THE CROSSING NUMBERS OF PRODUCTS OF A 5-VERTEX GRAPH WITH PATHS AND CYCLES

Marián Klešč
Department of Mathematics
Faculty of Electrical Engineering and Informatics
Technical University, 04200 Košice, Slovak Republic
e-mail: klesc@ccsun.tuke.sk

Abstract

There are several known exact results on the crossing numbers of Cartesian products of paths, cycles or stars with "small" graphs. Let H be the 5 -vertex graph defined from K_{5} by removing three edges incident with a common vertex. In this paper, we extend the earlier results to the Cartesian products of $H \times P_{n}$ and $H \times C_{n}$, showing that in the general case the corresponding crossing numbers are $3 n-1$, and $3 n$ for even n or $3 n+1$ if n is odd.

Keywords: graph, drawing, crossing number, path, cycle, Cartesian product.
1991 Mathematics Subject Classification: 05C10, 05C38.

1. Introduction

Let G be a simple graph with vertex set V and edge set E. The crossing number $\nu(G)$ of a graph G is the smallest number of pairs of nonadjacent edges that intersect in any drawing of G in the plane. It is implicit that the edges in a drawing are Jordan arcs (hence, nonselfintersecting), and it is easy to see that a drawing with the minimum number of crossings (an optimal drawing) must be a good drawing; that is, each two edges have at most one point in common, which is either a common end-vertex or a crossing. For a detailed account concerning this topic, the reader is referred to [3] and [10]. Let D be a good drawing of the graph G. We denote the number of crossings in D by $\nu_{D}(G)$. Let G_{i} and G_{j} be edge-disjoint subgraphs of G. We denote

[^0]by $\nu_{D}\left(G_{i}, G_{j}\right)$ the number of crossings between edges of G_{i} and edges of G_{j}, and by $\nu_{D}\left(G_{i}\right)$ the number of crossings among edges of G_{i} in D.

The Cartesian product $G_{1} \times G_{2}$ of graphs G_{1} and G_{2} has vertex set $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and edge set

$$
\begin{aligned}
E\left(G_{1} \times G_{2}\right)= & \left\{\left\{\left(u_{i}, v_{j}\right),\left(u_{h}, v_{k}\right)\right\}:\left(u_{i}=u_{h} \text { and }\left\{v_{j}, v_{k}\right\} \in E\left(G_{2}\right)\right)\right. \\
& \text { or } \left.\left(\left\{u_{i}, u_{h}\right\} \in E\left(G_{1}\right) \text { and } v_{j}=v_{k}\right)\right\} .
\end{aligned}
$$

Let C_{n} and P_{n} be the cycle and the path with n edges, and S_{n} the star $K_{1, n}$. In [2] and [4] are determined the crossing numbers of the Cartesian products of all 4 -vertex graphs with cycles and in [5] and [6] with paths and stars. It thus seems natural to inquire about the crossing numbers of the products of 5 -vertex graphs with cycles, paths or stars. In [5], [8], and [9] it is shown that $\nu\left(S_{4} \times P_{n}\right)=2(n-1), \nu\left(S_{4} \times C_{n}\right)=2 n, \nu\left(K_{2,3} \times P_{n}\right)=$ $2 n, \nu\left(K_{2,3} \times S_{n}\right)=4\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2 n$, and $\nu\left(C_{5} \times C_{n}\right)=3 n$. Let G_{1}, G_{2}, and G_{3} be the three graphs of order five defined by removing from K_{5} the edges of an elementary subdivision of $K_{1,3}$, the edges of K_{3}, and the edges of $K_{1,2}$, respectively. In [7] it is shown that $\nu\left(G_{1} \times P_{n}\right)=2 n-2$ and $\nu\left(G_{2} \times P_{n}\right)=\nu\left(G_{3} \times P_{n}\right)=3 n-1$. Let H be the 5 -vertex graph defined from K_{5} by removing three edges incident with a common vertex. In this paper, we extend the earlier results to the products of H with a path P_{n} and a cycle C_{n}, showing that in the general case the corresponding crossing numbers are $3 n-1$, and $3 n$ for even n or $3 n+1$ if n is odd.

2. The Crossing Number of $H \times P_{n}$

We assume $n \geq 1$ and find it convenient to consider the graph $H \times P_{n}$ in the following way. It has $5(n+1)$ vertices, which we denote x_{i} for $x=a, b, c, d, e$ and $i=0,1, \ldots, n$, and $12 n+7$ edges that are the edges in the $n+1$ copies H^{i} and the five paths $x_{0} x_{1} \ldots x_{n}$ (see Figure 1). Furthermore, we call the former edges red and the latter ones blue.

For $i=0,1, \ldots, n$, let d_{i} and e_{i} be the vertices of H^{i} of degree four and degree one, respectively. We denote by K_{4}^{i} the subgraph of H^{i} induced by the vertices a_{i}, b_{i}, c_{i}, and d_{i}. Let $T^{i}, i=1,2, \ldots, n$, be the subgraph of the graph $H \times P_{n}$ with the vertices of K_{4}^{i-1} and K_{4}^{i} and the blue edges joining K_{4}^{i-1} to K_{4}^{i}. For $i=1,2, \ldots, n-1$, let Q^{i} denote the subgraph of $H \times P_{n}$ induced by the vertices in K_{4}^{i-1}, K_{4}^{i}, and K_{4}^{i+1}. Thus, Q^{i} has 18 red edges in K_{4}^{i-1}, K_{4}^{i}, and K_{4}^{i+1} and 8 blue edges in T^{i} and T^{i+1}. Clearly, Q^{i} is
isomorphic to $K_{4} \times P_{2}$. In a good drawing of $K_{4} \times P_{n}$, we define the force $f\left(Q^{i}\right)$ of Q^{i} to be the total number of crossings of the following types:
(1) a crossing of a blue edge in $T^{i} \cup T^{i+1}$ with an edge in K_{4}^{i};
(2) a crossing of a blue edge in T^{i} with a blue edge in T^{i+1}; and
(3) an internal crossing in K_{4}^{i} (a crossing among red edges of K_{4}^{i}). A moment's thought shows that no crossing counted in $f\left(Q^{i}\right)$ is counted in $f\left(Q^{j}\right)$ if $i \neq j$. The totalforce of the drawing of $K_{4} \times P_{n}$ is the sum of these forces.

Figure 1
We say that a good drawing of $K_{4} \times P_{n}$ is coherent if each K_{4}^{i} (whether or not it has an internal crossing) has the property that all the other vertices of the graph lie in the same "region" in the view of the subdrawing of K_{4}^{i}. (The possible crossings are considered to be vertices of the map.)

The graph K_{4} is 3 -connected. In this paper, we will often use the following facts: If two different K_{4}^{i} and K_{4}^{j} cross each other, then in any good drawing they cross at least three times. Consider a good and coherent drawing of $K_{4} \times P_{n}$. In such a drawing red edges of two different K_{4}^{i} and K_{4}^{j} cannot cross each other. As K_{4} is not outerplanar, either every K_{4}^{i} has an internal crossing or it is crossed by a blue edge incident with K_{4}^{i}. Moreover, for $i=1,2, \ldots, n-1$, if K_{4}^{i} has no internal crossing, then the edges of $T^{i} \cup T^{i+1}$ cross K_{4}^{i} at least twice. If some K_{4}^{i} is crossed by a blue edge not incident with K_{4}^{i}, then this edge crosses K_{4}^{i} at least three times.

Lemma 1. Let D be a good and coherent drawing of $K_{4} \times P_{2}$. If $\nu_{D}\left(K_{4}^{0}, T^{2}\right)=0$ and $\nu_{D}\left(K_{4}^{2}, T^{1}\right)=0$, then D has force at least three. Moreover, if in D there are two adjacent edges of $T^{1} \cup T^{2}$ without crossings, then D has force at least four or $\nu_{D}\left(K_{4}^{1}, T^{1} \cup T^{2}\right)=2$ and $\nu_{D}\left(T^{1}, T^{2}\right)=1$.
Proof. The graph $K_{4} \times P_{2}$ we can denote by Q^{1}. Let us denote by Q_{c}^{1} the graph obtained from Q^{1} by contracting K_{4}^{0} to the vertex k_{4}^{0} and K_{4}^{2}
to the vertex k_{4}^{2}. Thus, $Q_{c}^{1}=K_{4}^{1} \cup T_{c}^{1} \cup T_{c}^{2}$, where $T_{c}^{1}\left(T_{c}^{2}\right)$ consists of four edges incident with the vertex $k_{4}^{0}\left(k_{4}^{2}\right)$. Let D_{c} be the good drawing of Q_{c}^{1} induced by D. The drawing D is coherent, so in D_{c} the vertices k_{4}^{0} and k_{4}^{2} lie in the same region in the view of the subdrawing of K_{4}^{1}. As $\nu_{D}\left(K_{4}^{0}, T^{2}\right)=\nu_{D}\left(K_{4}^{2}, T^{1}\right)=0$ and all crossings in the good drawing D_{c} are counted in $f\left(Q^{1}\right)$ in the drawing D, then $f\left(Q^{1}\right) \geq \nu_{D_{c}}\left(Q_{c}^{1}\right)$. Thus, it remains to show that $\nu_{D_{c}}\left(Q_{c}^{1}\right) \geq 3$. The subgraph $K_{4}^{1} \cup T_{c}^{1}$ of Q_{c}^{1} is isomorphic to K_{5}, and in [1] it is shown that every good drawing of K_{5} has an odd number of crossings. Consider the subdrawing of $K_{4}^{1} \cup T_{c}^{1}$ induced by D_{c}. If it has more than two crossings, we are done. Suppose now that it has one crossing. Since the optimal drawing of K_{5} is unique within isomorphism, this subdrawing creates the map with eight regions in such a way that there are at most three vertices of $K_{4}^{1} \cup T_{c}^{1}$ on the boundary of every region. In D_{c} the vertex k_{4}^{2} lies in the region with the vertex k_{4}^{0} on its boundary in the view of the subdrawing of $K_{4}^{1} \cup T_{c}^{1}$. Therefore, at most two vertices of K_{4}^{1} are on the boundary of this region, and, in D_{c}, the edges of T_{c}^{2} cross the edges of $K_{4}^{1} \cup T_{c}^{1}$ at least twice. So, in D_{c} there are at least three crossings.

Figure 2
Now we show that if D has force three and two adjacent edges of $T^{1} \cup T^{2}$ incident with the same vertex of K_{4}^{1} are not crossed, then $\nu_{D}\left(K_{4}^{1}, T^{1} \cup T^{2}\right)=2$ and $\nu_{D}\left(T^{1}, T^{2}\right)=1$. Without loss of generality, assume the edges $\left\{d_{0}, d_{1}\right\}$ and $\left\{d_{1}, d_{2}\right\}$ are not crossed in D. Thus, in D_{c}, the edges $\left\{k_{4}^{0}, d_{1}\right\}$ and $\left\{d_{1}, k_{4}^{2}\right\}$ are not crossed. First, we suppose that the edges of K_{4}^{1} cross each other in D_{c}. (In a good drawing they cannot cross more than once.) The subgraphs $K_{4}^{1} \cup T_{c}^{1}$ and $K_{4}^{1} \cup T_{c}^{2}$ are isomorphic to K_{5}. As there is no good drawing of K_{5} with two crossings, the condition $f\left(Q^{1}\right)=\nu_{D}\left(Q_{c}^{1}\right)=3 \mathrm{im}-$ plies that for some $i, i \in\{1,2\}, \nu_{D_{c}}\left(K_{4}^{1}, T_{c}^{i}\right)=0$. Suppose $\nu_{D_{c}}\left(K_{4}^{1}, T_{c}^{1}\right)=0$.

The subdrawing of $K_{4}^{1} \cup T_{c}^{1}$ induced by D_{c} divides the plane as shown in Figure 2, and, in D_{c}, the vertex k_{4}^{2} lies in the region $\omega_{1}\left(\omega_{2}\right)$ of the subdrawing. The edges of T_{c}^{2} cannot cross the edge $\left\{k_{4}^{0}, d_{1}\right\}$ and it is easy to see that in D_{c} the edge $\left\{k_{4}^{2}, b_{1}\right\}$ crosses an edge of the triangle $k_{4}^{0} d_{1} a_{1}\left(k_{4}^{0} d_{1} c_{1}\right)$ and the edge $\left\{k_{4}^{2}, c_{1}\right\}\left(\left\{k_{4}^{2}, a_{1}\right\}\right)$ crosses edges of triangles $k_{4}^{0} d_{1} a_{1}$ and $k_{4}^{0} d_{1} b_{1}$ $\left(k_{4}^{0} d_{1} c_{1}\right.$ and $\left.k_{4}^{0} d_{1} b_{1}\right)$. This contradicts the assumption $\nu_{D_{c}}\left(Q_{c}^{1}\right)=3$. Therefore, $\nu_{D_{c}}\left(K_{4}^{1}\right)=0$, and since K_{4} is not an outerplanar graph, both T_{c}^{1} and T_{c}^{2} cross K_{4}^{1} in D_{c}. Moreover, neither T^{1} nor T^{2} crosses K_{4}^{1} twice, since otherwise we obtain as a subdrawing the complete graph K_{5} with two crossings. Hence $\nu_{D_{c}}\left(K_{4}^{1}, T_{c}^{1}\right)=\nu_{D_{c}}\left(K_{4}^{1}, T_{c}^{2}\right)=1$, and from the condition $\nu_{D_{c}}\left(Q_{c}^{1}\right)=3$, it follows that $\nu_{D_{c}}\left(T_{c}^{1}, T_{c}^{2}\right)=1$. This implies that in the drawing $D, \nu_{D}\left(K_{4}^{1}, T^{1} \cup T^{2}\right)=2$ and $\nu_{D}\left(T^{1}, T^{2}\right)=1$, as claimed.

Lemma 2. If D is a good drawing of $H \times P_{n}, n \geq 2$, in which every $H^{i}, i=0,1, \ldots, n$, has at most 2 crossings on its edges, then D has at least $3 n-1$ crossings.

Proof. First we show that the subdrawing of $K_{4} \times P_{n}$ induced by D is coherent. Clearly, $\nu_{D}\left(K_{4}^{i}, K_{4}^{j}\right)=0$ for all $i \neq j$, otherwise $\nu_{D}\left(K_{4}^{i}, K_{4}^{j}\right) \geq 3$ and $H^{i}\left(H^{j}\right)$ has at least three crossings. Suppose that in D the subgraphs K_{4}^{j} and K_{4}^{l} are in different regions in the wiev of the subdrawing of K_{4}^{i}. The subdrawing of K_{4}^{i} divides the plane into several regions in such a way that no three vertices of K_{4}^{i} are on the common boundary of two regions. Thus, in D, K_{4}^{i} has at least five common points with the five paths joining K_{4}^{j} to K_{4}^{l}, and at most two of these points are vertices. This contradicts the hypothesis.

Therefore, the subdrawing of $K_{4} \times P_{n}$ is coherent. As K_{4}^{i} has at most two crossings on its edges, no blue edge not incident with K_{4}^{i} crosses K_{4}^{i}, and, by Lemma $1, f\left(Q^{i}\right) \geq 3$ for every $i=1,2, \ldots, n-1$. Every good drawing of $K_{4} \times P_{n}, n \geq 2$, has at least one of the edges of K_{4}^{0} and also K_{4}^{n} crossed. These two crossings are not counted in the total force of the drawing D, so the number of crossings in D is at least $2+\sum_{i=1}^{n-1} f\left(Q^{i}\right) \geq 3 n-1$.

Theorem 1. $\nu\left(H \times P_{n}\right)=3 n-1$ for $n \geq 1$.
Proof. The drawing in Figure 1 shows that $\nu\left(H \times P_{n}\right) \leq 3 n-1$ for $n \geq 1$. We prove the reverse inequality by induction on n. In [2] it is shown that $\nu\left(K_{4} \times P_{1}\right)=2$, and since $H \times P_{1}$ contains $K_{4} \times P_{1}$, the result is true for $n=1$. Assume it is true for $n=k, k \geq 1$, and suppose that there is a good drawing of $H \times P_{k+1}$ with fewer than $3(k+1)-1$ crossings. By Lemma 2,
some H^{i} must then have at least three crossings on its edges. By the removal of all edges of this H^{i}, we obtain a graph homeomorphic to $H \times P_{k}$ or one that contains the subgraph $H \times P_{k}$ and has a drawing with fewer than $3 k-1$ crossings. This contradicts the induction hypothesis.

3. The Crossing Number of $H \times C_{n}$

The graph $H \times C_{n}$ consists of the subgraph $H \times P_{n-1}$ and of five edges $\left\{x_{0}, x_{n-1}\right\}$ for $x=a, b, c, d$, and e. Thus, the graph $H \times C_{n}$ has $7 n$ red edges in n copies H^{i} for $i=0,1, \ldots, n-1$, and $5 n$ blue edges in five n-cycles C_{n}^{x} for $x=a, b, c, d$, and e. Clearly, $K_{4} \times C_{n}$ is a subgraph of $H \times C_{n}$. We denote by T^{i} the subgraph of $K_{4} \times C_{n}$ induced by the edges joining K_{4}^{i-1} to K_{4}^{i} for $i=0,1, \ldots, n-1, i$ taken modulo n. We say that a good drawing of $K_{4} \times C_{n}$ is coherent if each subdrawing of its subgraph isomorphic to $K_{4} \times P_{n-1}$ is coherent.

Lemma 3. Let D be a good and coherent drawing of $K_{4} \times C_{3}$ in which every $T^{i}, i=0,1,2$, has its edges crossed at most four times. If for some $i, \nu_{D}\left(K_{4}^{i+1}, T^{i}\right) \neq 0, i$ taken modulo 3 , then D has at least 10 crossings.

Proof. First we show that if in D some blue 3-cycle crosses some K_{4}^{i}, $i \in\{0,1,2\}$, then it crosses this K_{4}^{i} at least twice. Suppose that $C_{3}^{x}, x \in$ $\{a, b, c, d\}$, crosses K_{4}^{i}. As in the good drawing D, two adjacent edges cannot cross each other, C_{3}^{x} crosses the red 3 -cycle of K_{4}^{i} created by three edges of K_{4}^{i} not incident with the common vertex of K_{4}^{i} and C_{3}^{x}. This red 3 -cycle and C_{3}^{x} are vertex-disjoint cycles and such cycles cannot cross each other only once.

Without loss of generality, assume that in D an edge of T^{1} crosses K_{4}^{2} and assume D has fewer than ten crossings. Since T^{1} and K_{4}^{2} are vertexdisjoint subgraphs of $K_{4} \times C_{3}$ and since K_{4}^{2} is 3-connected, this edge of T^{1} crosses K_{4}^{2} at least three times, and on the edges of T^{1} there is at most one other crossing. Thus, $\nu_{D}\left(T^{1}, K_{4}^{0} \cup T^{0}\right)=0$ or $\nu_{D}\left(T^{1}, K_{4}^{1} \cup T^{2}\right)=0$.

Suppose that $\nu_{D}\left(T^{1}, K_{4}^{1} \cup T^{2}\right)=0$ and that in D two blue edges cross each other. Since in the good drawing no two edges of a 3 -cycle cross each other, in D there are at least two crossings between two different blue 3 -cycles. This implies that in D there are at most seven crossings on the edges of K_{4}^{0}, K_{4}^{1}, and K_{4}^{2}. As we assumed above, $\nu_{D}\left(K_{4}^{1}, T^{1}\right)=0$. The graph K_{4} is not outerplanar, so in the coherent drawing D the subgraph K_{4}^{1} has an internal crossing. In this case the subdrawing of $K_{4}^{0} \cup T^{1} \cup K_{4}^{1}$
induced by D divides the plane in such a way that on the boundaries of two neighboring regions outside K_{4}^{1} there are at most three vertices of K_{4}^{1} (see Figure 3). Since only one edge of T^{1} crosses K_{4}^{2}, the vertices of K_{4}^{2} lie, in D, in at most two neighboring regions outside K_{4}^{1}, and, since $\nu_{D}\left(T^{1}, T^{2}\right)=0$, in D at least one edge of T^{2} crosses K_{4}^{1} or K_{4}^{0}. If $\nu_{D}\left(K_{4}^{1}, T^{2}\right) \neq 0$, then $\nu_{D}\left(K_{4}^{1}, T^{2}\right) \geq 2$, and in D there are at least eight crossings on the edges of K_{4}^{0}, K_{4}^{1}, and K_{4}^{2} (at least three on K_{4}^{1}, at least four on K_{4}^{2}, and at least one crossing on K_{4}^{0}). If $\nu_{D}\left(K_{4}^{0}, T^{2}\right) \neq 0$, then $\nu_{D}\left(K_{4}^{0}, T^{2}\right) \geq 3$, and there are at least four crossings on the edges of K_{4}^{0}. Thus, in D there are more than seven crossings on the edges of K_{4}^{0}, K_{4}^{1}, and K_{4}^{2} again.

Figure 3
Therefore, in D, no two blue edges of 3 -cycles cross each other. As the vertices of K_{4}^{2} lie, in D, in at most two neighbouring regions outside K_{4}^{1}, in D one blue 3-cycle must then have crossed its edges at least four times by the edges of K_{4}^{0} and K_{4}^{1}. Since $\nu_{D}\left(K_{4}^{1}\right)=1$ and either $\nu_{D}\left(K_{4}^{0}\right)=1$ or $\nu_{D}\left(K_{4}^{0}, T^{1}\right)=1$, together with at least four crossings on the edges of K_{4}^{2}, in D there are more than nine crossings. This contradicts our assumption.

For $\nu_{D}\left(T^{1}, K_{4}^{0} \cup T^{0}\right)=0$, we can use the same arguments. Hence, D has at least ten crossings.

Lemma 4. $\nu\left(H \times C_{3}\right) \geq 10$.
Proof. Beineke and Ringeisen [2] showed that $\nu\left(K_{4} \times C_{3}\right)=9$, and therefore, $\nu\left(H \times C_{3}\right) \geq 9$. Assume that there is a drawing of $H \times C_{3}$ with nine crossings and let D be such a drawing. Then the drawing D is optimal and no edge not belonging to its subgraph $K_{4} \times C_{3}$ is crossed. As the drawing D is good, none of the 3 -cycles $C_{3}^{x}, x=a, b, c, d, e$, has an internal crossing. Thus the subdrawing D^{*} induced by D by the edges of C_{3}^{d} and C_{3}^{e} and the edges joining these two 3 -cycles induces the map in the plane with two
triangular and three quadrangular regions. In D the other vertices of the graph must lie in the triangular region of D^{*} bounded by C_{3}^{d}; otherwise the edges of D not belonging to D^{*} cross only the edges of C_{3}^{d} and these can be redrawn to give a drawing with fewer crossings. Moreover, in D, no edge of C_{3}^{d} is crossed because of good drawing.

Since $\nu\left(K_{4} \times P_{1}\right)=2$, in D there are at most seven crossings on the edges of any subgraph K_{4}^{i} of $H \times C_{3}, \quad i=0,1,2$. First, we show that no K_{4}^{i} has more than six crossings on its edges. Without loss of generality, suppose that K_{4}^{1} has seven crossings in D. Then in the subdrawing $D^{* *}$ obtained from D by deleting the edges of K_{4}^{1} there are two crossings, and therefore, the edges of K_{4}^{0} and K_{4}^{2} cannot cross each other. This implies that in $D^{* *}$ there are only two internal crossings of K_{4}^{0} and K_{4}^{2} and $D^{* *}$ divides the plane as shown in Figure 4. It is easy to see that in $D^{* *}$ there are eight possibilities to draw the other three vertices of K_{4}^{1} and that in each case in D the edges of K_{4}^{1} cross the edges of $D^{* *}$ at least eight times. This contradicts the assumption of the optimal drawing. Therefore, in D, every K_{4}^{i} has at most six crossings on its edges.

Figure 4
In the proof of Lemma 5 in [2], it is shown that any non-coherent drawing of $K_{4} \times C_{3}$ with at most six crossings on the edges of any K_{4}^{i} is not optimal. This implies that the subdrawing of $K_{4} \times C_{3}$ of our drawing D is coherent.

We note that in the next part of the proof i is taken modulo 3 . In D there are at most four crossings on the edges of any $T^{i}, i \in\{0,1,2\}$; otherwise, by deleting these edges and the fifth edge joining e_{i-1} to e_{i} we obtain a subdrawing of $H \times P_{2}$ with at most four crossings. Since the subdrawing
of $K_{4} \times C_{3}$ induced by D is coherent and has nine crossings, by Lemma 3, $\nu_{D}\left(K_{4}^{i+1}, T^{i}\right)=0$ for $i=0,1,2$, and from the property of a good and coherent drawing it follows that no two different K_{4}^{i} and K_{4}^{j} cross each other in D. As we mentioned above, C_{3}^{d} has no crossing on its edges and, by Lemma 1, every subdrawing of the subgraph isomorphic to $K_{4} \times P_{2}$ has force exactly three. Moreover, $\nu_{D}\left(K_{4}^{i}, T^{i} \cup T^{i+1}\right)=2$ and $\nu_{D}\left(T^{i}, T^{i+1}\right)=1$ for each $i=0,1,2$. Therefore, there are six crossings between the edges of $K_{4}^{i}, i=0,1,2$, and the edges of C_{3}^{a}, C_{3}^{b}, and C_{3}^{c}, and there are three crossings among the edges of C_{3}^{a}, C_{3}^{b}, and C_{3}^{c}. Since all these 3 -cycles are vertex-disjoint and none of them has an internal crossing, this is impossible. This completes the proof.

Lemma 5. If D is a good drawing of $K_{4} \times C_{n}, n \geq 3$, in which no K_{4}^{i}, $i=0,1, \ldots, n-1$, has more than three crossings on its edges, then D is coherent.

Proof. Suppose D is not coherent and assume, without loss of generality, that K_{4}^{0} has vertices of $K_{4}^{1}, \ldots, K_{4}^{n-1}$ in more than one of its regions in the drawing. Then the edges of K_{4}^{0} are crossed at least four times since the subgraph induced by the vertices in $K_{4}^{1}, \ldots, K_{4}^{n-1}$ is 4 -connected. This contradiction completes the proof.

Lemma 6. Let $n \geq 5$ be odd and let D be a good and coherent drawing of $H \times C_{n}$. If in D every $K_{4}^{i}, i=0,1, \ldots, n-1$, has at most three crossings on its edges and if no edge of the subgraph induced by the vertices d_{i} and $e_{i}, i=0,1 \ldots, n-1$, is crossed, then D has at least $3 n+1$ crossings.
Proof. First, we note that i is taken modulo n in the proof. By hypothesis, no two different H^{i} and H^{j} cross each other, thus $\nu_{D}\left(H^{i}, H^{j}\right)=0$ if $i \neq j$. Moreover, for $i=0,1, \ldots, n-1, \nu_{D}\left(K_{4}^{i}, T^{r}\right)=0$ if $r \neq i, i+1$. If not, K_{4}^{i} and T^{r} cross each other at least three times and K_{4}^{i} either has an internal crossing or at least two crossings with one blue n-cycle. Hence, by Lemma $1, f\left(Q^{i}\right) \geq 3$ for every subdrawing of Q^{i}. Suppose that for every $i, i=0,1, \ldots, n-1, f\left(Q^{i}\right)=3$, since otherwise we are done. By Lemma 1, for every $i, \nu_{D}\left(K_{4}^{i}, T^{i} \cup T^{i+1}\right)=2$ and $\nu_{D}\left(T^{i}, T^{i+1}\right)=1$. In a good drawing no two adjacent edges cross each other and so every crossing between T^{i} and T^{i+1} is a crossing between two different blue n-cycles. Since two disjoint n-cycles can cross each other only an even number of times, in D there are at least $n+1$ crossings among the blue n-cycles and at least $2 n$ crossings between K_{4}^{i} and $T^{i} \cup T^{i+1}$ for all $i=0,1, \ldots, n-1$. This completes the proof.

Theorem 2. For $n \geq 3, \quad \nu\left(H \times C_{n}\right)= \begin{cases}3 n & \text { if } n \text { is even }, \\ 3 n+1 & \text { if } n \text { is odd. }\end{cases}$

Figure 5
Proof. In Figure 5 there are drawings of $H \times C_{3}$ and $H \times C_{4}$ with 10 and 12 crossings, respectively. By appropriately inserting H 's in pairs into the cycles of these drawings, as suggested by the arrangement in Figure 6, we obtain $\nu\left(H \times C_{n}\right) \leq 3 n$ for even n, and $\nu\left(H \times C_{n}\right) \leq 3 n+1$ if n is odd. The graph $H \times C_{n}$ contains a subgraph $K_{4} \times C_{n}$ whose crossing number is $3 n$, see [2]. Hence, for even n we are done. By Lemma 4, the result is true for $n=3$. It remains to show the reverse inequality for odd $n, n \geq 5$. Therefore, we assume that for odd $n, n \geq 5$, an optimal drawing of $H \times C_{n}$ has fewer than $3 n+1$ crossings and let D be such a drawing.

Figure 6

Then in D no edge not belonging to the subgraph $K_{4} \times C_{n}$ is crossed and, since D is optimal, no edge of C_{n}^{d} is crossed in D. Moreover, no K_{4}^{i} has more than three crossings. Otherwise by deleting suitable edges from D we obtain either $K_{4} \times C_{n}$ with fewer than $3 n$ crossings or $H \times C_{n-1}$ with fewer than $3(n-1)$ crossings, a contradiction. Thus, by Lemma $5, D$ is coherent and, by Lemma $6, D$ has at least $3 n+1$ crossings. This contradiction completes the proof.

Acknowledgement

The autor thanks to the referee for his helpful comments.

References

[1] D. Archdeacon, R.B. Richter, On the parity of crossing numbers, J. Graph Theory 12 (1988) 307-310.
[2] L.W. Beineke, R.D. Ringeisen, On the crossing numbers of products of cycles and graphs of order four, J. Graph Theory 4 (1980) 145-155.
[3] F. Harary, Graph Theory (Addison - Wesley, Reading, MA, 1969).
[4] S. Jendrol', M. Ščerbová, On the crossing numbers of $S_{m} \times P_{n}$ and $S_{m} \times C_{n}$, Časopis pro pěstování matematiky 107 (1982) 225-230.
[5] M. Klešč, On the crossing numbers of Cartesian products of stars and paths or cycles, Mathematica Slovaca 41 (1991) 113-120.
[6] M. Klešč, The crossing numbers of products of paths and stars with 4-vertex graphs, J. Graph Theory 18 (1994) 605-614.
[7] M. Klešč, The crossing numbers of certain Cartesian products, Discuss. Math. Graph Theory 15 (1995) 5-10.
[8] M. Klešč, The crossing number of $K_{2,3} \times P_{n}$ and $K_{2,3} \times S_{n}$, Tatra Mountains Math. Publ. 9 (1996) 51-56.
[9] M. Klešč, R.B. Richter, I. Stobert, The crossing number of $C_{5} \times C_{n}$, J. Graph Theory 22 (1996) 239-243.
[10] A.T. White, L.W. Beineke, Topological graph theory, in: Selected Topics in Graph Theory (Academic Press, London, 1978) 15-49.

[^0]: The research was supported by the Slovak VEGA grant No. 1/4377/97.

