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Abstract

A d-uniform hypergraph H is a sum hypergraph iff there is a finite
S ⊆ IN+ such that H is isomorphic to the hypergraph H+

d (S) = (V, E),

where V = S and E = {{v1, . . . , vd} : (i 6= j ⇒ vi 6= vj)∧
∑d

i=1
vi ∈ S}.

For an arbitrary d-uniform hypergraph H the sum number σ = σ(H) is
defined to be the minimum number of isolated vertices w1, . . . , wσ 6∈ V
such that H ∪ {w1, . . . , wσ} is a sum hypergraph.

In this paper, we prove

σ(Kd
n1,...,nd

) = 1 +
d
∑

i=1

(ni − 1) + min

{

0,

⌈

1

2

(

d−1
∑

i=1

(ni − 1) − nd

)⌉}

,

where Kd
n1,...,nd

denotes the d-partite complete hypergraph; this gener-
alizes the corresponding result of Hartsfield and Smyth [8] for complete
bipartite graphs.

Keywords: sum number, sum hypergraphs, d-partite complete
hypergraph.
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1. Introduction and Definitions

The concept of sum graphs and integral sum graphs was introduced by
Harary ([6], [7]). Many results for these kinds of graphs have been ob-
tained in recent years, for a brief summary see for instance Sonntag and
Teichert [12].

The graph theoretic concept mentioned above can be generalized to uni-
form hypergraphs as follows. All hypergraphs considered here are supposed
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to be nonempty and finite without loops and multiple edges. In standard
terminology we follow Berge [1].

A hypergraph H = (V, E) with vertex set V and edge set E ⊆ P(V )−{∅}
is d-uniform iff 2 ≤ d ∈ IN and |e| = d (∀e ∈ E). Let S ⊆ IN+ be finite.
H+

d (S) = (V, E) is called the d-uniform sum hypergraph of S iff V = S and

E =

{

{v1, v2, . . . , vd} : (i 6= j ⇒ vi 6= vj) ∧
d
∑

i=1

vi ∈ S

}

.

The d-uniform hypergraph H is a sum hypergraph iff there exists a set S ⊆
IN+ such that H ∼= H+

d (S). For d = 2 we obtain the known concept of sum
graphs. For an arbitrary d-uniform hypergraph H the sum number σ = σ(H)
is defined to be the minimum number of isolated vertices w1, . . . , wσ 6∈ V
such that H∪{w1, . . . , wσ} is a sum hypergraph. If also nonpositive integers
are allowed as elements of S, i.e. S ⊆ ZZ, we obtain the definitions of integral

sum hypergraphs and the integral sum number ζ = ζ(H) in the same manner.
As for graphs, the determination of the sum number (integral sum num-

ber) for certain classes of hypergraphs is an interesting question. The fol-
lowing results are known:

• If Td denotes a d-uniform hypertree, then d ≥ 3 implies σ(Td) = 1 and
ζ(Td) = 0 (Sonntag and Teichert ([12], [13])). Ellingham [5] proved for
nontrivial trees T2 = T that σ(T ) = 1. Sharary [11] showed that all cater-
pillars are integral sum graphs and Chen [4] proved that the generalized
stars and the trees in which any two distinct forks have distance at least
four are integral sum graphs; both authors conjecture ζ(T ) = 0 for all
trees but this problem remains still open.

• For the d-uniform complete hypergraph on n vertices Kd
n we obtain the

sum number σ(Kd
n) = d(n − d) + 1 for n − 2 ≥ d ≥ 2; this was shown

by Sonntag and Teichert [13] for d ≥ 3 and by Bergstrand et al. [2]
for graphs K2

n = Kn. Chen [3] as well as Sharary [10] showed that for
complete graphs ζ(Kn) = σ(Kn) if n ≥ 4. For n−2 ≥ d ≥ 3 Sonntag and
Teichert [13] found bounds for ζ(Kd

n) and conjectured that ζ(Kd
n) = σ(Kd

n)
is true for hypergraphs too.

In this paper, we determine the sum number for a third class of uniform hy-
pergraphs. As a generalization of complete bipartite graphs Berge [1] defined
the d-partite complete hypergraph Kd

n1,...,nd
as follows: Let X1, X2, . . . , Xd be

pairwise disjoint sets of cardinalities n1 ≤ n2 ≤ . . . ≤ nd. The vertices of
Kd

n1,...,nd
are the elements of

⋃d
i=1 Xi and the edges are all {v1, v2, . . . , vd}

with vi ∈ Xi for i = 1, . . . , d.



The Sum Number of d-Partite Complete Hypergraphs 81

For x ∈ IR let dxe denote the smallest integer ≥ x. Hartsfield and Smyth
[8] proved for complete bipartite graphs Kn1,n2

Theorem 1. For given integers n1 ≥ 2 and n2 ≥ n1 holds

σ(Kn1,n2
) =

⌈

1

2
(3n1 + n2 − 3)

⌉

.

For the symmetric bipartite graph Kn,n Miller et al. [9] showed

Theorem 2. ζ(Kn,n) = σ(Kn,n) for n ≥ 2.

The problem to determine ζ(Kn1,n2
) for n1 6= n2 remains still open.

In the following, we generalize Theorem 1. In Section 2, we prove several
lemmata; for the determination of the sum number we distinguish two cases
concerning the cardinality of the maximum vertex subset Xd of Kd

n1,...,nd
.

Summarizing these results, we give in Section 3 a general formula for the
sum number of d-partite complete hypergraphs.

2. Two Cases for the Determination of the Sum Number

We use the following notations:
X1, . . . , Xd is the vertex partition of the complete d-partite hypergraph
Kd

n1,...,nd
, where ni denotes the cardinality of Xi and n1 ≤ n2 ≤ . . . ≤ nd

is fulfilled. E is the set of edges of Kd
n1,...,nd

and Y is a set of isolated ver-

tices such that for some labelling Kd
n1,...,nd

∪ Y can be recognized as a sum

hypergraph. All vertices of
⋃d

i=1 Xi ∪ Y are referenced by their labels.

Lemma 3. There are 1+
∑d

i=1(ni−1) pairwise different sums v1+v2+. . .+vd

of vertices vi ∈ Xi, i = 1, . . . , d.

Proof. Using the notation Xi = {v1
i , . . . , v

ni

i } with vk
i < vl

i if k < l for
i = 1, . . . , d we consider the following sets of sums:

S1 ={vj
1 + v1

2 + . . . + v1
d : j ∈ {1, . . . , n1}},

Si ={vn1

1 + . . . + v
ni−1

i−1
+ vj

i + v1
i+1 + . . . + v1

d : j ∈ {2, . . . , ni}}, i = 2, . . . , d.

Clearly, Si ∩ Sj = ∅ for i 6= j and |S1| = n1, |Si| = ni − 1 for i = 2, . . . , d.
Hence there are 1 +

∑d
i=1(ni − 1) pairwise different sums.
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Lemma 4. Consider a labelling of V ′ =
⋃d

i=1 Xi ∪Y such that Kd
n1,...,nd

∪Y
is a sum hypergraph and let v∗d ∈ Xd be arbitrarily chosen. Then

({

d−1
∑

i=1

vi + v∗d : vi ∈ Xi

}

⊆ Xd

)

∨

({

d−1
∑

i=1

vi + v∗d : vi ∈ Xi

}

⊆ Y

)

(1)

Proof. 1. Suppose there are v∗

i ∈ Xi, i = 1, . . . , d− 1, such that
∑d

i=1 v∗i =
ṽd ∈ Xd and let vi ∈ Xi i = 1, . . . , d− 1, be arbitrarily chosen. In part 1, we
show that this implies v′d :=

∑d−1
i=1

vi + v∗d ∈ Xd.
Because of {v1, . . . , vd−1, ṽd} ∈ E there is a vertex

v′′ =
d−1
∑

i=1

vi + ṽd =
d−1
∑

i=1

vi +
d
∑

i=1

v∗i =
d−1
∑

i=1

v∗i + v′d.

Hence {v∗1 , . . . , v∗d−1
, v′d} ∈ E and by the definition of the d-partite complete

hypergraph it follows v′d ∈ Xd.

2. Suppose there are v∗i ∈ Xi, i = 1, . . . , d − 1, such that
d
∑

i=1

v∗i = ṽj ∈ Xj

for j ∈ {1, . . . , d − 1}. It follows analogously to part 1 that

∀ i ∈ {1, . . . , j − 1, j + 1, . . . , d} ∀ vi ∈ Xi :
d
∑

i=1

i6=j

vi + v∗j ∈ Xj .

By Lemma 3 there are at least 1+
∑d

i=1

i6=j

(ni−1) pairwise different sums each

containing v∗j . With v∗j ∈ Xj we obtain

nj = |Xj | ≥ 1 +






1 +

d
∑

i=1

i6=j

(ni − 1)






≥ 1 + nd,

which contradicts the supposition nj ≤ nd made in the beginning of this
chapter. Hence this case is impossible.

3. Suppose there are v∗i ∈ Xi, i = 1, . . . , d− 1, such that
∑d

i=1 v∗i ∈ Y. With
parts 1, 2 we obtain

∑d−1
i=1

vi + v∗d /∈
⋃d

i=1 Xi for arbitrary vertices vi ∈ Xi,
i = 1, . . . , d−1. By the sum hypergraph property we obtain

∑d−1
i=1

vi+v∗d ∈ Y
and this proves (1).
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If V̂ ⊆
⋃d

i=1 Xi ∪Y denotes the subset of vertices representing sums
∑d

i=1 vi

where {v1, . . . , vd} ∈ E it follows from Lemma 4 that only the cases V̂ = Y
(case 1) or V̂ ∩ Xd 6= ∅ (case 2) are possible. Clearly, it depends on the
cardinality nd of Xd whether the first case appears or the second one is
possible.

Case 1. nd ≤ 1 +
∑d−1

i=1
(ni − 1) (i.e., V̂ = Y ).

Lemma 5. If nd ≤ 1 +
∑d−1

i=1
(ni − 1) then

σ(Kd
n1,...,nd

) ≥ 1 +
d
∑

i=1

(ni − 1).(2)

Proof. Let v∗d ∈ Xd be arbitrarily chosen and assume
∑d−1

i=1
vi + v∗i ∈

Xd for some vi ∈ Xi, i = 1, . . . , d − 1. Then Lemma 4 implies that each
sum containing v∗d belongs to Xd and from Lemma 3 follows nd ≥ 1 +
(

1 +
∑d−1

i=1
(ni − 1)

)

, a contradiction. Thus V̂ ⊆ Y and with Lemma 3 we

obtain (2).

Our aim is to show that equality is fulfilled in (2). For this purpose we
describe an appropriate labelling:

Lemma 6. Let
⋃d

i=1 Xi ∪ Y be labelled as follows:

Xi = {xi + 1, . . . , xi + ni}, i = 1, . . . , d;

Y =

{

d
∑

i=1

(xi + 1), . . . ,
d
∑

i=1

(xi + ni)

}

(3)

with xi = 10t+i; i = 1, . . . , d, where t ≥ lg (dnd).

Then the resulting sum hypergraph consists of Kd
n1,...,nd

with vertex set
⋃d

i=1 Xi and |Y | = 1 +
∑d

i=1(ni − 1) isolated vertices.

Proof. Clearly, (3) implies Y = V̂ =
{

∑d
i=1 vi : vi ∈ Xi, i = 1, . . . , d

}

and

|Y | = 1 +
∑d

i=1(ni − 1).
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It remains to show that the labelling does not induce too many edges by the
sum hypergraph property, i.e., if

∑d
i=1 vi ∈ Y then {v1, . . . , vd} ∈ E follows.

Let α1, . . . , αd+t+1 be the digits of the label α1α2 . . . αd+t+1 of a vertex v.
The condition t ≥ lg (dnd) implies

• if v ∈ Xi (i ∈ {1, . . . , d}) , then

αd−i+1 = 1; αj = 0 for j ∈ {1, . . . , d} − {d − i + 1},

• if v ∈ Y, then

αj = 1 for j ∈ {1, . . . , d}.

(4)

Thus we have for arbitrary pairwise different vertices v1, . . . , vd ∈
⋃d

i=1 Xi ∪
Y that

∑d
i=1 vi /∈ Xi, i = 1, . . . , d. Further in case of

∑d
i=1 vi ∈ Y, neither

vk, vl ∈ Xi nor vk ∈ Y for some i, k, l ∈ {1, . . . , d}, k 6= l is possible, because
this would imply αj 6= 1 for at least one j ∈ {1, . . . , d} in both of the cases,
a contradiction to (4).

Summarizing the results of Lemmata 5, 6, we have shown

Theorem 7. If nd ≤ 1 +
∑d−1

i=1
(ni − 1), then

σ(Kd
n1 ,...,nd

) = 1 +
d
∑

i=1

(ni − 1);(5)

especially for n1 = . . . = nd = n we have

σ(Kd
n,...,n) = 1 + d(n − 1).(6)

Notice that for complete bipartite graphs Kn1,n2
because of n1 ≤ n2 the

supposition of Theorem 7 can only be true for n1 = n2 = n and this leads
to σ(Kn,n) = 2n − 1 as a special case of (6) which corresponds to the value
given in Theorem 1.

Case 2. nd ≥ 2 +
∑d−1

i=1
(ni − 1) (i.e. V̂ ∩ Xd 6= ∅).

We introduce the notations

X ′

d = {v′d ∈ Xd ∀ i ∈ {1, . . . , d − 1} ∃ v′i ∈ Xi :
d
∑

i=1

v′i ∈ Xd},(7)

X ′′

d = {v′′d ∈ Xd ∀ i ∈ {1, . . . , d} ∃ v′i ∈ Xi : v′′d =
d
∑

i=1

v′i}.(8)
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The aim of this section is the construction of a labelling that reduces the
cardinality of Y (below the value given in (5)) to a minimum. Due to
Lemma 4 this is only possible by the maximization of |X ′

d|.
In the following, we suppose that at least two vertex subsets Xi contain

two or more vertices, i.e.,

2 ≤ nd−1 ≤ nd(9)

(otherwise we obtain σ(Kd
n1,...,nd

) = 1 immediately).

Lemma 8. If a labelling of Kd
n1,...,nd

generates a maximum cardinality |X ′

d|,
then

X ′

d ∩ X ′′

d = ∅.(10)

Proof. We prove (10) by induction on nd = |Xd|. For nd ≤ 1+
∑d−1

i=1
(ni−1)

we have shown X ′

d = ∅ in Case 1, hence (10) is true. Now suppose that (10)
is valid for some nd ≥ 2 +

∑d−1
i=1

(ni − 1) and form X̃d by adding one new
vertex to Xd. Then ñd = |X̃d| = nd + 1, further we denote by X̃ ′

d ⊆ X̃d

and X̃ ′′

d ⊆ X̃d the sets corresponding to (7) and (8), respectively. In the
following, we have to show that X̃ ′

d ∩ X̃ ′′

d = ∅.

1. We show

|X ′

d| ≤ |X̃ ′

d| ≤ |X ′

d| + 1.(11)

The first inequality is obvious. Let vmin
d = min{v′d : v′d ∈ X̃ ′

d}, then

vmin
d /∈ X̃ ′′

d .(12)

Now assume that |X̃ ′

d| ≥ |X ′

d|+2 is fulfilled and consider X̃ ′

d −{vmin
d }. Then

|X̃d − {vmin
d }| = nd and with (12) we obtain |X̃ ′

d − {vmin
d }| ≥ |X ′

d| + 1, a
contradiction to the maximality of |X ′

d|, hence (11) is true.

2. Now we prove

|X̃ ′

d| = |X ′

d| ⇒ X̃ ′

d ∩ X̃ ′′

d = ∅.(13)

With vmax
d = max{v′′d : v′′d ∈ X̃ ′′

d } we obtain

vmax
d /∈ X̃ ′

d.(14)
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Consider X̂d := X̃d − {vmax
d } and form the sets X̂ ′

d and X̂ ′′

d corresponding
to (7) and (8) respectively. Then X̂ ′

d ⊆ X̃ ′

d and next we show that even
equality is fulfilled:

Consider an arbitrary v̂d ∈ X̃ ′

d. Then there are v̂i ∈ Xi, i = 1, . . . , d − 1,
such that

∑d
i=1 v̂i = v̄d ∈ X̃ ′′

d . If v̄d 6= vmax
d then v̄d ∈ X̂ ′′

d and hence v̂d ∈ X̂ ′

d.

If v̄d = vmax
d , we choose ˆ̂vi ∈ Xi, i = 1, . . . , d− 1, and because of (9) we can

suppose that v̂j 6= ˆ̂vj for exactly one j ∈ {1, . . . , d − 1}. Lemma 4 implies
∑d−1

i=1
ˆ̂vi + v̂d = ¯̄vd ∈ X̃ ′′

d and because of ¯̄vd 6= v̄d = vmax
d we have ¯̄vd ∈ X̂ ′′

d ,
hence v̂d ∈ X̂ ′

d again.

Together this yields

X̂ ′

d = X̃ ′

d.(15)

From the left side of (13) follows |X̂ ′

d| = |X ′

d|. Because of |X̃d−{vmax
d }| = nd

we obtain by the induction hypothesis X̂ ′

d ∩ X̂ ′′

d = ∅. Using (15) and (14)
this leads to

∅ = X̂ ′

d ∩ X̂ ′′

d = X̃ ′

d ∩ X̂ ′′

d = X̃ ′

d ∩ (X̂ ′′

d ∪ vmax
d ) = X̃ ′

d ∩ X̃ ′′

d .

3. Because of (11) and (13) we can suppose

|X̃ ′

d| = |X ′

d| + 1(16)

in the following. Next we prove that

|X̃ ′

d ∩ X̃ ′′

d | ≤ 1(17)

must be true.

Assume |X̃ ′

d ∩ X̃ ′′

d | ≥ 2 and let v1
d, v

2
d ∈ X̃ ′

d ∩ X̃ ′′

d be two distinct vertices.
Further let vmin

d ∈ X̃ ′

d − X̃ ′′

d be defined as in part 1 of the proof and consider
X̌d = X̃d −{vmin

d } with the subsets X̌ ′

d and X̌ ′′

d formed corresponding to (7)
and (8), respectively. Then |X̌d| = nd and (16) implies |X̌ ′

d| = |X ′

d|. Using
the induction hypothesis we obtain X̌ ′

d ∩ X̌ ′′

d = ∅, i.e., the deletion of vmin
d

in X̃ ′

d causes that v1
d, v

2
d /∈ X̌ ′′

d . Hence

∀ i ∈ {1, . . . , d − 1} ∃ v1
i , v

2
i ∈ Xi :

d−1
∑

i=1

v1
i + vmin

d = v1
d ∧

d−1
∑

i=1

v2
i + vmin

d = v2
d(18)
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and

∀ i ∈ {1, . . . , d − 1} ∀ v′i ∈ Xi ∀v′d ∈ X̃ ′

d :

v′d 6= vmin
d ⇒

(

d
∑

i=1

v′i 6= v1
d ∧

d
∑

i=1

v′i 6= v2
d

)

.(19)

These facts are useful for the consideration of X d = X̃d − {v2
d} with the

subsets X ′

d and X ′′

d formed corresponding to (7) and (8), respectively: Using
(18) and (19) we obtain v1

d ∈ X ′′

d and v1
d ∈ X ′

d, respectively. Hence

v1
d ∈ X ′

d ∩ X ′′

d.(20)

On the other hand, we obtain from (18) and (19) that vmin
d ∈ X ′

d and
X̃ ′

d −{v2
d} ⊆ X ′

d, respectively, i.e., X ′

d = X̃ ′

d −{v2
d} and with (16) we obtain

|X ′

d| = |X ′

d|. Because of |Xd| = |Xd| = nd the induction hypothesis yields
X ′

d ∩ X ′′

d = ∅; a contradiction to (20) which implies the validity of (17).

4. We conclude the proof by constructing a contradiction to (17) in case of
X̃ ′

d ∩ X̃ ′′

d 6= ∅. Suppose v̂d ∈ X̃ ′

d ∩ X̃ ′′

d , then

∀ i ∈ {1, . . . , d − 1} ∃ v′i ∈ Xi ∃ v′d ∈ X̃ ′

d : v̂d =
d
∑

i=1

v′i.(21)

Consider vertices v1
i , v

2
i ∈ Xi for i = 1, . . . , d. By (9) we can suppose v1

k 6= v2
k

for at least one k ∈ {1, . . . , d − 1}. Using Lemma 4 and v̂d ∈ X̃ ′

d we obtain
∑d−1

i=1
vj
i + v̂d ∈ X̃ ′′

d , j = 1, 2 and with (21) this yields

d−1
∑

i=1

vj
i +

d
∑

i=1

v′i =

(

d−1
∑

i=1

vj
i + v′d

)

+
d−1
∑

i=1

v′i ∈ X̃ ′′

d for j = 1, 2.

Hence

d−1
∑

i=1

vj
i + v′d ∈ X̃ ′

d, j = 1, 2.(22)

On the other hand, v′d ∈ X̃ ′

d implies
∑d−1

i=1
vj
i + v′d ∈ X̃ ′′

d for j = 1, 2 and
together with (22) it follows |X̃ ′

d ∩ X̃ ′′

d | ≥ 2; a contradiction to (17). Hence
X̃ ′

d ∩ X̃ ′′

d = ∅ and the proof of Lemma 8 is completed.
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Lemma 9. If nd ≥ 2 +
∑d−1

i=1
(ni − 1), then

σ(Kd
n1 ,...,nd

) ≥

⌈

1

2

(

3
d−1
∑

i=1

(ni − 1) + nd

)⌉

.(23)

Proof. As mentioned before, we have to maximize n′

d = |X ′

d| to obtain a
minimum number |Y | of isolated vertices. Lemma 8 yields X ′′

d ⊆ Xd − X ′

d

and with Lemmata 3, 4 we obtain nd − n′

d ≥ n′

d +
∑d−1

i=1
(ni − 1), i.e.,

n′

d ≤
1

2

(

nd −
d−1
∑

i=1

(ni − 1)

)

.(24)

Again using Lemma 3 we obtain with (24) a bound for the number of dif-
ferent sums containing elements of X1, . . . , Xd−1, Xd − X ′

d :

|Y | ≥ 1 +
d−1
∑

i=1

(ni − 1) + (nd − n′

d − 1) ≥
1

2

(

3
d−1
∑

i=1

(ni − 1) + nd

)

,

hence (23) is fulfilled.

As in case 1 we next describe a labelling that provides equality in (23).

First of all suppose that nd −
∑d−1

i=1
(ni − 1) is even and choose n′

d =
1

2
(nd −

∑d−1
i=1

(ni − 1)) which is by (24) the maximum possible value. Now

let
⋃d

i=1 Xi ∪ Y be labelled as follows:

Xi = {xi + 1, . . . , xi + ni} , i = 1, . . . , d − 1,

X ′

d = {xd + 1, . . . , xd + n′

d},

X ′′

d =

{

d
∑

i=1

(xi + 1), . . . ,
d−1
∑

i=1

(xi + ni) + xd + n′

d

}

,(25)

Y =

{

d−1
∑

i=1

(xi + 1) +
d
∑

i=1

(xi + 1), . . . ,
d−1
∑

i=1

(xi + ni) +
d−1
∑

i=1

(xi + ni) + xd + n′

d

}

with xi = 10t+i, i = 1, . . . , d, where t ≥ lg ((2d − 1)nd).

A simple calculation yields |X ′

d| + |X ′′

d | = |Xd| and |Y | = 1

2
(3
∑d−1

i=1
(ni − 1)

+nd). The labelling for odd values of nd −
∑d−1

i=1
(ni − 1) can be obtained
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from (25) (constructed for nd +1 vertices) by deleting any vertex of X ′

d. For
this case follows |Y | = 1

2
(3
∑d−1

i=1 (ni − 1) + nd + 1).

Summarizing the results we obtain:

|Y | =

⌈

1

2

(

3
d−1
∑

i=1

(ni − 1) + nd

)⌉

.(26)

Similarly to case 1, Lemma 6, we will show

Lemma 10. If
⋃d

i=1 Xi ∪ Y is labelled according to (25) the resulting sum

hypergraph consists of Kd
n1,...,nd

with vertex set
⋃d

i=1 Xi and |Y | isolated

vertices.

Proof. Clearly the labelling generates the edge set E of Kd
n1,...,nd

and
we have to show that (25) does not induce too many edges by the sum
hypergraph property. Again let α1α2 . . . αd+t+1 be a vertex with digits
α1, . . . , αd+t+1. Because of t ≥ lg((2d − 1)nd) we obtain three types of ver-
tices:

• for any vertex of

X̃i =

{

Xi , for i ∈ {1, . . . , d − 1},

X ′

d , for i = d :

αd−i+1 = 1 ; αj = 0 for j ∈ {1, . . . , d} − {d − i + 1},(27)

• for any vertex of X ′′

d : αj = 1 for j ∈ {1, . . . , d},

• for any vertex of Y : α1 = 1 ; αj = 2 for j ∈ {2, . . . , d}.

Let s =
∑d

i=1 vi be a sum of pairwise disjoint vertices of
⋃d

i=1 Xi ∪ Y. We
use the notation S = {v1, . . . , vd} and distinguish the following cases:

(A) |S ∩ Y | = 1,

(B) |S ∩ Y | ≥ 2,

(C) S ∩ Y = ∅,

(C1) |S ∩ Xd| ≥ 2,

(C2) |S ∩ Xd| ≤ 1 ∧ ∃ m ∈ {1, . . . , d − 1} : |S ∩ Xm| ≥ 2,

(C21) S ∩ X ′′

d 6= ∅,

(C22) S ∩ X ′′

d = ∅.
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Using (27) it can easily be seen that for each of these cases the following
holds:

α1 ≥ 2
or αi ≥ 3 for at least one i ∈ {2, . . . , d}
or αi = 0, αj ≥ 2 for some i, j ∈ {2, . . . , d},

i.e., s /∈
⋃d

i=1 Xi ∪ Y. Hence s ∈
⋃d

i=1 Xi ∪ Y iff {v1, . . . , vd} ∈ E .

Summarizing the results of Lemmata 8, 9 and (26), we have shown

Theorem 11. If nd ≥ 2 +
∑d−1

i=1
(ni − 1), then

σ(Kd
n1 ,...,nd

) =

⌈

1

2

(

3
d−1
∑

i=1

(ni − 1) + nd

)⌉

.(28)

3. Main Result

In case of nd ≥ 2 +
∑d−1

i=1
(ni − 1) we obtain with (28)

σ(Kd
n1,...,nd

) =

(

1 +
d
∑

i=1

(ni − 1)

)

+

⌈

1

2

(

d−1
∑

i=1

(ni − 1) − nd

)⌉

.

Here the first summand is the sum number (5) for the case nd ≤ 1 +
∑d−1

i=1
(ni − 1) given in Theorem 7 and the second one is negative for

nd ≥ 2 +
∑d−1

i=1
(ni − 1) but nonnegative for nd ≤ 1 +

∑d−1
i=1

(ni − 1). This
yields the main result:

Theorem 12. For d ≥ 2 and 2 ≤ nd−1 ≤ nd the sum number of the d-partite

complete hypergraph is given by

σ(Kd
n1,...,nd

) = 1 +
d
∑

i=1

(ni − 1) + min

{

0,

⌈

1

2

(

d−1
∑

i=1

(ni − 1) − nd

)⌉}

.

Obviously, for d = 2, because of (n1 − 1) − n2 ≤ −1 we obtain the value
given in Theorem 1.
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