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Abstract

A set X of vertices of a graph G is said to be 1-dependent if the sub-
graph of G induced by X has maximum degree one. The 1-dependent
Ramsey number t1(l, m) is the smallest integer n such that for any
2-edge colouring (R, B) of Kn, the spanning subgraph B of Kn has
a 1-dependent set of size l or the subgraph R has a 1-dependent set
of size m. The 2-edge colouring (R, B) is a t1(l, m) Ramsey colour-
ing of Kn if B (R, respectively) does not contain a 1-dependent set of
size l (m, respectively); in this case R is also called a (l, m, n) Ram-
sey graph. We show that t1(4, 5) = 9, t1(4, 6) = 11, t1 (4, 7) = 16
and t1(4, 8) = 17. We also determine all (4,4,5), (4,5,8), (4,6,10) and
(4,7,15) Ramsey graphs.
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1 Introduction

Undefined notation and terminology can be found in [6]. The open and
closed neighbourhoods of the vertex subset X of a simple graph G = (V,E)
are denoted by N(X) and N [X], respectively, and N({x}) and N [{x}] are
abbreviated to N(x) and N [x]. The set X is 1-dependent if ∆ (〈X〉) ≤ 1,
that is, if 〈X〉 ∼= λK1 ∪ µK2. Further, X is irredundant if for all x ∈ X, the
private neighbourhood pn(x,X) of x relative to X, defined by pn(x,X) =
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N [x] − N [X − {x}], is nonempty. Further, X is called CO-(Closed-Open)
irredundant if the CO-private neighbourhood PN(x,X) of x relative to X,
defined by PN(x,X) = N [x] − N(X − {x}), is nonempty for each x ∈ X.
Note that for v ∈ V we have v ∈ pn(x,X) if and only if

(i) v = x and x is isolated in G[X], or

(ii) v ∈ V − X and N(v) ∩ X = {x}.

Further, v ∈ PN(x,X) if and only if (i), (ii) or (iii) holds, with

(iii) v ∈ X and N(v) ∩ X = {x}.

A vertex of PN(x,X) of types (i) or (iii) is called an internal XPN of x
while a vertex of type (ii) is called an external XPN of x. The definitions
imply that pn(x,X) ⊆ PN(x,X) and since x ∈ pn(x,X) for any vertex x
of an independent set X, we have

X independent ⇒ X irredundant ⇒ X CO-irredundant.(1)

Clearly, X is 1-dependent if and only if (i) or (iii) holds for each x ∈ X and
so we also have

X independent ⇒ X 1-dependent ⇒ X CO-irredundant.(2)

Let β(G), IR(G), COIR(G) and D(G) be respectively the largest cardinality
among the independent, irredundant, CO-irredundant and 1-dependent sets
of G. Then for any graph G, (1) implies that

COIR(G) ≥

{

IR(G)

D(G)

}

≥ β(G).(3)

Various generalisations of irredundance, based on the private neighbour
properties (i), (ii) and (iii) and the associated generalised Ramsey theory
were discussed in [3]. Suppose that each edge of the complete graph Kn is
assigned a colour from {1, ..., k}. For i = 1, ..., k, let Gi be the spanning
subgraph of Kn induced by the edges with colour i. Then (G1, ..., Gk) is
called a k -edge colouring of Kn.

The classical Ramsey numbers are usually defined in terms of complete
graphs in Gi. However, since complete graphs in Gi correspond to inde-
pendent sets in Gi, they may also be defined in terms of independent sets.
Using this approach we now define four types of Ramsey numbers.

Let k ≥ 2 and ni ≥ 3 for i = 1, ..., k. The (classical) Ramsey

number r (n1, ..., nk) (the irredundant Ramsey number s (n1, ..., nk), the
CO-irredundant Ramsey number t (n1, ..., nk) and the 1-dependent Ramsey
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number t1(n1, ..., nk) respectively) is the smallest integer n such that for
any k-edge colouring (G1, ..., Gk) of Kn, there exists i ∈ {1, ..., k} such that

β
(

Gi

)

(IR
(

Gi

)

, COIR
(

Gi

)

, D(Gi) respectively) ≥ ni. A special case

of Ramsey’s theorem [12] guarantees the existence of the classical Ramsey
numbers for graphs. Their existence together with (1) and (2) imply the
existence of the other types of Ramsey numbers. Moreover, (1) and (2) give

t(n1, ..., nk) ≤

{

s(n1, ..., nk)

t1(n1, ..., nk)

}

≤ r(n1, ..., nk).

Irredundant Ramsey numbers were first defined by Brewster, Cockayne and
Mynhardt [1] and as in the case of the classical Ramsey numbers, the deter-
mination of exact values proved to be very difficult. A survey of results on
these numbers is given in [9].

CO-irredundant Ramsey numbers were first studied by Simmons in the
unpublished master’s dissertation [13]. The first research paper written
on the topic was [4], where it was observed that if ni ∈ {3, 4} for each
i ∈ {1, ..., k}, these numbers coincide with other generalised graph Ram-
sey numbers: Let F1, ..., Fk be graphs. The generalised Ramsey number
r(F1, ..., Fk) is the smallest n such that in any k-edge-colouring (G1, ..., Gk)
of Kn, for some i ∈ {1, ..., n} the graph Gi has Fi as subgraph. Now let
ni ∈ {3, 4} and Fi

∼= P3 (C4) if ni = 3 (4). Then t(n1, ..., nk) = r(F1, ..., Fk)
and the same result is true for 1-dependent Ramsey numbers. (Also see
Proposition 2.) For a survey on generalised Ramsey numbers, see [11]. In
the case k = 2, the following numbers were determined in [4]: t(4, 4) = 6,
t(4, 5) = 8, t(4, 6) = 11, while it was shown in [5] that t (4, 7) = 14. Bounds
for t (5, 5) were also determined in [13].

In this paper we consider the 1-dependent Ramsey numbers for the case
k = 2. For ease of presentation (R,B) denotes a 2-edge colouring of Kn and
the edges of R and B will be coloured red and blue respectively. The term
1-dependent set of size m is simply denoted by dm. Thus the 1-dependent
Ramsey number t1(l,m) is the smallest integer n such that for any 2-edge
colouring of Kn, the subgraph B of Kn has a dl or the subgraph R has a
dm. The 2-edge colouring (R,B) is a t1 (l,m) Ramsey colouring of Kn if
B (R, respectively) does not contain a dl (dm, respectively); in this case R
is also called an (l,m, n) 1-dependent Ramsey graph or an (l,m, n) Ramsey

graph for short.
We determine t1 (4,m) for m = 5, 6, 7 and 8, as well as all (4,4,5),

(4,5,7), (4,6,10) and (4,7,15) Ramsey graphs. Each of these classes of graphs
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is used to find the next 1-dependent Ramsey number. Note that B has a
d5 if and only if R has a wheel W5 (also see Proposition 2) and thus the
1-dependent Ramsey number t1(5, 5) is the same as the generalised Ramsey
number r(W5,W5), which was determined in [7].

2 Preliminary Results

The following recurrence inequality is well-known for the classical Ramsey
numbers and analogous proofs establish it for the other three types.

Proposition 1. If α(l,m) is any one of the four types of Ramsey numbers

defined above, then

α (l,m) ≤ α(l,m − 1) + α (l − 1,m) .

Moreover, if α (l,m − 1) and α(l − 1,m) are both even, then this inequality

is strict.

To enable us to consider only the red subgraph R of Kn to determine whether
B has a d3 or a d4, we need the following result of [4] for CO-irredundant
sets of sizes 3 and 4 and its corollary; the proof for 1-dependent sets of sizes
3 and 4 are similar.

Proposition 2 [4, 13]. Consider a 2-edge colouring (R,B) of Kn. Then

(i) B has a d3 if and only if R has P3 as subgraph,

(ii) B has a d4 if and only if R has C4 as subgraph,

(iii) B has a d5 if and only if R has the wheel W5 as a subgraph.

Corollary 3 [4]. For any m ≥ 3,

(i) t (3,m) = t1(3,m) = m,

(ii) t(4, 4) = t1(4, 4) = 6,

(iii) [7] t1(5, 5) = 15.

Given a 2-edge colouring (R,B) of Kn, each vertex v and its neighbours in
R and B, respectively, induce a partition (v,Rv, Bv) of V (Kn), where

Rv = {u ∈ V (Kn) : uv ∈ E (R)}

and
Bv = {u ∈ V (Kn) : uv ∈ E (R)} .
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For any x ∈ Rv, define

Sx = {u ∈ Bv : ux ∈ E (R)} ,

and define Tv ⊆ Bv by

Tv = Bv −
⋃

x∈Rv

Sx.

The proof of the following simple results about t1 (4,m) Ramsey colourings
of Kn is exactly the same as the proof of Proposition 5 of [5]. We use the
terms “(R,B) is a t1 (4,m) Ramsey colouring of Kn” and “R is a (4,m, n)
Ramsey graph” interchangeably. In particular, when we say that two ver-
tices u and v are adjacent, we mean that they are adjacent in R and thus
that the edge uv is red. Similarly, for X ⊆ V (Kn) the notation 〈X〉 refers
to the subgraph of R induced by X.

Proposition 4. Consider a t1(4,m) Ramsey colouring (R,B) of Kn and

let v ∈ V (Kn) be arbitrary. Then

(i) Each vertex in Bv is adjacent (in R) to at most one vertex in Rv and

hence Sx ∩ Sy = ∅ for distinct vertices x, y ∈ Rv.

(ii) ∆ (〈Rv〉) ≤ 1.

(iii) |Rv| ≤ m − 1.

(iv) For each x ∈ Rv, |Sx| ≤ m − |Rv|.

(v) For each x, y ∈ Rv with xy ∈ E (R), |Sx| + |Sy| ≤ m − |Rv| + 1.

(vi) For each x, y ∈ Rv with xy ∈ E (B), 〈Sx ∪ Sy〉 consists of paths (pos-
sibly including P1) and cycles Ck, where k ≡ 0 (mod 4), k ≥ 8. There

exists a subgraph H of 〈Sx ∪ Sy〉 which contains d2q/3e vertices of each

path Pq and b2k/3c vertices of each cycle Ck, such that ∆(H) ≤ 1.

As in the case of CO-irredundant Ramsey numbers Proposition (iii) can be
extended to general t1 (l,m) Ramsey colourings. A simple lower bound for
|Rv| also exists. Again the proof is the same as for t(l,m).

Proposition 5. Let (R,B) be a t1 (l,m) Ramsey colouring of Kn and con-

sider an arbitrary vertex v. Then

n − t1 (l,m − 1) ≤ |Rv| ≤ t1 (l − 1,m) − 1.

In the case l = 4 the upper bound in Proposition 5 can sometimes be
improved:
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Proposition 6. Let (R,B) be a t1 (4,m) Ramsey colouring of Kn and con-

sider an arbitrary vertex v. Then

|Rv| ≤ 2 + m − n + t1(4,m − 1).

Proof. For any x ∈ Rv,

deg x ≤ 2 + |Sx|

≤ 2 + m − |Rv|

by Proposition 4(iv). By Proposition 5,

n − t1(4,m − 1) ≤ deg x

and so
n − t1(4,m − 1) ≤ 2 + m − |Rv| ,

from which the result follows.

The following result is frequently used to find (l,m, n) Ramsey graphs or to
prove that they do not exist.

Proposition 7. Consider a t1 (l,m) Ramsey colouring of Kn and vertices

u and v such that the edge uv is red. Let X = V (Kn) − N [{u, v}]. Then

〈X〉 is a (l,m − 2, |X|) Ramsey graph and thus |X| ≤ t1 (l,m − 2) − 1.

Proof. Since any dl in 〈X〉 is a dl in B, it follows that 〈X〉 does not
contain a dl. Suppose 〈X〉 contains a d (m − 2), say Y ′. By definition
N [{u, v}] ∩ X = ∅. But then Y = Y ′ ∪ {u, v} satisfies ∆ (〈Y 〉) ≤ 1 and
therefore is a dm in R, a contradiction. The result follows.

3 The values of t1(4, 5) and t1(4, 6), and the (4,4,5), (4,5,8) and
(4,6,10) Ramsey Graphs

Recall that t1 (4, 4) = 6 and let D be the graph obtained by joining the two
nonadjacent degree two vertices of P5.

Proposition 8. The only (4, 4, 5) graphs are D and C5.

Proof. Let (R,B) be any t1 (4, 4) colouring of K5 and consider any vertex v.
By Corollary 3 and Proposition 5,

1 ≤ |Rv| ≤ 3.
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If R is 2-regular, then R ∼= C5 and since C5 is selfcomplementary and does
not contain a C4, it follows from Proposition 2(ii) that C5 is a (4, 4, 5) graph.
If 1 = δ (R) ≤ ∆(R) ≤ 2, then R is the union of paths and contains a 1-
dependent set of size d10/3e = 4, a contradiction. Hence we may assume
that there is a vertex v with |Rv| = 3, say Rv = {1, 2, 3}. Then |Tv| ≤ 1
and if |Tv| = 1, then Si = ∅ for each i = 1, 2, 3, implying the vertex Tv is
isolated in R, a contradiction. Hence by Proposition 4(i) we may assume
that |S1| = 1, say S1 = {4}, and S2 = S3 = ∅. To avoid the d4 {1, 4, 2, 3},
〈{1, 2, 3}〉 contains at least one and thus by Proposition 4 (ii) exactly one
edge. If 2-3 is red, then {1, 4, 2, 3} is a d4 in any case, hence we may assume
that 1-2 is red; clearly all other edges are blue. Hence R ∼= D as required.
Since D is selfcomplementary and does not contain a C4, D is a (4, 4, 5)
graph.

Let a and b be the vertices of D of degree three, c (d) the endvertex adjacent
to a (b) and e the vertex of degree two. We now determine all (4, 5, 8) graphs.

u u

u

u

u

u u

u

3

4 1

vu

5 2

6

F

Figure 1. The only (4, 5, 8) graph

Theorem 9. The only (4, 5, 8) graph is the graph F in Figure 1.

Proof. Proposition 5 implies that for any t1 (4, 5) colouring (R,B) of K8

and any vertex v,

2 ≤ |Rv| ≤ 4.

If |Rv| = 4, then by Proposition 4(iv), |Sx| ≤ 1 for each x ∈ Rv. If Tv 6= ∅
then for any y ∈ Tv, |Rv ∪ {y}| = 5 and ∆ (〈Rv ∪ {y}〉) ≤ 1 which implies
that Rv ∪ {y} is 1-dependent, a contradiction. Thus Tv = ∅ and a counting
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argument shows that Sx = ∅ for exactly one x ∈ Rv and |Sy| = 1 for each
y ∈ Rv − {x}. Say Rv = {1, 2, 3, 4}, S1 = ∅, S2 = {5}, S3 = {6} and
S4 = {7}. Since deg 1 ≥ 2, vertex 1 is adjacent to some vertex in Rv; say
without loss of generality that 1-2 is red. By Proposition 4 (ii), 1 and 2 are
not adjacent to either 3 or 4. To ensure that {1, 2, 3, 6, 7} is not 1-dependent,
6-7 is red. To ensure that {1, 2, 3, 4, 7} is not 1-dependent, 3-4 is red. But
then 3-4-7-6 is a 4-cycle, contradicting Proposition 2. Consequently

2 ≤ |Rv| ≤ 3

for each vertex v. If R is 2-regular, then by Proposition 2, R ∼= C8 or C3∪C5

and it is easy to see that D(R) = 5 in each case. Thus

|Rv| = 3

for some vertex v.
Suppose R is 3-regular. Say Rv = {1, 2, 3}. Then the only possibility

for the Si and for red edges in 〈Rv〉 is, without loss of generality, 1-2 red,
S1 = {4}, S2 = {5} and S3 = {6, 7}. To avoid a 4-cycle, 4-5 is blue and since
deg 4 = 3, 4 is adjacent to 6 and 7, forming a 4-cycle with 3, a contradiction.
This shows that

δ (G) = 2 and ∆ (G) = 3.

Let v be a vertex with Rv = {1, 2} and suppose firstly that 1-2 is red.
Then |S1| = |S2| = 1; say S1 = {3}, S2 = {4} and Tv = {5, 6, 7}. To
avoid a 4-cycle, 3-4 is blue. If P3 is not a subgraph of 〈{5, 6, 7}〉, then
D(〈{5, 6, 7}〉) ≥ 2 and thus {1, 2, 5, 6, 7} is 1-dependent, a contradiction.
Say 5-6-7 is the vertex sequence of a P3. Considering {v, 2, 3, 5, 7}, we see
that to avoid a d5, 3-5 (without loss of generality) and 5-7 are both red.
Similarly, {v, 2, 3, 6, 7} implies that (without loss of generality) 3-6 is red,
thus forming a 4-cycle 3-5-7-6, a contradiction.

Hence we may assume that 1-2 is blue and |S1| = |S2| = 2. Say S1 =
{3, 4}, S2 = {5, 6} and Tv = {u}. Since deg(u) ≥ 2 and u is adjacent to
at most one vertex in each Si (to avoid 4-cycles), u is adjacent to exactly
one vertex in each Si. Suppose without losing generality that u-4 and u-5
are red. Considering {v, 2, 3, 4, u}, we see that 3-4 is red and similarly, 5-6
is red. Moreover, {1, 3, 2, 6, u} implies that 3-6 is red. The only vertices
incident with only two red edges are u and v and since R is not 3-regular,
uv is blue and R ∼= F (see Figure 1).

Note that F has two disjoint triangles. If F has a d5, say X, then X
contains two vertices of the same triangle and at least one of the vertices u
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and v. It is easy to check that this is impossible and thus F is the unique
(4,5,8) graph.

Corollary 10. t1 (4, 5) ≥ 9.

We now show that there are no (4,5,9) graphs and thus t1(4, 5) = 9. This
number was also determined as the generalised Ramsey number r(C4,W5)
by [14], as cited in [11].

Theorem 11. t1(4, 5) = 9.

Proof. Suppose to the contrary that (R,B) is a t1 (4, 5) colouring of K9.
By Proposition 5,

3 ≤ |Rv| ≤ 4

for each vertex v and since R is not 3-regular, there exists a vertex v with
deg v = 4. The degree conditions and a counting argument show that 〈Rv〉 ∼=
2K2, |Sx| = 1 for each x ∈ Rv and Tv = ∅. Let Rv = {1, 2, 3, 4} with 1-2
and 3-4 red, and Si = {i + 4} for each i = 1, ..., 4. To avoid 4-cycles, 5-6
and 7-8 are blue. Since deg 5 ≥ 3, 5-7 and 5-8 are red; similarly, 6-7 and 6-8
are both red. But then 5-7-6-8 is a 4-cycle, a contradiction.

It was suggested in [4], and proved in [5], that for CO-irredundant Ramsey
numbers, the only (4,6,10) graphs are G1, G2 and G3 in Figure 2. This
result also holds for 1-dependent Ramsey numbers and the proof is exactly
the same as the proof of Theorem 10 of [5].

Theorem 12. The only (4, 6, 10) graphs are the graphs G1, G2 and G3 in

Figure 2.

Corollary 13. t1(4, 6) ≥ 11.

In order to use Theorem 12 to determine t1(4, 7) and t1(4, 8), we determine
the maximum number of vertices which can be chosen from F , G1, G2 and
G3 so that no two chosen vertices are joined by a path of length two.

Proposition 14. For a set X of vertices of a graph, let P(X) be the property

“no two vertices of X are joined by a path of length two”. Suppose that P(X)
holds.

(i) If X ⊆ V (F ), X ⊆ V (G1) or X ⊆ V (G2), then |X| ≤ 2.

(ii) If X ⊆ V (G3) and t /∈ X, then |X| ≤ 2; otherwise |X| ≤ 3.
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Proof. (i) Suppose X ⊆ V (F ). The result obviously holds if X consists
of vertices of degree 2. If each vertex of X is of degree 4, then X contains
at most one vertex from each triangle and the result holds. If X contains
vertices of degree 2 and 4, then X consists of one vertex of degree 4 and the
unique vertex of degree 2 adjacent to it.

u

u u

u

u

u

uu

u u

a

c d

b

u

u

u u

uuu

u u

u

p

q

G1 G2
u

u

u u

u

uu

u

uu

r s

l

k

t

G3

Figure 2. The only (4, 6, 10) graphs (see [4])

Suppose X ⊆ V (G1). If max {deg v : v ∈ X} = 4, say a ∈ X, then

|X| =

{

1, if b /∈ X,
2, otherwise.

If max {deg v : v ∈ X} = 2, say b ∈ X, then

|X| =

{

1, if c, d /∈ X,
2, otherwise.
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Suppose X ⊆ V (G2) and note that d (p, q) = 3 and each vertex in N (p)
(N (q), respectively) lie on a common triangle with p (q). Thus if p ∈ X,
then

|X| =

{

1, if q /∈ X,
2, otherwise.

If X ∩ {p, q} = ∅, then X ⊆ N (p) ∪ N (q) and so |X| ≤ 2 to avoid a P3.

(ii) If X ⊆ V (G3) and t /∈ X, then X ⊆ N (r) ∪ N (s) and each vertex
in N (r) (N (s), respectively) lie on a common triangle with r (s). Hence
|X| ≤ 2. It follows immediately that |X| ≤ 3 if t ∈ X and it is easy to see
that equality can be obtained.

We conclude this section by showing that there are no (4,6,11) graphs. This
result was also obtained as the generalised Ramsey number r(C4,K6−3K2)
in [8], as cited in [11].

Theorem 15. t1 (4, 6) = 11.

Proof. Suppose to the contrary that (R,B) is a t1 (4, 6) colouring of K11.
By Proposition 5,

2 ≤ |Rv| ≤ 5

for each vertex v. Consider v with |Rv| = 5. By Proposition 4(iv) |Sx| ≤ 1
for each x ∈ Rv. Since |Rv| = 5 and ∆ (〈Rv〉) ≤ 1, there exists x′ ∈ Rv

which is isolated in 〈Rv〉. If Sx′ = ∅ then Tv 6= ∅ and so Rv ∪ Tv contains
a d6. If Sx′ 6= ∅ then Rv ∪ Sx′ is a d6, a contradiction in each case. This
shows that for each vertex v,

2 ≤ |Rv| ≤ 4.

Now consider v with |Rv| = 2; say Rv = {1, 2}. By Proposition 7, |Si| ≥ 3
for each i = 1, 2 and it follows from the degree conditions that |Si| = 3 and
hence |Si ∪ Tv| = 5 for each i. Thus 〈Si ∪ Tv〉 ∼= C5 or D. Let Tv = {u,w}.
Now, 〈Si〉 contains at most one edge, 〈Tv〉 contains at most one edge and
each of u and w is adjacent to at most one vertex of Si to avoid a 4-cycle.
Thus 〈Si ∪ Tv〉 has at most four edges, a contradiction. This proves that for
each v,

3 ≤ |Rv| ≤ 4.

Since R is not 3-regular it follows that R has a vertex v of degree four. By
Propositions 4(iv) and 7,

1 ≤ |Sx| ≤ 2
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for each x ∈ Rv. If |Sx| = 1 for each x, then |Tv| = 2 and Rv ∪ Tv is a d6, a
contradiction. Say Rv = {1, 2, 3, 4}, S1 = {5, 6}, S2 = {7}, 8 ∈ S3, S4 = {9}
and 10 ∈ S3 ∪ Tv. Let X1 = {5, 6, 7, 8, 10} and X2 = {5, 6, 8, 9, 10}. By
Proposition 7, 〈Xi〉 ∼= C5 or D. If 5-6 is blue, then to avoid 4-cycles the only
possibility is that 〈Xi〉 ∼= D with {5, 6} = {c, d}. But since neither 7 nor 9
is adjacent to both of 5 and 6, it then follows that min {deg 5, deg 6} = 2,
a contradiction. Thus we may assume that 5-6 is red. If 10 ∈ S3, then
by Proposition 4(v), 1-3 is blue. If 10 /∈ S3, then since ∆ (〈Rv〉) ≤ 1,
we may assume without loss of generality that 1-3 is blue anyway. Since
|R2|, |R4| ≥ 3, we may also assume without loss of generality that 1-2 and
3-4 are red.

If 〈X1〉 ∼= C5 then, since 5-7 and 6-7 are blue, we may assume that
10-5-6-8-7 is the vertex sequence of the 5-cycle. Note that 5-8 and 8-9 are
blue. Therefore 〈X2〉 ∼= C5 is impossible and thus 〈X2〉 ∼= D. But 6-10 and
at least one of 9-5 and 9-6 is blue, so this is impossible too.

Therefore 〈X1〉 ∼= D with, without loss of generality, a = 6 and c = 5.
Then d = 7 and it follows that 6-8, 6-10 and 8-10 are red. Since |R5| ≥ 3
and 5-7, 5-8 and 5-10 are blue, 5-9 is red. But then 〈X2〉 6∼= C5 or D, a
contradiction.

4 The (4,7,15) Graphs and the Value of t1(4, 7)

The calculation of t1(4, 7) proves to be surprisingly simple, perhaps because
of the existence of a t1(4, 7) Ramsey colouring of K15 and the bounds given
in Propositions 5 and 6.

Proposition 16. t1(4, 7) ≤ 16.

Proof. Suppose to the contrary that (R,B) is a t1 (4, 7) Ramsey colouring
of K16. By Propositions 5 and 6, any vertex v satisfies

5 = 16 − t1 (4, 6) ≤ |Rv| ≤ 2 + 7 − 16 + t1(4, 6) = 4,

which is impossible.

We now illustrate the use of the (4,5,8) and (4,6,10) Ramsey graphs in the
characterisation of (4,7,15) graphs.
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Figure 3. The only (3, 7, 15) graph

Theorem 17. The only (4, 7, 15) Ramsey graph is the graph H in Figure 3.

Proof. Consider any t1 (4, 7) Ramsey colouring (R,B) of K15. By Propo-
sitions 5 and 6,

4 ≤ deg v ≤ 5

for each v ∈ V (R). Consider v with |Rv| = 5. Since ∆ (〈Rv〉) ≤ 1, Rv has
an isolated vertex x. By Proposition 4(iv), |Sx| ≤ 2. But then deg x ≤ 3,
a contradiction and it follows that R is 4-regular. Therefore for each vertex
v and each x ∈ Rv, |Sx| ≤ 3. Since ∆ (〈Rv〉) ≤ 1, degree conditions imply
that

2 ≤ |Sx| ≤ 3

for each x ∈ Rv. A counting argument shows that |Sx| = 2 for at least
two vertices x ∈ Rv; necessarily each such vertex is adjacent to some other
vertex in Rv.

Say Rv = {1, 2, 3, 4}, where 1-2 is red, S1 = {5, 6}, S2 = {7, 8}, {9, 10} ⊆
S3, {11, 12} ⊆ S4 and Tv ⊆ {13, 14}. For i = 1, 2, let Xi = Bv − Si. By
Proposition 7 〈Xi〉 ∼= F . By Proposition 14 vertices 3 and 4 are adjacent
to at most two vertices, and hence exactly two vertices, in each of X1 and
X2, so that S3 = {9, 10}, S4 = {11, 12} and Tv = {13, 14}. To satisfy the
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degree requirements, 3-4 is red. By repeating the above argument for the
vertices 1,2,3 and 4, we find that 5-6, 7-8, 9-10 and 11-12 are red. Now
〈Bv〉 is a (4,6,10) graph such that Si, i = 1, ..., 4, are pairwise disjoint
subsets of Bv. Since R is 4-regular, 〈Bv〉 has eight vertices of degree 3 and
two of degree 4, and the only possibility is 〈Bv〉 ∼= G2, where {13, 14} =
{p, q}. Without losing generality we may assume that R13 = {5, 7, 9, 11}
and R14 = {6, 8, 10, 12}, with the edges 5-9, 7-11, 6-12 and 8-10 red. This
is the 4-regular graph H in Figure 3.

By redrawing H with other vertices in the place of v, as for example
indicated in Figure 3, it can be seen that H is vertex transitive. If H has
a d7, say X, then 〈X〉 has an isolated vertex. Without loss of generality
suppose this is v. Then V (H) − N [v] contains a d6 − but by construction,
〈V (H) − N [v]〉 ∼= G2.

Corollary 18. t1 (4, 7) = 16.

5 Amazingly, t1(4, 8) = 17

Let J be any graph obtained from H by adding a vertex w to H and joining
w to vertices of H in any way without creating a 4-cycle. (For example, let
J ∼= H ∪ K1.) Then J does not contain a d8 and J does not contain a d4
and so J is a (4,8,16) Ramsey graph. It follows that

t1(4, 8) ≥ 17.

To show that t1(4, 8) = 17 we first prove the following lemma.

Lemma 19. If R is a (4, 8, 17) graph, then R does not have

(i) two vertices with total degree at most 4,

(ii) two vertices with a common neighbour with total degree at most 5,

(iii) two adjacent vertices with total degree at most 6 and

(iv) two vertices with total degree at most 7 which lie on a common triangle.

Proof. In each of the above cases, if u and v are vertices with the stated
properties, then |V (R) − N [{u, v}]| ≥ 11, contradicting Theorem 15 and
Proposition 7.

Theorem 20. t1(4, 8) = 17.
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Proof. Suppose to the contrary that (R,B) is a t1(4, 8) Ramsey colouring
of K17. Then

1 ≤ |Rv| ≤ 7

for each vertex v. If |Rv| = 7, then |Sx| ≤ 1 for each x ∈ Rv. Since
∆ (〈Rv〉) ≤ 1 there exists a vertex x which is isolated in 〈Rv〉. Hence deg x =
2 and deg y ≤ 3 for all other y ∈ Rv, contradicting Lemma19(ii). Hence for
each vertex v,

1 ≤ |Rv| ≤ 6.

Consider v with |Rv| = 6. Then |Sx| ≤ 2 for each x ∈ Rv and so deg x ≤ 3
if x is isolated in 〈Rv〉 and deg x ≤ 4 otherwise. Thus if x is isolated in
〈Rv〉, then some x′ 6= x is also isolated in 〈Rv〉 and so |Sx| = |Sx′ | = 2
by Lemma19(ii). On the other hand, if x is not isolated in 〈Rv〉, then by
Lemma19(iv) |Sx| = 2 as well. But then R has more than 17 vertices, which
is impossible. Thus

1 ≤ |Rv| ≤ 5

for each vertex v. However, if deg v = 1, then v is adjacent to vertices of
degree at least 6 only (Lemma19(iii)) and so we also have

2 ≤ |Rv| ≤ 5

for each v.

Consider v with |Rv| = 2; say Rv = {1, 2}. Then v is adjacent to
vertices of degree 5 only and so for each i = 1, 2, |Si| = 4 by Lemma19(iv).
Let X = V (K17) − N [{1, v}]. Then |X| = 10 and so by Proposition 7,
〈X〉 ∼= G1, G2 or G3. But then vertex 2 is adjacent to four vertices of Gi, at
least two of which are joined by a path of length two (Proposition 14), thus
forming a 4-cycle in R, a contradiction. We have now proved that

3 ≤ |Rv| ≤ 5

for each v.

Suppose |Rv| = 3; say Rv = {1, 2, 3}. By Lemma19 3 ≤ |Si| ≤ 4 for each
i = 1, 2, 3. If (say) |S1| = 3 and X = V (K17)−N [{1, v}], then |X| = 10 and
thus 〈X〉 ∼= G1, G2 or G3. But then S2 and S3 are disjoint subsets of X of
size at least three and so by Proposition 14, vertex 2 or 3 is adjacent to two
vertices of X which are joined by a path of length two. This forms a 4-cycle
in R, a contradiction. Thus |Si| = 4 for each i = 1, 2, 3. By Proposition
4(v), 〈Rv〉 ∼= 3K1 and by Proposition 4(vi), 〈S1 ∪ S2〉 is a union of paths or
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an 8-cycle. In the former case 〈S1 ∪ S2〉 contains a 1-dependent set of size
d16/3e = 6, which together with {v, 3} forms a d8. Hence 〈S1 ∪ S2〉 ∼= C8.
Since no vertex in S1 is adjacent to more than one vertex in S2 and vice

versa, the 8-cycle in 〈S1 ∪ S2〉 is of the form x1x2y1y2x3x4y3y4 with xj ∈ S1,
yj ∈ S2. Let the vertex sequence of this 8-cycle be 4-5-8-9-6-7-10-11 with
S1 = {4, 5, 6, 7} and S2 = {8, 9, 10, 11}. Now u ∈ Tv 6= ∅ is adjacent to at
most one, and thus to exactly one vertex in each Si, i = 1, 2, 3. Without
loss of generality say u-4 is red. To avoid the 4-cycles u-4-5-8 and u-4-11-10,
u-8 and u-10 are blue. Therefore u-9 or u-11 is red. In the former case
{v, 3, u, 5, 8, 10, 11, 6} is a d8 and in the latter case {v, 3, u, 4, 8, 9, 7, 10} is a
c8. We conclude that for each vertex v,

4 ≤ |Rv| ≤ 5

and since R is not 5-regular, R has a vertex v of degree 4.

If |Rv | = 5, say Rv = {1, 2, 3, 4, 5}, then the degree conditions and
a counting argument show that |Si| = 2 for four values of i, say i = 1, ..., 4,
and 2 ≤ |S5| ≤ 3. But if |S5| = 2, then since at least one of the vertices in Rv

is isolated in 〈Rv〉, δ (R) = 3, a contradiction. Hence |S5| = 3. Since δ(R) =
4 we may assume that 1-2 and 3-4 are red. Let X = V (K17) − N [{1, 2}]
and note that |X| = 10; hence by Proposition 7 〈X〉 ∼= G1, G2 or G3. Then
v ∈ N [{1, 2}] is adjacent to three vertices in X and so by Proposition 14,
〈X〉 ∼= G3. Since 3-4 is red, the only possibility is that without losing
generality, vertex 3 corresponds to t ∈ V (G3) and vertex 4 to k. Since
|S5| = 3, the other neighbour of v in G3 has degree three. But the only
possible choice of a vertex together with t and k is l, and deg l = 2. We
conclude that R is 4-regular.

Let v with Rv = {1, 2, 3, 4} be a vertex of R and suppose firstly that
v lies on a triangle; say 1-2 is red. If 3-4 is blue, then |S3| = |S4| = 3.
But then for X = V (K17) − N [{v, 1}], 〈X〉 ∼= Gi for some i = 1, 2, 3 and
vertices 3 and 4 are adjacent to two disjoint sets of three vertices in Gi,
which is impossible by Proposition 14. Hence 3-4 is red and |S3| = |S4| = 2
so that |Tv| = 4. Repeating this argument for any vertex of R which lies
on a triangle, such as vertices 1-4, we obtain that 〈Si〉 ∼= K2 for i = 1, ..., 4.
Hence for i = 2, 3, 4, Si ⊆ X such that the vertices of each Si are adjacent
in 〈X〉. Since the Si are moreover disjoint, it follows from Proposition 14
(and its proof) that 〈X〉 ∼= G2 and each vertex i, for i = 2, 3, 4, is adjacent
to one vertex in N (p) and one vertex in N (q). Further, say S1 = {5, 6}.
Vertices 5 and 6 are also adjacent to two vertices each in X. However, by
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considering the degrees of the vertices of G2 we see that there are exactly 8
edges from N [{v, 1}] to X, a contradiction.

Hence R is triangle-free and 〈Si〉 ∼= 3K1 for each i = 1, ..., 4. Then
(for example) 〈S1 ∪ S2〉 is a subgraph of 3K2 (the only possible edges join
vertices in S1 to vertices in S2 and no vertex in Si is adjacent to more than
one vertex in Sj) and so S1 ∪ S2 ∪ {3, 4} is a d8, a contradiction. This
completes the proof that there is no t1 (4, 8) Ramsey colouring of K17 and
hence t1 (4, 8) = 17.
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