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Abstract

A d-uniform hypergraph H is a sum hypergraph iff there is a finite
S C IN* such that H is isomorphic to the hypergraph H (S) = (V, ),
where V. =Sand & = {{v1,...,v4} : (i £ j = v; # vj)/\Z;.izl v; € S}
For an arbitrary d-uniform hypergraph H the sum number o = o(H) is
defined to be the minimum number of isolated vertices w1, ..., w, € V
such that H U {w1,...,w,} is a sum hypergraph.

In this paper, we prove

d d—1
oK, .n) =1+ Y _(n; = 1) + min {0, B <Z(m— -1)- ndﬂ } ,

=1 =1

where ’C;in,...,nd denotes the d-partite complete hypergraph; this gener-
alizes the corresponding result of Hartsfield and Smyth [8] for complete
bipartite graphs.
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1. INTRODUCTION AND DEFINITIONS

The concept of sum graphs and integral sum graphs was introduced by
Harary ([6], [7]). Many results for these kinds of graphs have been ob-
tained in recent years, for a brief summary see for instance Sonntag and
Teichert [12].

The graph theoretic concept mentioned above can be generalized to uni-
form hypergraphs as follows. All hypergraphs considered here are supposed
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to be nonempty and finite without loops and multiple edges. In standard
terminology we follow Berge [1].

A hypergraph H = (V, £) with vertex set V and edge set £ C P(V)—{0}
is d-uniform iff 2 < d € IN and |e|] =d (Ve € £). Let S C IN™T be finite.
HE(S) = (V,€) is called the d-uniform sum hypergraph of Siff V = S and

d
5:{{Ul,UQ,...,Ud}:(i#jivi#vj) /\Z ’UZ'GS}.
=1

The d-uniform hypergraph H is a sum hypergraph iff there exists a set S C
IN* such that H = Hj (S). For d = 2 we obtain the known concept of sum
graphs. For an arbitrary d-uniform hypergraph H the sum number o = o(H)
is defined to be the minimum number of isolated vertices wq,...,w, € V
such that HU{w1,...,w,} is a sum hypergraph. If also nonpositive integers
are allowed as elements of S, i.e. S C Z, we obtain the definitions of integral
sum hypergraphs and the integral sum number ¢ = ((H) in the same manner.

As for graphs, the determination of the sum number (integral sum num-
ber) for certain classes of hypergraphs is an interesting question. The fol-
lowing results are known:

e If 7; denotes a d-uniform hypertree, then d > 3 implies 0(7;) = 1 and
¢(73) = 0 (Sonntag and Teichert ([12], [13])). Ellingham [5] proved for
nontrivial trees 7o = T that o(T') = 1. Sharary [11] showed that all cater-
pillars are integral sum graphs and Chen [4] proved that the generalized
stars and the trees in which any two distinct forks have distance at least
four are integral sum graphs; both authors conjecture ¢(7') = 0 for all
trees but this problem remains still open.

e For the d-uniform complete hypergraph on n vertices lelL we obtain the
sum number o(K%) = d(n —d) + 1 for n —2 > d > 2; this was shown
by Sonntag and Teichert [13] for d > 3 and by Bergstrand et al. [2]
for graphs K2 = K,,. Chen [3] as well as Sharary [10] showed that for
complete graphs ((K,) = o(K,,) if n > 4. For n—2 > d > 3 Sonntag and
Teichert [13] found bounds for ¢(K%) and conjectured that ¢(K¢) = o(K4)
is true for hypergraphs too.

In this paper, we determine the sum number for a third class of uniform hy-
pergraphs. As a generalization of complete bipartite graphs Berge [1] defined
the d-partite complete hypergraph K?Ll’...,nd as follows: Let X1, Xo,..., Xy be
pairwise disjoint sets of cardinalities nq1 < ng < ... < ng. The vertices of
K& ., are the elements of UL, X; and the edges are all {v1,vs,...,v4}
with v; € X; fori=1,...,d.
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For z € IR let [z]| denote the smallest integer > x. Hartsfield and Smyth
[8] proved for complete bipartite graphs Ky, n,

Theorem 1. For given integers ny > 2 and ng > ny holds

1
0 (Kny mg) = [5(3711 g — 3)} .
|
For the symmetric bipartite graph K, , Miller et al. [9] showed
Theorem 2. ((K, ) =0(K,,) for n>2. ]

The problem to determine ((Ky, n,) for n; # ng remains still open.

In the following, we generalize Theorem 1. In Section 2, we prove several
lemmata; for the determination of the sum number we distinguish two cases
concerning the cardinality of the maximum vertex subset Xy of K4 g
Summarizing these results, we give in Section 3 a general formula for the

sum number of d-partite complete hypergraphs.

2. Two CASES FOR THE DETERMINATION OF THE SUM NUMBER

We use the following notations:
Xq,...,Xq is the vertex partition of the complete d-partite hypergraph

IC?L17...7nd, where n; denotes the cardinality of X; and n; < ny < ... < nyg
is fulfilled. &£ is the set of edges of Kgu,---,nd and Y is a set of isolated ver-

tices such that for some labelling ¢ 1omy U Y can be recognized as a sum
hypergraph. All vertices of Ugl:l X; UY are referenced by their labels.

Lemma 3. There are 1+3%_, (n;—1) pairwise different sums vi+va+. . .+vg
of vertices v; € X;, i =1,...,d.

Proof. Using the notation X; = {v},...,v"} with vf < vf if £ < for
1=1,...,d we consider the following sets of sums:

Si={v]+uvi+... +ov:je{l,... ,ni}},

Si={vM + . 4ol T e ol vk e {2, nd) i =2, d.

Clearly, S; N S; = 0 for i # j and |Si| = n, |Si| =n; —1fori=2,....d.
Hence there are 1 + Y%, (n; — 1) pairwise different sums. ]
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Lemma 4. Consider a labelling of V' = g:l X;UY such that ICghwnd uYy
is a sum hypergraph and let v}; € Xg be arbitrarily chosen. Then

d—1 d—1
(1) <{Zvi+v§:vieXi}QXd>\/<{Zvi+v§:vieXi}gY>
i=1 =1

Proof. 1. Suppose there are vj € X;, ¢ =1,...,d— 1, such that Zle v =
vg € Xgandlet v; € X; 1 =1,...,d—1, be arbitrarily chosen. In part 1, we

show that this implies v/, := S v; + v} € X,
Because of {v1,...,v4-1,04} € € there is a vertex

d—1 d—1 d d—1
V= 0+ Tg =Y v+ > uf =) v+
i=1 i=1 i=1 i=1

Hence {v},...,v}_ 1,0} € € and by the definition of the d-partite complete
hypergraph it follows v/, € Xg.

d
2. Suppose there are v; € X;, ¢ =1,...,d — 1, such that } v =9; € Xj
i=1
for j € {1,...,d — 1}. It follows analogously to part 1 that
d
Vie{l,...,j—1j+1....dfVueX;: > vi+vj€Xj
=1
i

By Lemma 3 there are at least 1+ Zi:lzl_ (n; — 1) pairwise different sums each

i#£]
containing v;. With v € X; we obtain

d
nj =X 214 |14+ (ni—1) | 2 1+mng,
=1
i
which contradicts the supposition n; < ng made in the beginning of this
chapter. Hence this case is impossible.

3. Suppose there are v; € X;, ¢ =1,...,d —1, such that Zgl:l vy € Y. With
parts 1, 2 we obtain Zg;ll v + v ¢ ngl X; for arbitrary vertices v; € X,
i =1,...,d—1. By the sum hypergraph property we obtain Zf;ll vit+vy €Y
and this proves (1). ]
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IfV C ngl X,;UY denotes the subset of vertices representing sums Zgzl V;
where {v1,...,v4} € € it follows from Lemma 4 that only the cases V =Y
(case 1) or VN Xy # 0 (case 2) are possible. Clearly, it depends on the
cardinality ng of X; whether the first case appears or the second one is
possible.

A

Case 1. ng <1+ Y% n; —1) (ie, V=Y).

Lemma 5. If ng <1+ Y% (n; — 1) then
d
(2) J(Kgbh---,nd) >1+ Z(nl -1).
i=1

Proof. Let v} € X4 be arbitrarily chosen and assume > 9"!v; + vf €
X, for some v; € X;, i = 1,...,d — 1. Then Lemma 4 implies that each
sum containing v} belongs to Xy and from Lemma 3 follows ng > 1 +
(1 + 3 (n; - 1)) , a contradiction. Thus V' C Y and with Lemma 3 we
obtain (2). ]

Our aim is to show that equality is fulfilled in (2). For this purpose we
describe an appropriate labelling:

Lemma 6. Let UL, X; UY be labelled as follows:

Xi = {zi+ 1,z +n}, i=1,....d
d d
(3) Y = {Z(w,+1),,2(xl+nz)}
=1 i=1

with z; = 107 i =1,...,d, where t > lg (dng).

Then the resulting sum hypergraph consists of ngl with vertex set

UL, X; and [Y]| =1+ 3%, (n; — 1) isolated vertices.

geeey Mg

Proof. Clearly, (3) implies Y = V= {Zle vty € X, i=1,... ,d} and
V] =1+ XL (ni - 1),
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It remains to show that the labelling does not induce too many edges by the
sum hypergraph property, i.e., if Z‘f:l v' €Y then {v!,...,v?} € £ follows.
Let a1,...,aq1+11 be the digits of the label ajas ... ag1411 of a vertex v.
The condition ¢ > lg (dng) implies

o if veX; (ie{l,...,d}), then

ag—iv1=1; a; =0 for je{l,...,d} —{d—i+1},
(4)

o if veY, then
a; =1 for je{l,...,d}.

Thus we have for arbitrary pairwise different vertices v, ..., v?% € U‘iizl X;U
Y that Zgzl v ¢ X;, i =1,...,d. Further in case of Zle v' € Y, neither
v* vl € X; nor v* € Y for some i, k,1 € {1,...,d},k # 1 is possible, because
this would imply «; # 1 for at least one j € {1,...,d} in both of the cases,
a contradiction to (4). |

Summarizing the results of Lemmata 5, 6, we have shown

Theorem 7. Ifng <1+ Zf;ll (n; — 1), then

d
(5) o(K,mg) = 1D (ni = 1);
i=1
especially for ny = ... = ng =n we have
(6) o(Kf,..n) = 1+ d(n —1). m

Notice that for complete bipartite graphs K, ,, because of ny < no the
supposition of Theorem 7 can only be true for ny = ny = n and this leads
to o(Kp ) =2n — 1 as a special case of (6) which corresponds to the value
given in Theorem 1.

Case 2. ng > 2+ Y (n; — 1) (e. VN X4 #0).

We introduce the notations

d
(7) Xp={vgeXq Vie{l,...,d—1} Jvj € X;: Y v} € Xg},
i=1
d
(8) Xi={vjeXqgVie{l,...,d} IvieX; :v]=) v}
=1
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The aim of this section is the construction of a labelling that reduces the
cardinality of Y (below the value given in (5)) to a minimum. Due to
Lemma 4 this is only possible by the maximization of | X}|.

In the following, we suppose that at least two vertex subsets X; contain
two or more vertices, i.e.,

9) 2<ng1<ng

(otherwise we obtain o (K2 = 1 immediately).

17---7”d)

Lemma 8. If a labelling of Kﬁhm’nd generates a mazimum cardinality | X},
then

(10) Xinxy=0.

Proof. We prove (10) by induction on ng = | Xg|. For ng < 1+3% ! (n;—1)
we have shown X/, = () in Case 1, hence (10) is true. Now suppose that (10)
is valid for some ng > 2 + Z (nl — 1) and form X4 by adding one new
vertex to X4. Then iy = \Xd] = ng + 1, further we denote by Xd C Xy
and X(’i’ C X, the sets corresponding to (7) and (8), respectively. In the
following, we have to show that X/, N X/ = ().

1. We show

() X4 < X5 < |XG) + 1.

The first inequality is obvious. Let v ™ = min{v/, : v/, € X/}, then

(12 o ¢ K.

Now assume that | X| > | X/,|+2 is fulfilled and consider X/, — {v*}. Then

Xy — {vP"}| = ng and with (12) we obtain | X/, — {vF"}| > |X)| + 1, a
contradiction to the maximality of | X, hence (11) is true.

2. Now we prove
(13) | X} =X} = XN X = 0.
With vP** = max{v/] : v/j € X"/} we obtain

(14) oex ¢ XN
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Consider Xy := X, — {v**} and form the sets X/ , and X corresponding
to (7) and (8) respectively. Then X’ C X/, and next we show that even
equality is fulfilled:

Consider an arbltrary Vg € Xd Then there are v; € X;, ¢ = 1,...,d — 1,
such that ZZ 10 = g € X If v # v]'* then vg € X and hence Vg € Xd
If v4 = v, we choose ¥ 0 € X;, i=1,...,d—1, and because of (9 (9) we can
suppose that 0; # {7]- for exactly one j € {1,...,d — 1}. Lemma 4 implies
Zf 11172 + 04 = Vg € thi, and because of vg # Vg = v
hence 94 € X/, again.

Together this yields

we have vg € X/,

(15) X, =X},

From the left side of (13) follows | X/)| = | X3|. Because of | Xg— {v*Y| = ng
we obtain by the induction hypothesis X/, N X’/ = §. Using (15) and (14)
this leads to

D=X)NXI=X,nX]=X,n(X]UuvP™) = X,n XY
3. Because of (11) and (13) we can suppose
(16) | X4l = 1Xal +1
in the following. Next we prove that
(17) IX,NnXI <1

must be true.

Assume |Xd N X /| > 2 and let v},v3 € Xd N X be two distinct vertices.
Further let vmm e X/ d -X !/ be defined as in part 1 of the proof and consider
Xg=Xq— {Uglin} with the subsets X/, and X/ formed corresponding to (7)
and (8), respectively. Then |X,| = ng and (16) implies | X/;| = |X)|. Using
the induction hypothesm we obtain X/, N X/ = 0, i.e., the deletion of v7"
in Xd causes that v}, v3 ¢ Xc’l’ Hence

Vie{l,...,d—1}3v},v? € X; :

1 Y

d—1
(18) Zv 4o =l A Zv?—kvéﬂin:v?l
i=1
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and
Vie{l,...,d—1} Vv € X; Vv, € X}
] d d
(19) oy £ 0 (zvgm A zwvz).
=1 =1

These facts are useful for the consideration of X, = X4 — {v2} with the
subsets X/, and X/} formed corresponding to (7) and (8), respectively: Using
(18) and (19) we obtain v} € X/ and v} € X/}, respectively. Hence

(20) vl e XN X/

On the other hand, we obtain from (18) and (19) that v7® € X/ and
X, — {03} C X/, respectively, i.e., X/, = X/, — {v3} and with (16) we obtain
|X | = |X}|. Because of | X, | = |X4| = ng the induction hypothesis yields
X!, N X! = 0; a contradiction to (20) which implies the validity of (17).

4. We conclude the proof by constructing a contradiction to (17) in case of
X, N X! # 0. Suppose ©4 € X, N X7/, then

d
(21) Vie{l,....d=1} 3vj e X; Jvj € X} :0qg=> v}

i=1
Consider vertices v}, v? € X fori=1,...,d. By (9) we can suppose v} # V2
for at least one k € {1,...,d — 1}. Usmg Lemma 4 and 04 € X, we obtain

Sl 404 € X/, j=1,2 and with (21) this yields

-1 d d—1 d—1 _
STl 43 )= (ng +ug> +) vjeX] for j=1,2.
=1 i=1 =1 =1

Hence
d-1 )

(22) d vl tuge Xy, j=1,2
i=1

On the other hand, v} € Xd implies ZZ 1 U + v € Xc,l/ for j = 1,2 and
together with (22) it follows | X, N X"| > 2; a contradiction to (17). Hence
X/, N X" = () and the proof of Lemma 8 is completed. [ ]
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Lemma 9. Ifng > 2+ Z‘ii:_ll(ni — 1), then

(23) oKL o { (32 — 1) —l—nd)—‘

Proof. As mentioned before, we have to maximize n/; = |X/| to obtain a
minimum number |Y] of isolated vertices. Lemma 8 yields X/ C Xy — X/,
and with Lemmata 3, 4 we obtain ng — nl; > n, + S n; — 1), ie.,

d—1
(24) n, < % <nd =S (s - 1)) .
i=1

Again using Lemma 3 we obtain with (24) a bound for the number of dif-
ferent sums containing elements of X1,...,Xg_1,Xq — X} :

[

d—1
Y >1 ;i — 1 — -1H)>-13 i—1)
Y12 14 S 1) a2 5 (330 14

hence (23) is fulfilled. ]
As in case 1 we next describe a labelling that provides equality in (23).

First of all suppose that ng — Zf;ll(nl — 1) is even and choose n/, =

T(ng — >4=1(n; — 1)) which is by (24) the maximum possible value. Now
let U, X; UY be labelled as follows:

X; = {mi—i—l,...,a:i—kni}, i1=1,...,d—1,

X, = {wg+1,...,2q+ny},

d d—1
(25) X(’i/ - {Z(xi+1)7-~~a2(xi+ni)+xd+n2l}7

1=1 =1

d—1 d d—1 d—1
Y = {Z(%’ D+ (@i 1), (@) + > (@ + ) +md+n;}

i=1 i=1 i=1 i=1
with z; = 107, i = 1,...,d, where t > lg ((2d — 1)ny).

A simple calculation yields |X}| 4+ |X//| = |X4| and |Y] = (3 Sy — 1)
+n4). The labelling for odd values of ng — %! (n; — 1) can be obtained
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from (25) (constructed for ng+ 1 vertices) by deleting any vertex of X/. For
this case follows |Y| = (3 S (i — 1) +ng +1).

Summarizing the results we obtain:

L/
(26) Y| = {5 (3 > (ni—1) +nd>—‘ :
i=1

Similarly to case 1, Lemma 6, we will show

Lemma 10. If U‘iizl X; UY is labelled according to (25) the resulting sum
hypergraph consists of ’ngl,.. with verter set ngl X and |Y| isolated
vertices.

-Nd

Proof. Clearly the labelling generates the edge set £ of Kgl and

yeeyTld
we have to show that (25) does not induce too many edges by the sum

hypergraph property. Again let ajas...agqie11 be a vertex with digits
aq,...,0q4¢41. Because of t > 1g((2d — 1)ng) we obtain three types of ver-
tices:

e for any vertex of
- X;, for te{l,...,d—1},
o[ X { )
X/}, for i=d:
(27) ag—it1 =15 a; =0 for je{l,...,d} —{d—i+1},
o for any vertex of X :a; =1 for je{l,...,d},

o for any vertexof Y :an =1; ;=2 for je{2,...,d}.

Let s = >.¢ , v' be a sum of pairwise disjoint vertices of J&; X; UY. We
use the notation S = {v!,...,v?} and distinguish the following cases:
(A) [SNY]|=1,
(B) [SNY|>2,
(C) SNy =0,
(C1) SN X4l =2,
(C2) [SNXy <1ATIme{l,....d—1}:|SNX,,| >2,
(C21) SN XY #0,
(C22) SNX/]=0.
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Using (27) it can easily be seen that for each of these cases the following
holds:

Oé122
or «; >3 foratleast one i€ {2,...,d}
or o;=0, aj >2 forsome i,j€{2,...,d},
ie,s¢ UL, X;UY. Hence s € UL, X; UY iff {v',... 0%} € & ]

Summarizing the results of Lemmata 8, 9 and (26), we have shown

Theorem 11. Ifng > 2 + Z?;ll (n; — 1), then
1 d—1
9 oA )= |3 (330 1) ) |
i=1

3. MAIN RESULT
In case of ng > 2 4+ 39! (n; — 1) we obtain with (28)
d 1 d—1
o(Kd )= (1 +> (i — 1)) + {5 <Z(nz -1) - nd>—‘ -
i=1 i=1

Here the first summand is the sum number (5) for the case ng < 1+
Zf;ll(ni — 1) given in Theorem 7 and the second one is negative for
ng > 2+ X% (n; — 1) but nonnegative for ng < 1+ X% (n; — 1). This
yields the main result:

Theorem 12. Ford > 2 and 2 < ng_1 < ng the sum number of the d-partite
complete hypergraph is given by

d N ~ ST
U(’Cm,...,nd)*l"i_z(nl 1) + min < 0, 5 Z(nl 1) —ng .

=1

Obviously, for d = 2, because of (n; — 1) — ny < —1 we obtain the value
given in Theorem 1.
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