspond to independent sets in $\overline{G_{i}}$, they may also be defined in terms of independent sets. Using this approach we now define four types of Ramsey numbers.

Let $k \geq 2$ and $n_{i} \geq 3$ for $i=1, \ldots, k$. The (classical) Ramsey number $r\left(n_{1}, \ldots, n_{k}\right)$ (the irredundant Ramsey number $s\left(n_{1}, \ldots, n_{k}\right)$, the CO-irredundant Ramsey number $t\left(n_{1}, \ldots, n_{k}\right)$ and the 1-dependent Ramsey
number $t_{1}\left(n_{1}, \ldots, n_{k}\right)$ respectively) is the smallest integer n such that for any k-edge colouring $\left(G_{1}, \ldots, G_{k}\right)$ of K_{n}, there exists $i \in\{1, \ldots, k\}$ such that $\beta\left(\overline{G_{i}}\right)\left(\operatorname{IR}\left(\overline{G_{i}}\right), \operatorname{COIR}\left(\overline{G_{i}}\right), D\left(\overline{G_{i}}\right)\right.$ respectively $) \geq n_{i}$. A special case of Ramsey's theorem [12] guarantees the existence of the classical Ramsey numbers for graphs. Their existence together with (1) and (2) imply the existence of the other types of Ramsey numbers. Moreover, (1) and (2) give

$$
t\left(n_{1}, \ldots, n_{k}\right) \leq\left\{\begin{array}{c}
s\left(n_{1}, \ldots, n_{k}\right) \\
t_{1}\left(n_{1}, \ldots, n_{k}\right)
\end{array}\right\} \leq r\left(n_{1}, \ldots, n_{k}\right)
$$

Irredundant Ramsey numbers were first defined by Brewster, Cockayne and Mynhardt [1] and as in the case of the classical Ramsey numbers, the determination of exact values proved to be very difficult. A survey of results on these numbers is given in [9].

CO-irredundant Ramsey numbers were first studied by Simmons in the unpublished master's dissertation [13]. The first research paper written on the topic was [4], where it was observed that if $n_{i} \in\{3,4\}$ for each $i \in\{1, \ldots, k\}$, these numbers coincide with other generalised graph Ramsey numbers: Let F_{1}, \ldots, F_{k} be graphs. The generalised Ramsey number $r\left(F_{1}, \ldots, F_{k}\right)$ is the smallest n such that in any k-edge-colouring $\left(G_{1}, \ldots, G_{k}\right)$ of K_{n}, for some $i \in\{1, \ldots, n\}$ the graph G_{i} has F_{i} as subgraph. Now let $n_{i} \in\{3,4\}$ and $F_{i} \cong P_{3}\left(C_{4}\right)$ if $n_{i}=3$ (4). Then $t\left(n_{1}, \ldots, n_{k}\right)=r\left(F_{1}, \ldots, F_{k}\right)$ and the same result is true for 1-dependent Ramsey numbers. (Also see Proposition 2.) For a survey on generalised Ramsey numbers, see [11]. In the case $k=2$, the following numbers were determined in [4]: $t(4,4)=6$, $t(4,5)=8, t(4,6)=11$, while it was shown in [5] that $t(4,7)=14$. Bounds for $t(5,5)$ were also determined in [13].

In this paper we consider the 1-dependent Ramsey numbers for the case $k=2$. For ease of presentation (R, B) denotes a 2 -edge colouring of K_{n} and the edges of R and B will be coloured red and blue respectively. The term 1 -dependent set of size m is simply denoted by $d m$. Thus the 1 -dependent Ramsey number $t_{1}(l, m)$ is the smallest integer n such that for any 2 -edge colouring of K_{n}, the subgraph B of K_{n} has a $d l$ or the subgraph R has a $d m$. The 2-edge colouring (R, B) is a $t_{1}(l, m)$ Ramsey colouring of K_{n} if B (R, respectively) does not contain a $d l(d m$, respectively); in this case R is also called an (l, m, n) 1-dependent Ramsey graph or an (l, m, n) Ramsey graph for short.

We determine $t_{1}(4, m)$ for $m=5,6,7$ and 8 , as well as all $(4,4,5)$, $(4,5,7),(4,6,10)$ and $(4,7,15)$ Ramsey graphs. Each of these classes of graphs
is used to find the next 1-dependent Ramsey number. Note that B has a $d 5$ if and only if R has a wheel W_{5} (also see Proposition 2) and thus the 1 -dependent Ramsey number $t_{1}(5,5)$ is the same as the generalised Ramsey number $r\left(W_{5}, W_{5}\right)$, which was determined in [7].

2 Preliminary Results

The following recurrence inequality is well-known for the classical Ramsey numbers and analogous proofs establish it for the other three types.

Proposition 1. If $\alpha(l, m)$ is any one of the four types of Ramsey numbers defined above, then

$$
\alpha(l, m) \leq \alpha(l, m-1)+\alpha(l-1, m) .
$$

Moreover, if $\alpha(l, m-1)$ and $\alpha(l-1, m)$ are both even, then this inequality is strict.

To enable us to consider only the red subgraph R of K_{n} to determine whether B has a $d 3$ or a $d 4$, we need the following result of [4] for CO-irredundant sets of sizes 3 and 4 and its corollary; the proof for 1-dependent sets of sizes 3 and 4 are similar.

Proposition 2 [4, 13]. Consider a 2 -edge colouring (R, B) of K_{n}. Then
(i) B has a d3 if and only if R has P_{3} as subgraph,
(ii) B has a d4 if and only if R has C_{4} as subgraph,
(iii) B has a d5 if and only if R has the wheel W_{5} as a subgraph.

Corollary 3 [4]. For any $m \geq 3$,
(i) $t(3, m)=t_{1}(3, m)=m$,
(ii) $t(4,4)=t_{1}(4,4)=6$,
(iii) $[7] t_{1}(5,5)=15$.

Given a 2-edge colouring (R, B) of K_{n}, each vertex v and its neighbours in R and B, respectively, induce a partition $\left(v, R_{v}, B_{v}\right)$ of $V\left(K_{n}\right)$, where

$$
R_{v}=\left\{u \in V\left(K_{n}\right): u v \in E(R)\right\}
$$

and

$$
B_{v}=\left\{u \in V\left(K_{n}\right): u v \in E(R)\right\} .
$$

For any $x \in R_{v}$, define

$$
S_{x}=\left\{u \in B_{v}: u x \in E(R)\right\},
$$

and define $T_{v} \subseteq B_{v}$ by

$$
T_{v}=B_{v}-\bigcup_{x \in R_{v}} S_{x}
$$

The proof of the following simple results about $t_{1}(4, m)$ Ramsey colourings of K_{n} is exactly the same as the proof of Proposition 5 of [5]. We use the terms " (R, B) is a $t_{1}(4, m)$ Ramsey colouring of K_{n} " and " R is a $(4, m, n)$ Ramsey graph" interchangeably. In particular, when we say that two vertices u and v are adjacent, we mean that they are adjacent in R and thus that the edge $u v$ is red. Similarly, for $X \subseteq V\left(K_{n}\right)$ the notation $\langle X\rangle$ refers to the subgraph of R induced by X.

Proposition 4. Consider a $t_{1}(4, m)$ Ramsey colouring (R, B) of K_{n} and let $v \in V\left(K_{n}\right)$ be arbitrary. Then
(i) Each vertex in B_{v} is adjacent (in R) to at most one vertex in R_{v} and hence $S_{x} \cap S_{y}=\emptyset$ for distinct vertices $x, y \in R_{v}$.
(ii) $\Delta\left(\left\langle R_{v}\right\rangle\right) \leq 1$.
(iii) $\left|R_{v}\right| \leq m-1$.
(iv) For each $x \in R_{v},\left|S_{x}\right| \leq m-\left|R_{v}\right|$.
(v) For each $x, y \in R_{v}$ with $x y \in E(R),\left|S_{x}\right|+\left|S_{y}\right| \leq m-\left|R_{v}\right|+1$.
(vi) For each $x, y \in R_{v}$ with $x y \in E(B),\left\langle S_{x} \cup S_{y}\right\rangle$ consists of paths (possibly including $\left.P_{1}\right)$ and cycles C_{k}, where $k \equiv 0(\bmod 4), k \geq 8$. There exists a subgraph H of $\left\langle S_{x} \cup S_{y}\right\rangle$ which contains $\lceil 2 q / 3\rceil$ vertices of each path P_{q} and $\lfloor 2 k / 3\rfloor$ vertices of each cycle C_{k}, such that $\Delta(H) \leq 1$.

As in the case of CO-irredundant Ramsey numbers Proposition (iii) can be extended to general $t_{1}(l, m)$ Ramsey colourings. A simple lower bound for $\left|R_{v}\right|$ also exists. Again the proof is the same as for $t(l, m)$.

Proposition 5. Let (R, B) be a $t_{1}(l, m)$ Ramsey colouring of K_{n} and consider an arbitrary vertex v. Then

$$
n-t_{1}(l, m-1) \leq\left|R_{v}\right| \leq t_{1}(l-1, m)-1 .
$$

In the case $l=4$ the upper bound in Proposition 5 can sometimes be improved:

Proposition 6. Let (R, B) be a $t_{1}(4, m)$ Ramsey colouring of K_{n} and consider an arbitrary vertex v. Then

$$
\left|R_{v}\right| \leq 2+m-n+t_{1}(4, m-1)
$$

Proof. For any $x \in R_{v}$,

$$
\begin{aligned}
\operatorname{deg} x & \leq 2+\left|S_{x}\right| \\
& \leq 2+m-\left|R_{v}\right|
\end{aligned}
$$

by Proposition 4(iv). By Proposition 5,

$$
n-t_{1}(4, m-1) \leq \operatorname{deg} x
$$

and so

$$
n-t_{1}(4, m-1) \leq 2+m-\left|R_{v}\right|
$$

from which the result follows.
The following result is frequently used to find (l, m, n) Ramsey graphs or to prove that they do not exist.

Proposition 7. Consider a $t_{1}(l, m)$ Ramsey colouring of K_{n} and vertices u and v such that the edge uv is red. Let $X=V\left(K_{n}\right)-N[\{u, v\}]$. Then $\langle X\rangle$ is a $(l, m-2,|X|)$ Ramsey graph and thus $|X| \leq t_{1}(l, m-2)-1$.

Proof. Since any $d l$ in $\overline{\langle X\rangle}$ is a $d l$ in B, it follows that $\overline{\langle X\rangle}$ does not contain a $d l$. Suppose $\langle X\rangle$ contains a $d(m-2)$, say Y^{\prime}. By definition $N[\{u, v\}] \cap X=\emptyset$. But then $Y=Y^{\prime} \cup\{u, v\}$ satisfies $\Delta(\langle Y\rangle) \leq 1$ and therefore is a $d m$ in R, a contradiction. The result follows.

3 The values of $t_{1}(4,5)$ and $t_{1}(4,6)$, and the $(4,4,5),(4,5,8)$ AND $(4,6,10)$ Ramsey Graphs

Recall that $t_{1}(4,4)=6$ and let D be the graph obtained by joining the two nonadjacent degree two vertices of P_{5}.

Proposition 8. The only $(4,4,5)$ graphs are D and C_{5}.
Proof. Let (R, B) be any $t_{1}(4,4)$ colouring of K_{5} and consider any vertex v. By Corollary 3 and Proposition 5,

$$
1 \leq\left|R_{v}\right| \leq 3
$$

If R is 2-regular, then $R \cong C_{5}$ and since C_{5} is selfcomplementary and does not contain a C_{4}, it follows from Proposition 2(ii) that C_{5} is a $(4,4,5)$ graph. If $1=\delta(R) \leq \Delta(R) \leq 2$, then R is the union of paths and contains a 1dependent set of size $\lceil 10 / 3\rceil=4$, a contradiction. Hence we may assume that there is a vertex v with $\left|R_{v}\right|=3$, say $R_{v}=\{1,2,3\}$. Then $\left|T_{v}\right| \leq 1$ and if $\left|T_{v}\right|=1$, then $S_{i}=\emptyset$ for each $i=1,2,3$, implying the vertex T_{v} is isolated in R, a contradiction. Hence by Proposition 4(i) we may assume that $\left|S_{1}\right|=1$, say $S_{1}=\{4\}$, and $S_{2}=S_{3}=\emptyset$. To avoid the $d 4\{1,4,2,3\}$, $\langle\{1,2,3\}\rangle$ contains at least one and thus by Proposition 4 (ii) exactly one edge. If $2-3$ is red, then $\{1,4,2,3\}$ is a $d 4$ in any case, hence we may assume that $1-2$ is red; clearly all other edges are blue. Hence $R \cong D$ as required. Since D is selfcomplementary and does not contain a C_{4}, D is a $(4,4,5)$ graph.

Let a and b be the vertices of D of degree three, $c(d)$ the endvertex adjacent to $a(b)$ and e the vertex of degree two. We now determine all $(4,5,8)$ graphs.

Figure 1. The only $(4,5,8)$ graph

Theorem 9. The only $(4,5,8)$ graph is the graph F in Figure 1.
Proof. Proposition 5 implies that for any $t_{1}(4,5)$ colouring (R, B) of K_{8} and any vertex v,

$$
2 \leq\left|R_{v}\right| \leq 4
$$

If $\left|R_{v}\right|=4$, then by Proposition 4(iv), $\left|S_{x}\right| \leq 1$ for each $x \in R_{v}$. If $T_{v} \neq \emptyset$ then for any $y \in T_{v},\left|R_{v} \cup\{y\}\right|=5$ and $\Delta\left(\left\langle R_{v} \cup\{y\}\right\rangle\right) \leq 1$ which implies that $R_{v} \cup\{y\}$ is 1-dependent, a contradiction. Thus $T_{v}=\emptyset$ and a counting
argument shows that $S_{x}=\emptyset$ for exactly one $x \in R_{v}$ and $\left|S_{y}\right|=1$ for each $y \in R_{v}-\{x\}$. Say $R_{v}=\{1,2,3,4\}, S_{1}=\emptyset, S_{2}=\{5\}, S_{3}=\{6\}$ and $S_{4}=\{7\}$. Since deg $1 \geq 2$, vertex 1 is adjacent to some vertex in R_{v}; say without loss of generality that 1-2 is red. By Proposition 4 (ii), 1 and 2 are not adjacent to either 3 or 4 . To ensure that $\{1,2,3,6,7\}$ is not 1 -dependent, $6-7$ is red. To ensure that $\{1,2,3,4,7\}$ is not 1 -dependent, $3-4$ is red. But then $3-4-7-6$ is a 4 -cycle, contradicting Proposition 2. Consequently

$$
2 \leq\left|R_{v}\right| \leq 3
$$

for each vertex v. If R is 2-regular, then by Proposition $2, R \cong C_{8}$ or $C_{3} \cup C_{5}$ and it is easy to see that $D(R)=5$ in each case. Thus

$$
\left|R_{v}\right|=3
$$

for some vertex v.
Suppose R is 3 -regular. Say $R_{v}=\{1,2,3\}$. Then the only possibility for the S_{i} and for red edges in $\left\langle R_{v}\right\rangle$ is, without loss of generality, 1-2 red, $S_{1}=\{4\}, S_{2}=\{5\}$ and $S_{3}=\{6,7\}$. To avoid a 4 -cycle, $4-5$ is blue and since $\operatorname{deg} 4=3,4$ is adjacent to 6 and 7 , forming a 4 -cycle with 3 , a contradiction. This shows that

$$
\delta(G)=2 \text { and } \Delta(G)=3 .
$$

Let v be a vertex with $R_{v}=\{1,2\}$ and suppose firstly that 1-2 is red. Then $\left|S_{1}\right|=\left|S_{2}\right|=1$; say $S_{1}=\{3\}, S_{2}=\{4\}$ and $T_{v}=\{5,6,7\}$. To avoid a 4 -cycle, $3-4$ is blue. If P_{3} is not a subgraph of $\langle\{5,6,7\}\rangle$, then $D(\langle\{5,6,7\}\rangle) \geq 2$ and thus $\{1,2,5,6,7\}$ is 1 -dependent, a contradiction. Say 5-6-7 is the vertex sequence of a P_{3}. Considering $\{v, 2,3,5,7\}$, we see that to avoid a $d 5,3-5$ (without loss of generality) and $5-7$ are both red. Similarly, $\{v, 2,3,6,7\}$ implies that (without loss of generality) 3-6 is red, thus forming a 4 -cycle 3-5-7-6, a contradiction.

Hence we may assume that 1-2 is blue and $\left|S_{1}\right|=\left|S_{2}\right|=2$. Say $S_{1}=$ $\{3,4\}, S_{2}=\{5,6\}$ and $T_{v}=\{u\}$. Since $\operatorname{deg}(u) \geq 2$ and u is adjacent to at most one vertex in each S_{i} (to avoid 4 -cycles), u is adjacent to exactly one vertex in each S_{i}. Suppose without losing generality that $u-4$ and $u-5$ are red. Considering $\{v, 2,3,4, u\}$, we see that $3-4$ is red and similarly, 5-6 is red. Moreover, $\{1,3,2,6, u\}$ implies that $3-6$ is red. The only vertices incident with only two red edges are u and v and since R is not 3 -regular, $u v$ is blue and $R \cong F$ (see Figure 1).

Note that F has two disjoint triangles. If F has a $d 5$, say X, then X contains two vertices of the same triangle and at least one of the vertices u
and v. It is easy to check that this is impossible and thus F is the unique $(4,5,8)$ graph.

Corollary 10. $t_{1}(4,5) \geq 9$.
We now show that there are no $(4,5,9)$ graphs and thus $t_{1}(4,5)=9$. This number was also determined as the generalised Ramsey number $r\left(C_{4}, W_{5}\right)$ by [14], as cited in [11].

Theorem 11. $t_{1}(4,5)=9$.
Proof. Suppose to the contrary that (R, B) is a $t_{1}(4,5)$ colouring of K_{9}. By Proposition 5,

$$
3 \leq\left|R_{v}\right| \leq 4
$$

for each vertex v and since R is not 3 -regular, there exists a vertex v with $\operatorname{deg} v=4$. The degree conditions and a counting argument show that $\left\langle R_{v}\right\rangle \cong$ $2 K_{2},\left|S_{x}\right|=1$ for each $x \in R_{v}$ and $T_{v}=\emptyset$. Let $R_{v}=\{1,2,3,4\}$ with 1-2 and 3-4 red, and $S_{i}=\{i+4\}$ for each $i=1, \ldots, 4$. To avoid 4 -cycles, 5-6 and 7-8 are blue. Since deg $5 \geq 3,5-7$ and 5-8 are red; similarly, 6-7 and 6-8 are both red. But then $5-7-6-8$ is a 4 -cycle, a contradiction.
It was suggested in [4], and proved in [5], that for CO-irredundant Ramsey numbers, the only $(4,6,10)$ graphs are G_{1}, G_{2} and G_{3} in Figure 2. This result also holds for 1-dependent Ramsey numbers and the proof is exactly the same as the proof of Theorem 10 of [5].

Theorem 12. The only $(4,6,10)$ graphs are the graphs G_{1}, G_{2} and G_{3} in Figure 2.

Corollary 13. $t_{1}(4,6) \geq 11$.
In order to use Theorem 12 to determine $t_{1}(4,7)$ and $t_{1}(4,8)$, we determine the maximum number of vertices which can be chosen from F, G_{1}, G_{2} and G_{3} so that no two chosen vertices are joined by a path of length two.

Proposition 14. For a set X of vertices of a graph, let $\mathcal{P}(X)$ be the property "no two vertices of X are joined by a path of length two". Suppose that $\mathcal{P}(X)$ holds.
(i) If $X \subseteq V(F), X \subseteq V\left(G_{1}\right)$ or $X \subseteq V\left(G_{2}\right)$, then $|X| \leq 2$.
(ii) If $X \subseteq V\left(G_{3}\right)$ and $t \notin X$, then $|X| \leq 2$; otherwise $|X| \leq 3$.

Proof. (i) Suppose $X \subseteq V(F)$. The result obviously holds if X consists of vertices of degree 2. If each vertex of X is of degree 4 , then X contains at most one vertex from each triangle and the result holds. If X contains vertices of degree 2 and 4, then X consists of one vertex of degree 4 and the unique vertex of degree 2 adjacent to it.

G_{1}

G_{2}

G_{3}
Figure 2. The only $(4,6,10)$ graphs (see [4])
Suppose $X \subseteq V\left(G_{1}\right)$. If $\max \{\operatorname{deg} v: v \in X\}=4$, say $a \in X$, then

$$
|X|= \begin{cases}1, & \text { if } b \notin X, \\ 2, & \text { otherwise }\end{cases}
$$

If $\max \{\operatorname{deg} v: v \in X\}=2$, say $b \in X$, then

$$
|X|= \begin{cases}1, & \text { if } c, d \notin X \\ 2, & \text { otherwise }\end{cases}
$$

Suppose $X \subseteq V\left(G_{2}\right)$ and note that $d(p, q)=3$ and each vertex in $N(p)$ ($N(q)$, respectively) lie on a common triangle with $p(q)$. Thus if $p \in X$, then

$$
|X|= \begin{cases}1, & \text { if } q \notin X, \\ 2, & \text { otherwise } .\end{cases}
$$

If $X \cap\{p, q\}=\emptyset$, then $X \subseteq N(p) \cup N(q)$ and so $|X| \leq 2$ to avoid a P_{3}.
(ii) If $X \subseteq V\left(G_{3}\right)$ and $t \notin X$, then $X \subseteq N(r) \cup N(s)$ and each vertex in $N(r)$ ($N(s)$, respectively) lie on a common triangle with $r(s)$. Hence $|X| \leq 2$. It follows immediately that $|X| \leq 3$ if $t \in X$ and it is easy to see that equality can be obtained.

We conclude this section by showing that there are no $(4,6,11)$ graphs. This result was also obtained as the generalised Ramsey number $r\left(C_{4}, K_{6}-3 K_{2}\right)$ in [8], as cited in [11].

Theorem 15. $t_{1}(4,6)=11$.
Proof. Suppose to the contrary that (R, B) is a $t_{1}(4,6)$ colouring of K_{11}. By Proposition 5,

$$
2 \leq\left|R_{v}\right| \leq 5
$$

for each vertex v. Consider v with $\left|R_{v}\right|=5$. By Proposition 4(iv) $\left|S_{x}\right| \leq 1$ for each $x \in R_{v}$. Since $\left|R_{v}\right|=5$ and $\Delta\left(\left\langle R_{v}\right\rangle\right) \leq 1$, there exists $x^{\prime} \in R_{v}$ which is isolated in $\left\langle R_{v}\right\rangle$. If $S_{x^{\prime}}=\emptyset$ then $T_{v} \neq \emptyset$ and so $R_{v} \cup T_{v}$ contains a $d 6$. If $S_{x^{\prime}} \neq \emptyset$ then $R_{v} \cup S_{x^{\prime}}$ is a $d 6$, a contradiction in each case. This shows that for each vertex v,

$$
2 \leq\left|R_{v}\right| \leq 4 .
$$

Now consider v with $\left|R_{v}\right|=2$; say $R_{v}=\{1,2\}$. By Proposition $7,\left|S_{i}\right| \geq 3$ for each $i=1,2$ and it follows from the degree conditions that $\left|S_{i}\right|=3$ and hence $\left|S_{i} \cup T_{v}\right|=5$ for each i. Thus $\left\langle S_{i} \cup T_{v}\right\rangle \cong C_{5}$ or D. Let $T_{v}=\{u, w\}$. Now, $\left\langle S_{i}\right\rangle$ contains at most one edge, $\left\langle T_{v}\right\rangle$ contains at most one edge and each of u and w is adjacent to at most one vertex of S_{i} to avoid a 4 -cycle. Thus $\left\langle S_{i} \cup T_{v}\right\rangle$ has at most four edges, a contradiction. This proves that for each v,

$$
3 \leq\left|R_{v}\right| \leq 4 .
$$

Since R is not 3 -regular it follows that R has a vertex v of degree four. By Propositions 4(iv) and 7,

$$
1 \leq\left|S_{x}\right| \leq 2
$$

for each $x \in R_{v}$. If $\left|S_{x}\right|=1$ for each x, then $\left|T_{v}\right|=2$ and $R_{v} \cup T_{v}$ is a $d 6$, a contradiction. Say $R_{v}=\{1,2,3,4\}, S_{1}=\{5,6\}, S_{2}=\{7\}, 8 \in S_{3}, S_{4}=\{9\}$ and $10 \in S_{3} \cup T_{v}$. Let $X_{1}=\{5,6,7,8,10\}$ and $X_{2}=\{5,6,8,9,10\}$. By Proposition $7,\left\langle X_{i}\right\rangle \cong C_{5}$ or D. If $5-6$ is blue, then to avoid 4 -cycles the only possibility is that $\left\langle X_{i}\right\rangle \cong D$ with $\{5,6\}=\{c, d\}$. But since neither 7 nor 9 is adjacent to both of 5 and 6 , it then follows that $\min \{\operatorname{deg} 5, \operatorname{deg} 6\}=2$, a contradiction. Thus we may assume that $5-6$ is red. If $10 \in S_{3}$, then by Proposition $4(\mathrm{v}), 1-3$ is blue. If $10 \notin S_{3}$, then since $\Delta\left(\left\langle R_{v}\right\rangle\right) \leq 1$, we may assume without loss of generality that $1-3$ is blue anyway. Since $\left|R_{2}\right|,\left|R_{4}\right| \geq 3$, we may also assume without loss of generality that 1-2 and 3-4 are red.

If $\left\langle X_{1}\right\rangle \cong C_{5}$ then, since 5-7 and 6-7 are blue, we may assume that $10-5-6-8-7$ is the vertex sequence of the 5 -cycle. Note that $5-8$ and $8-9$ are blue. Therefore $\left\langle X_{2}\right\rangle \cong C_{5}$ is impossible and thus $\left\langle X_{2}\right\rangle \cong D$. But 6-10 and at least one of 9-5 and 9-6 is blue, so this is impossible too.

Therefore $\left\langle X_{1}\right\rangle \cong D$ with, without loss of generality, $a=6$ and $c=5$. Then $d=7$ and it follows that 6-8, 6-10 and 8-10 are red. Since $\left|R_{5}\right| \geq 3$ and 5-7, 5-8 and 5-10 are blue, 5-9 is red. But then $\left\langle X_{2}\right\rangle \not \equiv C_{5}$ or D, a contradiction.

$$
4 \text { The }(4,7,15) \text { Graphs and the Value of } t_{1}(4,7)
$$

The calculation of $t_{1}(4,7)$ proves to be surprisingly simple, perhaps because of the existence of a $t_{1}(4,7)$ Ramsey colouring of K_{15} and the bounds given in Propositions 5 and 6.

Proposition 16. $t_{1}(4,7) \leq 16$.
Proof. Suppose to the contrary that (R, B) is a $t_{1}(4,7)$ Ramsey colouring of K_{16}. By Propositions 5 and 6 , any vertex v satisfies

$$
5=16-t_{1}(4,6) \leq\left|R_{v}\right| \leq 2+7-16+t_{1}(4,6)=4,
$$

which is impossible.
We now illustrate the use of the $(4,5,8)$ and $(4,6,10)$ Ramsey graphs in the characterisation of $(4,7,15)$ graphs.

Figure 3. The only $(3,7,15)$ graph

Theorem 17. The only $(4,7,15)$ Ramsey graph is the graph H in Figure 3.
Proof. Consider any $t_{1}(4,7)$ Ramsey colouring (R, B) of K_{15}. By Propositions 5 and 6,

$$
4 \leq \operatorname{deg} v \leq 5
$$

for each $v \in V(R)$. Consider v with $\left|R_{v}\right|=5$. Since $\Delta\left(\left\langle R_{v}\right\rangle\right) \leq 1, R_{v}$ has an isolated vertex x. By Proposition 4(iv), $\left|S_{x}\right| \leq 2$. But then $\operatorname{deg} x \leq 3$, a contradiction and it follows that R is 4 -regular. Therefore for each vertex v and each $x \in R_{v},\left|S_{x}\right| \leq 3$. Since $\Delta\left(\left\langle R_{v}\right\rangle\right) \leq 1$, degree conditions imply that

$$
2 \leq\left|S_{x}\right| \leq 3
$$

for each $x \in R_{v}$. A counting argument shows that $\left|S_{x}\right|=2$ for at least two vertices $x \in R_{v}$; necessarily each such vertex is adjacent to some other vertex in R_{v}.

Say $R_{v}=\{1,2,3,4\}$, where 1-2 is red, $S_{1}=\{5,6\}, S_{2}=\{7,8\},\{9,10\} \subseteq$ $S_{3},\{11,12\} \subseteq S_{4}$ and $T_{v} \subseteq\{13,14\}$. For $i=1,2$, let $X_{i}=B_{v}-S_{i}$. By Proposition $7\left\langle X_{i}\right\rangle \cong F$. By Proposition 14 vertices 3 and 4 are adjacent to at most two vertices, and hence exactly two vertices, in each of X_{1} and X_{2}, so that $S_{3}=\{9,10\}, S_{4}=\{11,12\}$ and $T_{v}=\{13,14\}$. To satisfy the
degree requirements, $3-4$ is red. By repeating the above argument for the vertices $1,2,3$ and 4 , we find that $5-6,7-8,9-10$ and $11-12$ are red. Now $\left\langle B_{v}\right\rangle$ is a $(4,6,10)$ graph such that $S_{i}, i=1, \ldots, 4$, are pairwise disjoint subsets of B_{v}. Since R is 4-regular, $\left\langle B_{v}\right\rangle$ has eight vertices of degree 3 and two of degree 4 , and the only possibility is $\left\langle B_{v}\right\rangle \cong G_{2}$, where $\{13,14\}=$ $\{p, q\}$. Without losing generality we may assume that $R_{13}=\{5,7,9,11\}$ and $R_{14}=\{6,8,10,12\}$, with the edges $5-9,7-11,6-12$ and $8-10$ red. This is the 4-regular graph H in Figure 3.

By redrawing H with other vertices in the place of v, as for example indicated in Figure 3, it can be seen that H is vertex transitive. If H has a $d 7$, say X, then $\langle X\rangle$ has an isolated vertex. Without loss of generality suppose this is v. Then $V(H)-N[v]$ contains a $d 6-$ but by construction, $\langle V(H)-N[v]\rangle \cong G_{2}$.

Corollary 18. $t_{1}(4,7)=16$.

$$
5 \quad \text { AmAZINGLY, } t_{1}(4,8)=17
$$

Let J be any graph obtained from H by adding a vertex w to H and joining w to vertices of H in any way without creating a 4-cycle. (For example, let $J \cong H \cup K_{1}$.) Then J does not contain a $d 8$ and \bar{J} does not contain a $d 4$ and so J is a $(4,8,16)$ Ramsey graph. It follows that

$$
t_{1}(4,8) \geq 17
$$

To show that $t_{1}(4,8)=17$ we first prove the following lemma.

Lemma 19. If R is a $(4,8,17)$ graph, then R does not have
(i) two vertices with total degree at most 4,
(ii) two vertices with a common neighbour with total degree at most 5 ,
(iii) two adjacent vertices with total degree at most 6 and
(iv) two vertices with total degree at most 7 which lie on a common triangle.

Proof. In each of the above cases, if u and v are vertices with the stated properties, then $|V(R)-N[\{u, v\}]| \geq 11$, contradicting Theorem 15 and Proposition 7.

Theorem 20. $t_{1}(4,8)=17$.

Proof. Suppose to the contrary that (R, B) is a $t_{1}(4,8)$ Ramsey colouring of K_{17}. Then

$$
1 \leq\left|R_{v}\right| \leq 7
$$

for each vertex v. If $\left|R_{v}\right|=7$, then $\left|S_{x}\right| \leq 1$ for each $x \in R_{v}$. Since $\Delta\left(\left\langle R_{v}\right\rangle\right) \leq 1$ there exists a vertex x which is isolated in $\left\langle R_{v}\right\rangle$. Hence $\operatorname{deg} x=$ 2 and $\operatorname{deg} y \leq 3$ for all other $y \in R_{v}$, contradicting Lemma19(ii). Hence for each vertex v,

$$
1 \leq\left|R_{v}\right| \leq 6
$$

Consider v with $\left|R_{v}\right|=6$. Then $\left|S_{x}\right| \leq 2$ for each $x \in R_{v}$ and so $\operatorname{deg} x \leq 3$ if x is isolated in $\left\langle R_{v}\right\rangle$ and $\operatorname{deg} x \leq 4$ otherwise. Thus if x is isolated in $\left\langle R_{v}\right\rangle$, then some $x^{\prime} \neq x$ is also isolated in $\left\langle R_{v}\right\rangle$ and so $\left|S_{x}\right|=\left|S_{x^{\prime}}\right|=2$ by Lemma19(ii). On the other hand, if x is not isolated in $\left\langle R_{v}\right\rangle$, then by Lemma19(iv) $\left|S_{x}\right|=2$ as well. But then R has more than 17 vertices, which is impossible. Thus

$$
1 \leq\left|R_{v}\right| \leq 5
$$

for each vertex v. However, if $\operatorname{deg} v=1$, then v is adjacent to vertices of degree at least 6 only (Lemma19(iii)) and so we also have

$$
2 \leq\left|R_{v}\right| \leq 5
$$

for each v.
Consider v with $\left|R_{v}\right|=2$; say $R_{v}=\{1,2\}$. Then v is adjacent to vertices of degree 5 only and so for each $i=1,2,\left|S_{i}\right|=4$ by Lemma19(iv). Let $X=V\left(K_{17}\right)-N[\{1, v\}]$. Then $|X|=10$ and so by Proposition 7 , $\langle X\rangle \cong G_{1}, G_{2}$ or G_{3}. But then vertex 2 is adjacent to four vertices of G_{i}, at least two of which are joined by a path of length two (Proposition 14), thus forming a 4 -cycle in R, a contradiction. We have now proved that

$$
3 \leq\left|R_{v}\right| \leq 5
$$

for each v.
Suppose $\left|R_{v}\right|=3$; say $R_{v}=\{1,2,3\}$. By Lemma19 $3 \leq\left|S_{i}\right| \leq 4$ for each $i=1,2,3$. If (say) $\left|S_{1}\right|=3$ and $X=V\left(K_{17}\right)-N[\{1, v\}]$, then $|X|=10$ and thus $\langle X\rangle \cong G_{1}, G_{2}$ or G_{3}. But then S_{2} and S_{3} are disjoint subsets of X of size at least three and so by Proposition 14, vertex 2 or 3 is adjacent to two vertices of X which are joined by a path of length two. This forms a 4-cycle in R, a contradiction. Thus $\left|S_{i}\right|=4$ for each $i=1,2,3$. By Proposition $4(\mathrm{v}),\left\langle R_{v}\right\rangle \cong 3 K_{1}$ and by Proposition $4(\mathrm{vi}),\left\langle S_{1} \cup S_{2}\right\rangle$ is a union of paths or
an 8 -cycle. In the former case $\left\langle S_{1} \cup S_{2}\right\rangle$ contains a 1-dependent set of size $\lceil 16 / 3\rceil=6$, which together with $\{v, 3\}$ forms a d8. Hence $\left\langle S_{1} \cup S_{2}\right\rangle \cong C_{8}$. Since no vertex in S_{1} is adjacent to more than one vertex in S_{2} and vice versa, the 8-cycle in $\left\langle S_{1} \cup S_{2}\right\rangle$ is of the form $x_{1} x_{2} y_{1} y_{2} x_{3} x_{4} y_{3} y_{4}$ with $x_{j} \in S_{1}$, $y_{j} \in S_{2}$. Let the vertex sequence of this 8-cycle be 4-5-8-9-6-7-10-11 with $S_{1}=\{4,5,6,7\}$ and $S_{2}=\{8,9,10,11\}$. Now $u \in T_{v} \neq \emptyset$ is adjacent to at most one, and thus to exactly one vertex in each $S_{i}, i=1,2,3$. Without loss of generality say $u-4$ is red. To avoid the 4 -cycles $u-4-5-8$ and $u-4-11-10$, $u-8$ and $u-10$ are blue. Therefore $u-9$ or $u-11$ is red. In the former case $\{v, 3, u, 5,8,10,11,6\}$ is a $d 8$ and in the latter case $\{v, 3, u, 4,8,9,7,10\}$ is a $c 8$. We conclude that for each vertex v,

$$
4 \leq\left|R_{v}\right| \leq 5
$$

and since R is not 5-regular, R has a vertex v of degree 4 .
If $\left|R_{v}\right|=5$, say $R_{v}=\{1,2,3,4,5\}$, then the degree conditions and a counting argument show that $\left|S_{i}\right|=2$ for four values of i, say $i=1, \ldots, 4$, and $2 \leq\left|S_{5}\right| \leq 3$. But if $\left|S_{5}\right|=2$, then since at least one of the vertices in R_{v} is isolated in $\left\langle R_{v}\right\rangle, \delta(R)=3$, a contradiction. Hence $\left|S_{5}\right|=3$. Since $\delta(R)=$ 4 we may assume that $1-2$ and $3-4$ are red. Let $X=V\left(K_{17}\right)-N[\{1,2\}]$ and note that $|X|=10$; hence by Proposition $7\langle X\rangle \cong G_{1}, G_{2}$ or G_{3}. Then $v \in N[\{1,2\}]$ is adjacent to three vertices in X and so by Proposition 14, $\langle X\rangle \cong G_{3}$. Since $3-4$ is red, the only possibility is that without losing generality, vertex 3 corresponds to $t \in V\left(G_{3}\right)$ and vertex 4 to k. Since $\left|S_{5}\right|=3$, the other neighbour of v in G_{3} has degree three. But the only possible choice of a vertex together with t and k is l, and $\operatorname{deg} l=2$. We conclude that R is 4 -regular.

Let v with $R_{v}=\{1,2,3,4\}$ be a vertex of R and suppose firstly that v lies on a triangle; say 1-2 is red. If 3-4 is blue, then $\left|S_{3}\right|=\left|S_{4}\right|=3$. But then for $X=V\left(K_{17}\right)-N[\{v, 1\}],\langle X\rangle \cong G_{i}$ for some $i=1,2,3$ and vertices 3 and 4 are adjacent to two disjoint sets of three vertices in G_{i}, which is impossible by Proposition 14. Hence 3-4 is red and $\left|S_{3}\right|=\left|S_{4}\right|=2$ so that $\left|T_{v}\right|=4$. Repeating this argument for any vertex of R which lies on a triangle, such as vertices 1-4, we obtain that $\left\langle S_{i}\right\rangle \cong K_{2}$ for $i=1, \ldots, 4$. Hence for $i=2,3,4, S_{i} \subseteq X$ such that the vertices of each S_{i} are adjacent in $\langle X\rangle$. Since the S_{i} are moreover disjoint, it follows from Proposition 14 (and its proof) that $\langle X\rangle \cong G_{2}$ and each vertex i, for $i=2,3,4$, is adjacent to one vertex in $N(p)$ and one vertex in $N(q)$. Further, say $S_{1}=\{5,6\}$. Vertices 5 and 6 are also adjacent to two vertices each in X. However, by
considering the degrees of the vertices of G_{2} we see that there are exactly 8 edges from $N[\{v, 1\}]$ to X, a contradiction.

Hence R is triangle-free and $\left\langle S_{i}\right\rangle \cong 3 K_{1}$ for each $i=1, \ldots, 4$. Then (for example) $\left\langle S_{1} \cup S_{2}\right\rangle$ is a subgraph of $3 K_{2}$ (the only possible edges join vertices in S_{1} to vertices in S_{2} and no vertex in S_{i} is adjacent to more than one vertex in S_{j}) and so $S_{1} \cup S_{2} \cup\{3,4\}$ is a $d 8$, a contradiction. This completes the proof that there is no $t_{1}(4,8)$ Ramsey colouring of K_{17} and hence $t_{1}(4,8)=17$.

Acknowledgement

This paper was written while E.J. Cockayne was enjoying research facilities in the Department of Mathematics, Applied Mathematics and Astronomy of the University of South Africa. Financial support from the South African Foundation for Research Development is gratefully acknowledged.

References

[1] R.C. Brewster, E.J. Cockayne and C.M. Mynhardt, Irredundant Ramsey numbers for graphs, J. Graph Theory 13 (1989) 283-290.
[2] G. Chartrand and L. Lesniak, Graphs and Digraphs (Third Edition) (Chapman and Hall, London, 1996).
[3] E.J. Cockayne, Generalized irredundance in graphs: Hereditary properties and Ramsey numbers, submitted.
[4] E.J. Cockayne, G. MacGillivray and J. Simmons, CO-irredundant Ramsey numbers for graphs, submitted.
[5] E.J. Cockayne, C.M. Mynhardt and J. Simmons, The CO-irredundant Ramsey number $t(4,7)$, submitted.
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[7] H. Harborth and I Mengersen, All Ramsey numbers for five vertices and seven or eight edges, Discrete Math. 73 (1988/89) 91-98.
[8] C.J. Jayawardene and C.C. Rousseau, The Ramsey numbers for a quadrilateral versus all graphs on six vertices, to appear.
[9] G. MacGillivray, personal communication, 1998.
[10] C.M. Mynhardt, Irredundant Ramsey numbers for graphs: a survey, Congr. Numer. 86 (1992) 65-79.
[11] S.P. Radziszowski, Small Ramsey numbers, Electronic J. Comb. 1 (1994) DS1.
[12] F.P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930) 264-286.
[13] J. Simmons, CO-irredundant Ramsey numbers for graphs, Master's dissertation, University of Victoria, Canada, 1998.
[14] Zhou Huai Lu, The Ramsey number of an odd cycle with respect to a wheel, J. Math. - Wuhan 15 (1995) 119-120.

Received 14 July 1998
Revised 12 April 1999

