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Abstract

There are several known exact results on the crossing numbers of
Cartesian products of paths, cycles or stars with “small” graphs. Let
H be the 5-vertex graph defined from K5 by removing three edges
incident with a common vertex. In this paper, we extend the earlier
results to the Cartesian products of H ×Pn and H ×Cn, showing that
in the general case the corresponding crossing numbers are 3n−1, and
3n for even n or 3n + 1 if n is odd.
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1. Introduction

Let G be a simple graph with vertex set V and edge set E. The crossing

number ν(G) of a graph G is the smallest number of pairs of nonadjacent
edges that intersect in any drawing of G in the plane. It is implicit that the
edges in a drawing are Jordan arcs (hence, nonselfintersecting), and it is easy
to see that a drawing with the minimum number of crossings (an optimal
drawing) must be a good drawing; that is, each two edges have at most one
point in common, which is either a common end-vertex or a crossing. For a
detailed account concerning this topic, the reader is referred to [3] and [10].
Let D be a good drawing of the graph G. We denote the number of crossings
in D by νD(G). Let Gi and Gj be edge-disjoint subgraphs of G. We denote

The research was supported by the Slovak VEGA grant No. 1/4377/97.



60 M. Klešč

by νD(Gi, Gj) the number of crossings between edges of Gi and edges of Gj ,
and by νD(Gi) the number of crossings among edges of Gi in D.

The Cartesian product G1 × G2 of graphs G1 and G2 has vertex set
V (G1 × G2) = V (G1) × V (G2) and edge set

E(G1 × G2) = {{(ui, vj), (uh, vk)} : (ui = uh and {vj , vk} ∈ E(G2) )

or ( {ui, uh} ∈ E(G1) and vj = vk )} .

Let Cn and Pn be the cycle and the path with n edges, and Sn the star

K1,n. In [2] and [4] are determined the crossing numbers of the Cartesian
products of all 4-vertex graphs with cycles and in [5] and [6] with paths and
stars. It thus seems natural to inquire about the crossing numbers of the
products of 5-vertex graphs with cycles, paths or stars. In [5], [8], and [9]
it is shown that ν(S4 × Pn) = 2(n − 1), ν(S4 × Cn) = 2n, ν(K2,3 × Pn) =

2n, ν(K2,3 × Sn) = 4
⌊

n
2

⌋

⌊

n−1

2

⌋

+ 2n, and ν(C5 × Cn) = 3n. Let G1, G2,

and G3 be the three graphs of order five defined by removing from K5 the
edges of an elementary subdivision of K1,3, the edges of K3, and the edges
of K1,2, respectively. In [7] it is shown that ν(G1 × Pn) = 2n − 2 and
ν(G2 × Pn) = ν(G3 × Pn) = 3n − 1. Let H be the 5-vertex graph defined
from K5 by removing three edges incident with a common vertex. In this
paper, we extend the earlier results to the products of H with a path Pn

and a cycle Cn, showing that in the general case the corresponding crossing
numbers are 3n − 1, and 3n for even n or 3n + 1 if n is odd.

2. The Crossing Number of H × Pn

We assume n ≥ 1 and find it convenient to consider the graph H ×Pn in the
following way. It has 5(n+1) vertices, which we denote xi for x = a, b, c, d, e

and i = 0, 1, . . . , n, and 12n + 7 edges that are the edges in the n + 1 copies
Hi and the five paths x0x1...xn (see Figure 1). Furthermore, we call the
former edges red and the latter ones blue.

For i = 0, 1, . . . , n, let di and ei be the vertices of H i of degree four
and degree one, respectively. We denote by K i

4 the subgraph of H i induced
by the vertices ai, bi, ci, and di. Let T i, i = 1, 2, . . . , n, be the subgraph
of the graph H × Pn with the vertices of K i−1

4 and K i
4 and the blue edges

joining K i−1
4 to K i

4. For i = 1, 2, . . . , n − 1, let Qi denote the subgraph of
H ×Pn induced by the vertices in K i−1

4 ,Ki
4, and K i+1

4 . Thus, Qi has 18 red
edges in K i−1

4 ,Ki
4, and K i+1

4 and 8 blue edges in T i and T i+1. Clearly, Qi is
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isomorphic to K4 × P2. In a good drawing of K4 × Pn, we define the force

f(Qi) of Qi to be the total number of crossings of the following types:
(1) a crossing of a blue edge in T i ∪ T i+1 with an edge in K i

4;
(2) a crossing of a blue edge in T i with a blue edge in T i+1; and
(3) an internal crossing in K i

4 (a crossing among red edges of K i
4).

A moment’s thought shows that no crossing counted in f(Qi) is counted in
f(Qj) if i 6= j. The totalforce of the drawing of K4×Pn is the sum of these
forces.
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Figure 1

We say that a good drawing of K4 × Pn is coherent if each K i
4 (whether or

not it has an internal crossing) has the property that all the other vertices
of the graph lie in the same “region” in the view of the subdrawing of K i

4.
(The possible crossings are considered to be vertices of the map.)

The graph K4 is 3-connected. In this paper, we will often use the
following facts: If two different K i

4 and K
j
4 cross each other, then in any

good drawing they cross at least three times. Consider a good and coherent
drawing of K4×Pn. In such a drawing red edges of two different K i

4 and K
j
4

cannot cross each other. As K4 is not outerplanar, either every K i
4 has an

internal crossing or it is crossed by a blue edge incident with K i
4. Moreover,

for i = 1, 2, . . . , n − 1, if K i
4 has no internal crossing, then the edges of

T i ∪ T i+1 cross K i
4 at least twice. If some K i

4 is crossed by a blue edge not
incident with K i

4, then this edge crosses K i
4 at least three times.

Lemma 1. Let D be a good and coherent drawing of K4 × P2. If

νD(K0
4 , T 2) = 0 and νD(K2

4 , T 1) = 0, then D has force at least three. More-

over, if in D there are two adjacent edges of T 1∪T 2 without crossings, then

D has force at least four or νD(K1
4 , T 1 ∪ T 2) = 2 and νD(T 1, T 2) = 1.

Proof. The graph K4 × P2 we can denote by Q1. Let us denote by Q1
c

the graph obtained from Q1 by contracting K0
4 to the vertex k0

4 and K2
4
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to the vertex k2
4. Thus, Q1

c = K1
4 ∪ T 1

c ∪ T 2
c , where T 1

c (T 2
c ) consists of

four edges incident with the vertex k0
4 (k2

4). Let Dc be the good drawing
of Q1

c induced by D. The drawing D is coherent, so in Dc the vertices k0
4

and k2
4 lie in the same region in the view of the subdrawing of K 1

4 . As
νD(K0

4 , T 2) = νD(K2
4 , T 1) = 0 and all crossings in the good drawing Dc are

counted in f(Q1) in the drawing D, then f(Q1) ≥ νDc
(Q1

c). Thus, it remains
to show that νDc

(Q1
c) ≥ 3. The subgraph K1

4 ∪ T 1
c of Q1

c is isomorphic to
K5, and in [1] it is shown that every good drawing of K5 has an odd number
of crossings. Consider the subdrawing of K1

4 ∪ T 1
c induced by Dc. If it

has more than two crossings, we are done. Suppose now that it has one
crossing. Since the optimal drawing of K5 is unique within isomorphism,
this subdrawing creates the map with eight regions in such a way that there
are at most three vertices of K1

4 ∪ T 1
c on the boundary of every region. In

Dc the vertex k2
4 lies in the region with the vertex k0

4 on its boundary in the
view of the subdrawing of K1

4 ∪ T 1
c . Therefore, at most two vertices of K1

4

are on the boundary of this region, and, in Dc, the edges of T 2
c cross the

edges of K1
4 ∪ T 1

c at least twice. So, in Dc there are at least three crossings.

e
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4
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k0
4

Figure 2

Now we show that if D has force three and two adjacent edges of T 1∪T 2 in-
cident with the same vertex of K1

4 are not crossed, then νD(K1
4 , T 1∪T 2) = 2

and νD(T 1, T 2) = 1. Without loss of generality, assume the edges {d0, d1}
and {d1, d2} are not crossed in D. Thus, in Dc, the edges {k0

4 , d1} and
{d1, k

2
4} are not crossed. First, we suppose that the edges of K 1

4 cross each
other in Dc. (In a good drawing they cannot cross more than once.) The
subgraphs K1

4 ∪ T 1
c and K1

4 ∪ T 2
c are isomorphic to K5. As there is no good

drawing of K5 with two crossings, the condition f(Q1) = νD(Q1
c) = 3 im-

plies that for some i, i ∈ {1, 2}, νDc
(K1

4 , T i
c) = 0. Suppose νDc

(K1
4 , T 1

c ) = 0.



The Crossing Numbers of Products of ... 63

The subdrawing of K1
4 ∪ T 1

c induced by Dc divides the plane as shown in
Figure 2, and, in Dc, the vertex k2

4 lies in the region ω1 (ω2) of the sub-
drawing. The edges of T 2

c cannot cross the edge {k0
4 , d1} and it is easy to see

that in Dc the edge {k2
4 , b1} crosses an edge of the triangle k0

4d1a1 (k0
4d1c1)

and the edge {k2
4 , c1} ({k2

4 , a1}) crosses edges of triangles k0
4d1a1 and k0

4d1b1

(k0
4d1c1 and k0

4d1b1). This contradicts the assumption νDc
(Q1

c) = 3. There-
fore, νDc

(K1
4 ) = 0, and since K4 is not an outerplanar graph, both T 1

c

and T 2
c cross K1

4 in Dc. Moreover, neither T 1 nor T 2 crosses K1
4 twice,

since otherwise we obtain as a subdrawing the complete graph K5 with two
crossings. Hence νDc

(K1
4 , T 1

c ) = νDc
(K1

4 , T 2
c ) = 1, and from the condition

νDc
(Q1

c) = 3, it follows that νDc
(T 1

c , T 2
c ) = 1. This implies that in the

drawing D, νD(K1
4 , T 1 ∪ T 2) = 2 and νD(T 1, T 2) = 1, as claimed.

Lemma 2. If D is a good drawing of H × Pn, n ≥ 2, in which every

Hi, i = 0, 1, . . . , n, has at most 2 crossings on its edges, then D has at least

3n − 1 crossings.

Proof. First we show that the subdrawing of K4 × Pn induced by D is
coherent. Clearly, νD(Ki

4,K
j
4) = 0 for all i 6= j, otherwise νD(Ki

4,K
j
4) ≥ 3

and H i (Hj) has at least three crossings. Suppose that in D the subgraphs
K

j
4 and K l

4 are in different regions in the wiev of the subdrawing of K i
4. The

subdrawing of K i
4 divides the plane into several regions in such a way that

no three vertices of K i
4 are on the common boundary of two regions. Thus,

in D, K i
4 has at least five common points with the five paths joining K

j
4

to K l
4, and at most two of these points are vertices. This contradicts the

hypothesis.
Therefore, the subdrawing of K4 × Pn is coherent. As K i

4 has at most
two crossings on its edges, no blue edge not incident with K i

4 crosses K i
4, and,

by Lemma 1, f(Qi) ≥ 3 for every i = 1, 2, . . . , n− 1. Every good drawing of
K4 × Pn, n ≥ 2, has at least one of the edges of K0

4 and also Kn
4 crossed.

These two crossings are not counted in the total force of the drawing D, so
the number of crossings in D is at least 2 + Σn−1

i=1
f(Qi) ≥ 3n − 1.

Theorem 1. ν(H × Pn) = 3n − 1 for n ≥ 1.

Proof. The drawing in Figure 1 shows that ν(H ×Pn) ≤ 3n− 1 for n ≥ 1.
We prove the reverse inequality by induction on n. In [2] it is shown that
ν(K4 × P1) = 2, and since H × P1 contains K4 × P1, the result is true for
n = 1. Assume it is true for n = k, k ≥ 1, and suppose that there is a good
drawing of H × Pk+1 with fewer than 3(k + 1) − 1 crossings. By Lemma 2,
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some H i must then have at least three crossings on its edges. By the removal
of all edges of this H i, we obtain a graph homeomorphic to H × Pk or one
that contains the subgraph H×Pk and has a drawing with fewer than 3k−1
crossings. This contradicts the induction hypothesis.

3. The Crossing Number of H × Cn

The graph H × Cn consists of the subgraph H × Pn−1 and of five edges
{x0, xn−1} for x = a, b, c, d, and e. Thus, the graph H×Cn has 7n red edges
in n copies H i for i = 0, 1, . . . , n − 1, and 5n blue edges in five n-cycles Cx

n

for x = a, b, c, d, and e. Clearly, K4 × Cn is a subgraph of H × Cn. We
denote by T i the subgraph of K4 ×Cn induced by the edges joining K i−1

4 to
Ki

4 for i = 0, 1, . . . , n − 1, i taken modulo n. We say that a good drawing
of K4 × Cn is coherent if each subdrawing of its subgraph isomorphic to
K4 × Pn−1 is coherent.

Lemma 3. Let D be a good and coherent drawing of K4 × C3 in which

every T i, i = 0, 1, 2, has its edges crossed at most four times. If for some

i, νD(Ki+1
4 , T i) 6= 0, i taken modulo 3, then D has at least 10 crossings.

Proof. First we show that if in D some blue 3-cycle crosses some K i
4,

i ∈ {0, 1, 2}, then it crosses this K i
4 at least twice. Suppose that Cx

3 , x ∈
{a, b, c, d}, crosses K i

4. As in the good drawing D, two adjacent edges cannot
cross each other, Cx

3 crosses the red 3-cycle of K i
4 created by three edges of

Ki
4 not incident with the common vertex of K i

4 and Cx
3 . This red 3-cycle

and Cx
3 are vertex-disjoint cycles and such cycles cannot cross each other

only once.

Without loss of generality, assume that in D an edge of T 1 crosses K2
4

and assume D has fewer than ten crossings. Since T 1 and K2
4 are vertex-

disjoint subgraphs of K4 × C3 and since K2
4 is 3-connected, this edge of T 1

crosses K2
4 at least three times, and on the edges of T 1 there is at most one

other crossing. Thus, νD(T 1,K0
4 ∪ T 0) = 0 or νD(T 1,K1

4 ∪ T 2) = 0.

Suppose that νD(T 1,K1
4 ∪ T 2) = 0 and that in D two blue edges cross

each other. Since in the good drawing no two edges of a 3-cycle cross
each other, in D there are at least two crossings between two different blue
3-cycles. This implies that in D there are at most seven crossings on the
edges of K0

4 , K1
4 , and K2

4 . As we assumed above, νD(K1
4 , T 1) = 0. The

graph K4 is not outerplanar, so in the coherent drawing D the subgraph
K1

4 has an internal crossing. In this case the subdrawing of K 0
4 ∪ T 1 ∪ K1

4
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induced by D divides the plane in such a way that on the boundaries of two
neighboring regions outside K1

4 there are at most three vertices of K1
4 (see

Figure 3). Since only one edge of T 1 crosses K2
4 , the vertices of K2

4 lie, in D,
in at most two neighboring regions outside K1

4 , and, since νD(T 1, T 2) = 0,
in D at least one edge of T 2 crosses K1

4 or K0
4 . If νD(K1

4 , T 2) 6= 0, then
νD(K1

4 , T 2) ≥ 2, and in D there are at least eight crossings on the edges of
K0

4 , K1
4 , and K2

4 (at least three on K1
4 , at least four on K2

4 , and at least one
crossing on K0

4 ). If νD(K0
4 , T 2) 6= 0, then νD(K0

4 , T 2) ≥ 3, and there are
at least four crossings on the edges of K0

4 . Thus, in D there are more than
seven crossings on the edges of K0

4 , K1
4 , and K2

4 again.

e

e

e

e

T 1

K1
4

Figure 3
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Therefore, in D, no two blue edges of 3-cycles cross each other. As the
vertices of K2

4 lie, in D, in at most two neighbouring regions outside K 1
4 ,

in D one blue 3-cycle must then have crossed its edges at least four times
by the edges of K0

4 and K1
4 . Since νD(K1

4 ) = 1 and either νD(K0
4 ) = 1 or

νD(K0
4 , T 1) = 1, together with at least four crossings on the edges of K 2

4 , in
D there are more than nine crossings. This contradicts our assumption.

For νD(T 1,K0
4 ∪ T 0) = 0, we can use the same arguments. Hence, D

has at least ten crossings.

Lemma 4. ν(H × C3) ≥ 10.

Proof. Beineke and Ringeisen [2] showed that ν(K4 ×C3) = 9, and there-
fore, ν(H × C3) ≥ 9. Assume that there is a drawing of H × C3 with nine
crossings and let D be such a drawing. Then the drawing D is optimal and
no edge not belonging to its subgraph K4 × C3 is crossed. As the drawing
D is good, none of the 3-cycles Cx

3 , x = a, b, c, d, e, has an internal cross-
ing. Thus the subdrawing D∗ induced by D by the edges of Cd

3 and Ce
3 and

the edges joining these two 3-cycles induces the map in the plane with two
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triangular and three quadrangular regions. In D the other vertices of the
graph must lie in the triangular region of D∗ bounded by Cd

3 ; otherwise the
edges of D not belonging to D∗ cross only the edges of Cd

3 and these can be
redrawn to give a drawing with fewer crossings. Moreover, in D, no edge of
Cd

3 is crossed because of good drawing.

Since ν(K4 × P1) = 2, in D there are at most seven crossings on the
edges of any subgraph K i

4 of H × C3, i = 0, 1, 2. First, we show that no
Ki

4 has more than six crossings on its edges. Without loss of generality,
suppose that K1

4 has seven crossings in D. Then in the subdrawing D∗∗

obtained from D by deleting the edges of K1
4 there are two crossings, and

therefore, the edges of K0
4 and K2

4 cannot cross each other. This implies
that in D∗∗ there are only two internal crossings of K0

4 and K2
4 and D∗∗

divides the plane as shown in Figure 4. It is easy to see that in D∗∗ there
are eight possibilities to draw the other three vertices of K 1

4 and that in each
case in D the edges of K1

4 cross the edges of D∗∗ at least eight times. This
contradicts the assumption of the optimal drawing. Therefore, in D, every
Ki

4 has at most six crossings on its edges.

e

e

e

e

e e e

e e

e

e

e

Figure 4

In the proof of Lemma 5 in [2], it is shown that any non-coherent drawing
of K4 ×C3 with at most six crossings on the edges of any K i

4 is not optimal.
This implies that the subdrawing of K4 × C3 of our drawing D is coherent.

We note that in the next part of the proof i is taken modulo 3. In D there
are at most four crossings on the edges of any T i, i ∈ {0, 1, 2}; otherwise,
by deleting these edges and the fifth edge joining ei−1 to ei we obtain a
subdrawing of H × P2 with at most four crossings. Since the subdrawing
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of K4 × C3 induced by D is coherent and has nine crossings, by Lemma 3,
νD(Ki+1

4 , T i) = 0 for i = 0, 1, 2, and from the property of a good and co-
herent drawing it follows that no two different K i

4 and K
j
4 cross each other

in D. As we mentioned above, Cd
3 has no crossing on its edges and, by

Lemma 1, every subdrawing of the subgraph isomorphic to K4 × P2 has
force exactly three. Moreover, νD(Ki

4, T
i ∪ T i+1) = 2 and νD(T i, T i+1) = 1

for each i = 0, 1, 2. Therefore, there are six crossings between the edges
of K i

4, i = 0, 1, 2, and the edges of Ca
3 , Cb

3, and Cc
3, and there are three

crossings among the edges of Ca
3 , Cb

3, and Cc
3. Since all these 3-cycles are

vertex-disjoint and none of them has an internal crossing, this is impossible.
This completes the proof.

Lemma 5. If D is a good drawing of K4 × Cn, n ≥ 3, in which no K i
4,

i = 0, 1, . . . , n − 1, has more than three crossings on its edges, then D is

coherent.

Proof. Suppose D is not coherent and assume, without loss of generality,
that K0

4 has vertices of K1
4 , . . . ,Kn−1

4 in more than one of its regions in
the drawing. Then the edges of K0

4 are crossed at least four times since
the subgraph induced by the vertices in K1

4 , . . . ,Kn−1
4 is 4-connected. This

contradiction completes the proof.

Lemma 6. Let n ≥ 5 be odd and let D be a good and coherent drawing of

H × Cn. If in D every K i
4, i = 0, 1, . . . , n − 1, has at most three crossings

on its edges and if no edge of the subgraph induced by the vertices di and

ei, i = 0, 1 . . . , n − 1, is crossed, then D has at least 3n + 1 crossings.

Proof. First, we note that i is taken modulo n in the proof. By hypo-
thesis, no two different H i and Hj cross each other, thus νD(Hi,Hj) = 0 if
i 6= j. Moreover, for i = 0, 1, . . . , n − 1, νD(Ki

4, T
r) = 0 if r 6= i, i + 1.

If not, K i
4 and T r cross each other at least three times and K i

4 either has
an internal crossing or at least two crossings with one blue n-cycle. Hence,
by Lemma 1, f(Qi) ≥ 3 for every subdrawing of Qi. Suppose that for
every i, i = 0, 1, . . . , n − 1, f(Qi) = 3, since otherwise we are done. By
Lemma 1, for every i, νD(Ki

4, T
i ∪ T i+1) = 2 and νD(T i, T i+1) = 1. In a

good drawing no two adjacent edges cross each other and so every crossing
between T i and T i+1 is a crossing between two different blue n-cycles. Since
two disjoint n-cycles can cross each other only an even number of times, in
D there are at least n +1 crossings among the blue n-cycles and at least 2n
crossings between K i

4 and T i ∪T i+1 for all i = 0, 1, ..., n−1. This completes
the proof.
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Theorem 2. For n ≥ 3, ν(H × Cn) =

{

3n if n is even,

3n + 1 if n is odd.

Figure 5

Proof. In Figure 5 there are drawings of H × C3 and H × C4 with 10
and 12 crossings, respectively. By appropriately inserting H’s in pairs into
the cycles of these drawings, as suggested by the arrangement in Figure 6,
we obtain ν(H × Cn) ≤ 3n for even n, and ν(H × Cn) ≤ 3n + 1 if n

is odd. The graph H × Cn contains a subgraph K4 × Cn whose crossing
number is 3n, see [2]. Hence, for even n we are done. By Lemma 4, the
result is true for n = 3. It remains to show the reverse inequality for odd
n, n ≥ 5. Therefore, we assume that for odd n, n ≥ 5, an optimal drawing
of H × Cn has fewer than 3n + 1 crossings and let D be such a drawing.

e e

e

e

e

e

e e e e

Figure 6
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Then in D no edge not belonging to the subgraph K4 × Cn is crossed and,
since D is optimal, no edge of Cd

n is crossed in D. Moreover, no K i
4 has more

than three crossings. Otherwise by deleting suitable edges from D we obtain
either K4 × Cn with fewer than 3n crossings or H × Cn−1 with fewer than
3(n − 1) crossings, a contradiction. Thus, by Lemma 5, D is coherent and,
by Lemma 6, D has at least 3n + 1 crossings. This contradiction completes
the proof.
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[7] M. Klešč, The crossing numbers of certain Cartesian products, Discuss. Math.
Graph Theory 15 (1995) 5–10.
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