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Abstract

For two vertices u and v of a graph G, the set I(u, v) consists of
all vertices lying on some u − v geodesic in G. If S is a set of vertices
of G, then I(S) is the union of all sets I(u, v) for u, v ∈ S. A set S is
a geodetic set if I(S) = V (G). A minimum geodetic set is a geodetic
set of minimum cardinality and this cardinality is the geodetic number
g(G). A subset T of a minimum geodetic set S is called a forcing
subset for S if S is the unique minimum geodetic set containing T .
The forcing geodetic number fG(S) of S is the minimum cardinality
among the forcing subsets of S, and the forcing geodetic number f(G)
of G is the minimum forcing geodetic number among all minimum
geodetic sets of G. The forcing geodetic numbers of several classes of
graphs are determined. For every graph G, f(G) ≤ g(G). It is shown
that for all integers a, b with 0 ≤ a ≤ b, a connected graph G such that
f(G) = a and g(G) = b exists if and only if (a, b) /∈ {(1, 1), (2, 2)}.
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1. Introduction

The distance d(u, v) between two vertices u and v in a connected graph G is
the length of a shortest u− v path in G. It is well known that this distance
is a metric on the vertex set V (G). For a vertex v of G, the eccentricity

e(v) is the distance between v and a vertex farthest from v. The minimum
eccentricity among the vertices of G is the radius, denoted by rad G, of
G and the maximum eccentricity is its diameter, denoted by diam G. A
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u − v path of length d(u, v) is called a u − v geodesic. We define I(u, v)
(interval) as the set of all vertices lying on some u − v geodesic of G, and
for a nonempty subset S of V (G), we define

I(S) =
⋃

u,v∈S

I(u, v).

A set S of vertices of G is defined in [1] to be a geodetic set in G if I(S) =
V (G), and a geodetic set of minimum cardinality is a minimum geodetic

set. The cardinality of a minimum geodetic set in G is called the geodetic

number g(G).
For a minimum geodetic set S of G, a subset T of S with the property

that S is the unique minimum geodetic set containing T is called a forcing

subset of S. The forcing geodetic number fG(S, g) of S in G is the mini-
mum cardinality of a forcing subset for S, while the forcing geodetic number

f(G, g) of G is the smallest forcing number among all minimum geodetic sets
of G. Since the parameter g is understood in this context, we write fG(S)
for fG(S, g) and f(G) for f(G, g). Hence if G is a graph with f(G) = a and
g(G) = b, then 0 ≤ a ≤ b and there exists a minimum geodetic set S of
cardinality b containing a forcing subset T of cardinality a. For the graph G
of Figure 1, g(G) = 3. There are four minimum geodetic sets in G, namely
S1 = {u, x, z}, S2 = {v, y, w}, S3 = {x, y, w}, and S4 = {v, y, z}. Since S1 is
the only minimum geodetic set containing u, it follows that fG(S1) = 1. No
other vertex of G belongs to only one minimum geodetic set, so fG(Si) ≥ 2
for i = 2, 3, 4. (In fact, fG(Si) = 2 for i = 2, 3, 4.) Therefore, f(G) = 1.
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Figure 1. A graph with forcing geodetic number 1

It is immediate that f(G) = 0 if and only if G has a unique minimum
geodetic set. If G has no unique minimum geodetic set but contains a
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vertex belonging to only one minimum geodetic set, then f(G) = 1. We
summarize these observations below.

Lemma 1.1. For a graph G, the forcing geodetic number f(G) = 0 if and

only if G has a unique minimum geodetic set. Moreover, f(G) = 1 if and

only if G has at least two distinct minimum geodetic sets but some vertex of

G belongs to exactly one minimum geodetic set.

The following result is a direct consequence of Lemma 1.1.

Corollary 1.2. For a graph G, the forcing geodetic number f(G) ≥ 2 if

and only if every vertex of each minimum geodetic set belongs to at least two

minimum geodetic sets.

2. Forcing Geodetic Numbers of Certain Graphs

In this section, we determine the forcing geodetic numbers of some well
known graphs. We begin by determining the forcing geodetic number of the
famous Petersen graph P of Figure 2. For a set S of vertices in a graph G,
we write N(S) for the neighborhood of S, that is, the set of all vertices that
are neighbors of at least one vertex in S, while the closed neighborhood of S
is defined by N [S] = N(S) ∪ S.
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Figure 2. The Petersen graph P

It can be verified that the geodetic number of P is 4 and that every set of
four independent vertices of P is a minimum geodetic set. Since all inde-
pendent sets of cardinality 4 are similar in P , we consider the independent
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set S = {u1, u3, v4, v5}. For every w ∈ S, there exists a minimum geodetic
set containing w that is distinct from S. For example, {u1, u4, v2, v3} is an-
other minimum geodetic set containing u1. Therefore, every vertex of each
minimum geodetic set of P belongs to at least two minimum geodetic sets
and so, by Corollary 1.2, fP (S) ≥ 2. Moreover, if S0 = {x, y} ⊂ S, then
V (P ) − N [S0] consists of three vertices exactly two of which are nonadja-
cent. For example, let S0 = {v4, v5}. Then V (P ) − N [S0] = {u1, u2, u3},
where only u1 and u3 are nonadjacent. Therefore, S is the unique minimum
geodetic set containing S0. This implies that fP (S) = 2 and that f(P ) = 2.

The following two observations appeared in [2].

Theorem A. If v is a vertex of a graph G such that 〈N(v)〉 is complete,

then v belongs to every geodetic set of G.

Corollary B. Each end-vertex of a graph G belongs to every geodetic set

of G.

Since the set of all end-vertices of T is the unique minimum geodetic set of
T (see [1]), we have the following result.

Theorem 2.1. For a tree T , the forcing geodetic number f(T ) is 0.

The corona G ◦ K1 of a graph G of order n is that graph obtained from G
by joining one new vertex to each vertex of G. Thus the order of G ◦ K1 is
2n. For a connected graph G of order at least 2, we show that the set S of
end-vertices of G◦K1 is a unique minimum geodetic set of G◦K1, implying
that f(G◦K1) = 0. By Corollary B, every geodetic set of G◦K1 contains S.
It suffices to show that S is a geodetic set of G. For v ∈ V (G), there exists
u ∈ V (G) that is adjacent to v. Let v′, u′ ∈ V (G ◦ K1) be the end-vertices
joined to v and u, respectively. Then v lies on the v ′−u′ geodesic v′, v, u, u′

in G◦K1. This implies that the set S is a geodetic set of G◦K1. Therefore,
f(G ◦ K1) = 0 for all connected graphs G.

Now we determine the forcing geodetic numbers of cycles.

Theorem 2.2. The forcing geodetic number of Cn, n ≥ 3, is

f(Cn) =

{

1 , if n is even,
2 , otherwise.
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Proof. If n is even, then g(Cn) = 2 and every pair of antipodal vertices of
Cn forms a minimum geodetic set of Cn. Consequently, Cn does not have
a unique minimum geodetic set but every vertex of Cn has a unique vertex
antipodal to it, so f(Cn) = 1. If n is odd, then g(Cn) = 3. Again Cn has
more than one minimum geodetic set. Moreover, every vertex of Cn belongs
to at least two distinct minimum geodetic sets. By Corollary 1.2, f(Cn) ≥ 2.
On the other hand, for every pair u, v of adjacent vertices in Cn, there is a
unique vertex w in Cn with d(u,w) = d(v, w). Then {u, v, w} is the unique
minimum geodetic set containing {u, v}, implying that f(Cn) = 2.

It was shown in [1] that g(Cn) = g(Cn×K2), where Cn×K2 is the Cartesian
product of Cn and K2. A proof similar to that of Theorem 2.2 gives f(Cn) =
f(Cn × K2). It is easy to verify that for n ≥ 4 the geodetic number of the
wheel Wn = Cn + K1 of order n + 1 is

⌈

n
2

⌉

and that f(Wn) = f(Cn).
We have determined the forcing geodetic numbers of trees and cycles.

A closely related class of graphs is the unicyclic graphs. A graph is unicyclic

if it is connected and contains exactly one cycle.

Theorem 2.3. Let G be a unicyclic graph that is not a cycle. If the cycle

C of G has length k, and ` is the greatest order of a path on C every vertex

of which has degree 2 in G, then

f(G) =

{

0 , if ` ≤ (k − 2)/2 or if ` = k − 1 is odd,
1 , otherwise.

Proof. Let C : v1, v2, · · · , vk, v1 and let W be the set of all end-vertices of G.
Assume, without loss of generality, that P : v1, v2, · · · , v`, where deg vi = 2
for i = 1, 2, · · · , `. So deg vk ≥ 3 and deg v`+1 ≥ 3. If ` ≤ (k − 2)/2, then W
is the unique minimum geodetic set of G and so f(G) = 0. Therefore, we
assume that ` ≥ (k − 1)/2. Since I(W ) = V (G) − V (P ), it follows that W
is not a geodetic set of G, so g(G) ≥ |W | + 1. Assume first that ` = k − 1.

If ` is odd, then W ∪
{

v `+1

2

}

is the unique minimum geodetic set of G and

so f(G) = 0. On the other hand, if ` is even, then there are pairs vi, vj of
vertices with 1 ≤ i < j ≤ ` such that W ∪ {vi, vj} is a minimum geodetic

set. However, there is only one such set containing v`, namely, W ∪
{

v `

2

, v`

}

and so f(G) = 1. Hence we assume that (k − 1)/2 ≤ ` ≤ k − 2. If ` is odd,

then both W ∪
{

v `+1

2

}

and W ∪
{

v `−1

2

}

are minimum geodetic sets of G;

while if ` is even, then W ∪
{

v `

2

}

and W ∪
{

v `+2

2

}

are minimum geodetic

sets of G. In either case, f(G) = 1.
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Next we determine the geodetic and forcing geodetic numbers of the hyper-
cubes Qn, where n ≥ 2. The hypercube Qn can be considered as that graph
whose vertices are labeled by the binary n-tuple (a1, a2, · · · , an) (that is ai

is 0 or 1 for 1 ≤ i ≤ n) and such that two vertices are adjacent if and only
if their corresponding n-tuples differ in precisely one position.

Theorem 2.4. For n ≥ 2, g(Qn) = 2 and f(Qn) = 1.

Proof. Since every minimum geodetic set of Qn is of the form

S = {(a1, a2, · · · , an), (1 − a1, 1 − a2, · · · , 1 − an)}

where a1, a2, · · · , an ∈ {0, 1}, it follows that g(Qn) = 2. Certainly, Qn has
more than one minimum geodetic set and every minimum geodetic set S
is the unique minimum geodetic set containing (a1, a2, · · · , an). Therefore,
f(Qn) = 1.

Next, we study the forcing numbers of complete bipartite graphs. Let 1 ≤
r ≤ s be two integers. It was shown in [1] that g(Kr,s) = s if r = 1; while
g(Kr,s) = min{r, 4}, if r ≥ 2.

Theorem 2.5. Let Kr,s be a complete bipartite graph with r + s ≥ 2 and

1 ≤ r ≤ s. Then

f(Kr,s) =



















0 , r = 1 or r = 2, 3 and r < s,
1 , r = 2, 3 and r = s,
3 , r = 4,
4 , r ≥ 5.

Proof. Let V1 = {u1, u2, · · · , ur} and V2 = {v1, v2, · · · , vs} be the partite
sets of G = Kr,s. If r = 1, then G is a tree and its forcing geodetic number
is 0.

We first assume that r ∈ {2, 3}. If r < s, then G has a unique mini-
mum geodetic set, namely V1, and so the forcing geodetic number is 0 by
Lemma 1.1. If r = s, then G has two distinct minimum geodetic sets, namely
V1 and V2. So the forcing geodetic number is at least 1 by Lemma 1.1. Cer-
tainly, for each v ∈ Vi with i = 1, 2, the set Vi is the unique minimum
geodetic set containing v. So the forcing geodetic number is 1.

Next we assume that r = 4 and so g(G) = 4. If r = s, then V1,
V2, and S = {u1, u2, v1, v2} are minimum geodetic sets of G. All other
minimum geodetic sets are similar to S. Since V1 is the unique minimum
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geodetic set containing {u1, u2, u3} and V1 is not the unique minimum geode-
tic set containing any 2-element or 1-element subset of V1, it follows that
fG(V1) = 3. Similarly, fG(V2) = 3. Moreover, since S is not the unique
minimum geodetic set containing any of its proper subsets, fG(S) = 4.
Therefore, f(G) = 3. If r < s, then V1 and S = {u1, u2, v1, v2} are mini-
mum geodetic sets of G. All other minimum geodetic sets are similar to S.
Since fG(V1) = 3 and fG(S) = 4, it follows that f(G) = 3.

Finally, we assume that r ≥ 5. Then every minimum geodetic set S
of G is of the form S = {ui1 , ui2 , vj1 , vj2}, where 1 ≤ i1 < i2 ≤ r and
1 ≤ j1 < j2 ≤ s. Since S is not the unique minimum geodetic set containing
any of its proper subsets, f(G) = 4.

3. Graphs with Prescribed Geodetic and Forcing Geodetic

Numbers

We have already noted that if G is a graph with f(G) = a and g(G) = b,
then 0 ≤ a ≤ b. We now establish a converse result beginning with the case
where a 6= b.

Theorem 3.1. Every pair a, b of integers with 0 ≤ a < b can be realized

as the forcing geodetic number and geodetic number, respectively, of some

graph.

Proof. We have already seen that if G = Kb, then f(G) = 0 and g(G) = b.
Thus, we assume that 0 < a < b. We consider two cases.

Case 1. a = 1.

If b = 2, then every even cycle has forcing geodetic number 1 and geodetic
number 2. So we assume that b ≥ 3. Consider the graph G of Figure 3.

We first show that g(G) = b. Let U = {u1, u2, · · · , ub−2} be the set of
end-vertices of G. Since U ∪ {v3, x} is a geodetic set of G, it follows that
g(G) ≤ b. On the other hand, by Corollary B, every minimum geodetic set
of G includes U . Moreover, it is routine to verify that for each z ∈ V (G)−U ,
the set U∪{z} is not a geodetic set of G, implying that g(G) ≥ b. Therefore,
g(G) = b.

Next we show that f(G) = 1. Since U ∪ {v3, x} and U ∪ {v3, y} are two
distinct minimum geodetic sets of G, it follows that f(G) ≥ 1 by Lemma 1.1.
Moreover, S = U ∪ {v3, x} is the unique minimum geodetic set containing
{x}. This implies that fG(S) = 1. Therefore, f(G) = 1.
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Figure 3. The graph G with g(G) = b and f(G) = 1

Case 2. a ≥ 2.
First assume that b = a+1. We consider the graph G of order 2a+4 shown
in Figure 4.
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Figure 4. The graph G with g(G) = f(G) + 1

We first show that g(G) = a + 1. Since {u2, u3, · · · , ua+1, v1} is a geodetic
set of G, it follows that g(G) ≤ a +1. Next we show that g(G) ≥ a +1. For
every i with 1 ≤ i ≤ a+1, each of ui and vi lies only on geodesics with initial
or terminal vertex ui or vi. This implies that if W is a minimum geodetic
set of G, then W contains at least one vertex from each set {ui, vi}, where
1 ≤ i ≤ a + 1, implying that g(G) ≥ a + 1. Therefore, g(G) = a + 1 = b
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and W ⊆ V (G) − {x, y}. Furthermore, W 6= {u1, u2, · · · , ua+1} and W 6=
{v1, v2, · · · , va+1}.

Next we show that f(G) = a. Again, let W be a minimum geodetic set
of G. Since W ∩ {u1, u2, · · · , ua+1} 6= ∅ and W ∩ {v1, v2, · · · , va+1} 6= ∅, it
follows that W is not the unique minimum geodetic set containing any of its
subsets W ′ with |W ′| < a. So fG(W ) ≥ a for every minimum geodetic set W
of G. Therefore, f(G) ≥ a. On the other hand, W = {u2, u3, · · · , ua+1, v1}
is the unique minimum geodetic set containing {u2, u3, · · · , ua+1}, implying
that fG(W ) = a. Therefore, f(G) = a.
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Figure 5. The graph G with g(G) = b and f(G) = a

We now assume that b ≥ a + 2. Consider the graph of Figure 5. We first
show that g(G) = b. Since

S = {u2, u3, · · · , ua+1, v1, w1, w2, · · · , wb−a−1}

is a geodetic set, g(G) ≤ b. Next we show that g(G) ≥ b. By Corollary B, the
end-vertices w1, w2, · · · , wb−a−1 belong to every geodetic set of G. Moreover,
as above, for every i with 1 ≤ i ≤ a+1, each of ui and vi lies only on geodesics
with initial or terminal vertex ui or vi. This implies that every minimum
geodetic set of G must contain at least one vertex from each set {ui, vi},
where 1 ≤ i ≤ a + 1. Therefore, g(G) ≥ (b − a − 1) + (a + 1) = b.

Next we show that f(G) = a. Every minimum geodetic set S of G has
the form

S = U ∪ V ∪ W
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where U ⊆ {u1, u2, · · · , ua+1}, V ⊆ {v1, v2, · · · , va+1} and W = {w1, w2, · · · ,
wb−a−1} with U 6= ∅ and V 6= ∅. This implies that if S is a minimum
geodetic set of G and S ′ ⊆ S with |S ′| < a, then S is not the unique
minimum geodetic set containing S ′. Therefore, f(G) ≥ a. On the other
hand, the set

S = {u2, u3, · · · , ua+1, v1, w1, w2, · · · , wb−a−1}

is the unique minimum geodetic set containing {u2, u3, · · · , ua+1}, implying
that fG(S) = a. Therefore, f(G) = a.

Next we show that if a connected graph of order at least 2 has its geodetic
number equal to its forcing geodetic number, then this number exceeds 2.
First observe that 2 ≤ g(G) ≤ n for every connected graph of order n ≥ 2.
Therefore, the case f(G) = g(G) = 1 is impossible for any connected graph
of order at least 2.

Theorem 3.2. If G is a connected graph with geodetic number 2, then

f(G) < 2.

Proof. Let {u, v} be a minimum geodetic set of G. Then d(u, v) = diam G
and every vertex of G lies on some u − v geodesic of G. If f(G) = 2, then
there exists x 6= v such that {u, x} is also a minimum geodetic set of G.
However, the fact that x lies on some u − v geodesic of G implies that
d(u, x) < d(u, v) = diam G, which is a contradiction.

We have seen in Theorem 3.2 that f(G) < g(G) if g(G) = 2. Next we show
that every integer a ≥ 3 is simultaneously realizable as both the geodetic
number and forcing geodetic number of some connected graph.

Theorem 3.3. For every integer a ≥ 3, there exists a connected graph G
such that

g(G) = f(G) = a.

Proof. For each integer a ≥ 3, we construct a graph Ga with f(Ga) =
g(Ga) = a. We consider two cases, according to whether a is even or a
is odd.

Case 1. a = 2k, where k ≥ 2.
We have seen in Theorem 2.5 that if 5 ≤ r ≤ s, then f(Kr,s) = g(Kr,s) = 4.
So we may assume that k ≥ 3. For k = 3, let F1 and F2 be two copies of
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K5,5 with V (F1) = X ∪ Y and V (F2) = U ∪ V , where X = {x1, x2, · · · , x5},
Y = {y1, y2, · · · , y5}, U = {u1, u2, · · · , u5}, and V = {v1, v2, · · · , v5} are the
respective partite sets of F1 and F2. Then the graph G6 is formed from F1

and F2 by adding the edge x5u1. The graph G6 is shown in Figure 6.

u u u u u u u u u u

u u u u u u u u u u

x1 x2 x3 x4 x5 u1 u2 u3 u4 u5

y1 y2 y3 y4 y5 v1 v2 v3 v4 v5

Figure 6. The graph G6

We first show that g(G6) = 6. Since

S = {x1, y1, y2, u5, v4, v5}

is a geodetic set of G6, it follows that g(G6) ≤ 6. Assume, to the contrary,
that g(G6) < 6. Let W be a geodetic set of G6 with |W | = 5. We claim
that W must contain at least one vertex from each set of X,Y,U, and V .
Assume, to the contrary, that this is not the case. There are two subcases.

Subcase 1.1. W ∩ X = ∅.
Observe that in this subcase, each vertex yi (1 ≤ i ≤ 5) only lies on those
geodesics with initial or terminal vertex yi. Then W = Y as |W | = |Y |.
However, I(Y ) = V (F1) 6= V (G6), contradicting the fact that W is a geode-
tic set of G6.

Subcase 1.2. W ∩ Y = ∅.
Since each vertex xi (1 ≤ i ≤ 4) lies only on those geodesics with
initial or terminal vertex xi, it follows that {x1, x2, x3, x4} ⊂ W . So
W = {x1, x2, x3, x4, v} for some v ∈ V (G6) − {x1, x2, x3, x4}. It is routine
to verify that W is not a geodetic set of G6 for each vertex v of G6.

Therefore, W contains at least one vertex from each of X,Y,U, and V .
Without loss of generality, let W = {u, v1, x, y1, w}, where x ∈ X, u ∈ U ,
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w ∈ V (G6) − {u, v1, x, y1}. There are only three possible choices for u and
x that are not equivalent, namely (1) u = u1 and x = x5, (2) u 6= u1 and
x = x5, and (3) u 6= u1 and x 6= x5. It can be verified that W is not a
geodetic set of G6 in any of these cases, implying that g(G6) ≥ 6 and so
g(G6) = 6.

Next we show that f(G6) = 6. Vertices of U − {u1} (of X − {x5})
are interior vertices only for geodesics with initial and terminal vertex in
V (in Y ). Vertices of V (of Y ) are interior vertices only for geodesics with
an end-vertex in U (in X). From this it is clear that |S ∩ (U − {u1})| =
|S ∩ (X − {x5})| = 1 and |S ∩ V | = |S ∩ Y | = 2, implying that S is
not the unique minimum geodetic set containing any of its proper subsets.
Therefore, f(G6) = 6.

We can now extend G6 to construct a graph G2k for all k ≥ 4. Let
F1, F2, · · · , Fk−1 be k − 1 copies of K5,5. For each i with 1 ≤ i ≤ k − 1,
assume that the partite sets of Fi are Ui = {ui1, ui2, · · · , ui5} and Vi =
{vi1, vi2, · · · , vi5}. Then the graph G2k is formed from F1, F2, · · · , Fk−1 by
adding the k − 2 new edges ui5ui+1,1 between Fi and Fi+1, where 1 ≤ i ≤
k − 2. Then every minimum geodetic set of G2k contains exactly one vertex
from each of U1 − {u15} and Uk−1 − {uk−1,1} and exactly two vertices from
each set Vi, 1 ≤ i ≤ k − 1. Therefore, g(G2k) = f(G2k, g) = 2k.

Case 2. a = 2k + 1, where k ≥ 1.
For k = 1, let the graph G3 be obtained from the cycle C9 : u1, u2, x1, v1, v2,
y1, w1, w2, z1, u1 by adding three new vertices x2, y2, z2 and the six edges
x2u2, x2v1, y2v2, y2w1, z2w2, and z2u1. The graph G3 is shown in Figure 7.
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Figure 7. The graph G3 with g(G3) = f(G3) = 3

Since the diameter of G3 is 4 and there are exactly two geodesics between
every two vertices at distance 4 in G3, there is no 2-element geodetic set
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in G3. Hence g(G3) ≥ 3. On the other hand, {u1, v1, w1} is a geodetic set of
G3 and so g(G3) = 3. Since the minimum geodetic sets of G3 are precisely
those that have the form {u, v, w}, where u ∈ {u1, u2}, v ∈ {v1, v2} and
w ∈ {w1, w2}, it follows that f(G3) = g(G3) = 3.

We now assume that k = 2 and construct a connected graph G5. De-
fine the vertex set of G5 to consist of five mutually disjoint sets Vi =
{vi1, vi2, · · · , vi5}, 1 ≤ i ≤ 5, such that vip is adjacent vjq if and only if
j− i = ±1(mod 5). Thus the graph G5 is actually the composition C5[5K1].

We first show that g(G5) = 5. Since {v11, v21, · · · , v51} is a geodetic
set, g(G5) ≤ 5. We show now that every minimum geodetic set W contains
exactly one vertex from each set Vi (1 ≤ i ≤ 5). Assume, to the contrary,
that this is not the case. We consider two subcases.

Subcase 2.1. There exists exactly one set Vi, 1 ≤ i ≤ 5, such that

Vi ∩ W = ∅, say Vi = V1. Since either |V3 ∩ W | = 1 or |V4 ∩ W | = 1, it
follows that either V2 6⊆ I(W ) or V5 6⊆ I(W ), which is a contradiction.

Subcase 2.2. There are two distinct sets Vi, Vj, 1 ≤ i, j ≤ 5, such that

Vi ∩ W = ∅ and Vj ∩ W = ∅. We first assume that j − i = ±1(mod 5),
say Vi = V1 and Vj = V2. Since Vi ⊆ I(W ) for i = 1, 2, we must have
|W ∩ V5| ≥ 2 and |W ∩ V3| ≥ 2. But then V3 ∪ V5 6⊆ I(W ), a contradiction.
Otherwise, we may assume that V1 ∩ W = V3 ∩ W = ∅. However, then,
either W = V2 or V2 6⊆ I(W ), both of which are impossible.

Hence g(G5) = 5 and every minimum geodetic set of G5 contains exactly
one vertex from each set Vi (1 ≤ i ≤ 5). Therefore, f(G5) = 5.

We now assume that k ≥ 3. Let U1 = {u11, u12, · · · , u15} and V1 =
{v11, v12, v13, v14} be the partite sets of the graph K4,5 and let

M = {u11v11, u12v12, u13v13, u14v14}

be a maximum matching of K4,5. Now let H = K4,5 −M . We construct the
graph G2k+1 from the graph G2k in Case 1 by replacing F1 by H, but the
construction is otherwise the same. The graph G7 is shown in Figure 8.

It can be verified that any subset of V (G2k+1), consisting of one vertex of
Uk−1−{uk−1,1}, two vertices of each set V1, V2, . . . , Vk−1, and two vertices of
U1 −{u15}, is a minimum geodetic set of G2k+1. Therefore, g(G) = f(G) =
1 + 2(k − 1) + 2 = 2k + 1. This completes the proof.
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Figure 8. The graph G7
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