THE FORCING GEODETIC NUMBER OF A GRAPH

Gary Chartrand and Ping Zhang
Department of Mathematics and Statistics
Western Michigan University, Kalamazoo, MI 49008, USA
Dedicated to Frank Harary
on the occasion of the 50th anniversary of his Ph.D.

Abstract

For two vertices u and v of a graph G, the set $I(u, v)$ consists of all vertices lying on some $u-v$ geodesic in G. If S is a set of vertices of G, then $I(S)$ is the union of all sets $I(u, v)$ for $u, v \in S$. A set S is a geodetic set if $I(S)=V(G)$. A minimum geodetic set is a geodetic set of minimum cardinality and this cardinality is the geodetic number $g(G)$. A subset T of a minimum geodetic set S is called a forcing subset for S if S is the unique minimum geodetic set containing T. The forcing geodetic number $f_{G}(S)$ of S is the minimum cardinality among the forcing subsets of S, and the forcing geodetic number $f(G)$ of G is the minimum forcing geodetic number among all minimum geodetic sets of G. The forcing geodetic numbers of several classes of graphs are determined. For every graph $G, f(G) \leq g(G)$. It is shown that for all integers a, b with $0 \leq a \leq b$, a connected graph G such that $f(G)=a$ and $g(G)=b$ exists if and only if $(a, b) \notin\{(1,1),(2,2)\}$.

Keywords: geodetic set, geodetic number, forcing geodetic number.
1991 Mathematics Subject Classification: 05C12.

1. Introduction

The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. It is well known that this distance is a metric on the vertex set $V(G)$. For a vertex v of G, the eccentricity $e(v)$ is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is the radius, denoted by $\operatorname{rad} G$, of G and the maximum eccentricity is its diameter, denoted by diam G. A
$u-v$ path of length $d(u, v)$ is called a $u-v$ geodesic. We define $I(u, v)$ (interval) as the set of all vertices lying on some $u-v$ geodesic of G, and for a nonempty subset S of $V(G)$, we define

$$
I(S)=\bigcup_{u, v \in S} I(u, v)
$$

A set S of vertices of G is defined in [1] to be a geodetic set in G if $I(S)=$ $V(G)$, and a geodetic set of minimum cardinality is a minimum geodetic set. The cardinality of a minimum geodetic set in G is called the geodetic number $g(G)$.

For a minimum geodetic set S of G, a subset T of S with the property that S is the unique minimum geodetic set containing T is called a forcing subset of S. The forcing geodetic number $f_{G}(S, g)$ of S in G is the minimum cardinality of a forcing subset for S, while the forcing geodetic number $f(G, g)$ of G is the smallest forcing number among all minimum geodetic sets of G. Since the parameter g is understood in this context, we write $f_{G}(S)$ for $f_{G}(S, g)$ and $f(G)$ for $f(G, g)$. Hence if G is a graph with $f(G)=a$ and $g(G)=b$, then $0 \leq a \leq b$ and there exists a minimum geodetic set S of cardinality b containing a forcing subset T of cardinality a. For the graph G of Figure $1, g(G)=3$. There are four minimum geodetic sets in G, namely $S_{1}=\{u, x, z\}, S_{2}=\{v, y, w\}, S_{3}=\{x, y, w\}$, and $S_{4}=\{v, y, z\}$. Since S_{1} is the only minimum geodetic set containing u, it follows that $f_{G}\left(S_{1}\right)=1$. No other vertex of G belongs to only one minimum geodetic set, so $f_{G}\left(S_{i}\right) \geq 2$ for $i=2,3$, 4. (In fact, $f_{G}\left(S_{i}\right)=2$ for $i=2,3,4$.) Therefore, $f(G)=1$.

Figure 1. A graph with forcing geodetic number 1
It is immediate that $f(G)=0$ if and only if G has a unique minimum geodetic set. If G has no unique minimum geodetic set but contains a
vertex belonging to only one minimum geodetic set, then $f(G)=1$. We summarize these observations below.

Lemma 1.1. For a graph G, the forcing geodetic number $f(G)=0$ if and only if G has a unique minimum geodetic set. Moreover, $f(G)=1$ if and only if G has at least two distinct minimum geodetic sets but some vertex of G belongs to exactly one minimum geodetic set.

The following result is a direct consequence of Lemma 1.1.
Corollary 1.2. For a graph G, the forcing geodetic number $f(G) \geq 2$ if and only if every vertex of each minimum geodetic set belongs to at least two minimum geodetic sets.

2. Forcing Geodetic Numbers of Certain Graphs

In this section, we determine the forcing geodetic numbers of some well known graphs. We begin by determining the forcing geodetic number of the famous Petersen graph P of Figure 2. For a set S of vertices in a graph G, we write $N(S)$ for the neighborhood of S, that is, the set of all vertices that are neighbors of at least one vertex in S, while the closed neighborhood of S is defined by $N[S]=N(S) \cup S$.

Figure 2. The Petersen graph P
It can be verified that the geodetic number of P is 4 and that every set of four independent vertices of P is a minimum geodetic set. Since all independent sets of cardinality 4 are similar in P, we consider the independent
set $S=\left\{u_{1}, u_{3}, v_{4}, v_{5}\right\}$. For every $w \in S$, there exists a minimum geodetic set containing w that is distinct from S. For example, $\left\{u_{1}, u_{4}, v_{2}, v_{3}\right\}$ is another minimum geodetic set containing u_{1}. Therefore, every vertex of each minimum geodetic set of P belongs to at least two minimum geodetic sets and so, by Corollary 1.2, $f_{P}(S) \geq 2$. Moreover, if $S_{0}=\{x, y\} \subset S$, then $V(P)-N\left[S_{0}\right]$ consists of three vertices exactly two of which are nonadjacent. For example, let $S_{0}=\left\{v_{4}, v_{5}\right\}$. Then $V(P)-N\left[S_{0}\right]=\left\{u_{1}, u_{2}, u_{3}\right\}$, where only u_{1} and u_{3} are nonadjacent. Therefore, S is the unique minimum geodetic set containing S_{0}. This implies that $f_{P}(S)=2$ and that $f(P)=2$.

The following two observations appeared in [2].
Theorem A. If v is a vertex of a graph G such that $\langle N(v)\rangle$ is complete, then v belongs to every geodetic set of G.

Corollary B. Each end-vertex of a graph G belongs to every geodetic set of G.

Since the set of all end-vertices of T is the unique minimum geodetic set of T (see [1]), we have the following result.

Theorem 2.1. For a tree T, the forcing geodetic number $f(T)$ is 0 .
The corona $G \circ K_{1}$ of a graph G of order n is that graph obtained from G by joining one new vertex to each vertex of G. Thus the order of $G \circ K_{1}$ is $2 n$. For a connected graph G of order at least 2, we show that the set S of end-vertices of $G \circ K_{1}$ is a unique minimum geodetic set of $G \circ K_{1}$, implying that $f\left(G \circ K_{1}\right)=0$. By Corollary B, every geodetic set of $G \circ K_{1}$ contains S. It suffices to show that S is a geodetic set of G. For $v \in V(G)$, there exists $u \in V(G)$ that is adjacent to v. Let $v^{\prime}, u^{\prime} \in V\left(G \circ K_{1}\right)$ be the end-vertices joined to v and u, respectively. Then v lies on the $v^{\prime}-u^{\prime}$ geodesic $v^{\prime}, v, u, u^{\prime}$ in $G \circ K_{1}$. This implies that the set S is a geodetic set of $G \circ K_{1}$. Therefore, $f\left(G \circ K_{1}\right)=0$ for all connected graphs G.

Now we determine the forcing geodetic numbers of cycles.
Theorem 2.2. The forcing geodetic number of $C_{n}, n \geq 3$, is

$$
f\left(C_{n}\right)= \begin{cases}1, & \text { if } n \text { is even }, \\ 2, & \text { otherwise } .\end{cases}
$$

Proof. If n is even, then $g\left(C_{n}\right)=2$ and every pair of antipodal vertices of C_{n} forms a minimum geodetic set of C_{n}. Consequently, C_{n} does not have a unique minimum geodetic set but every vertex of C_{n} has a unique vertex antipodal to it, so $f\left(C_{n}\right)=1$. If n is odd, then $g\left(C_{n}\right)=3$. Again C_{n} has more than one minimum geodetic set. Moreover, every vertex of C_{n} belongs to at least two distinct minimum geodetic sets. By Corollary 1.2, $f\left(C_{n}\right) \geq 2$. On the other hand, for every pair u, v of adjacent vertices in C_{n}, there is a unique vertex w in C_{n} with $d(u, w)=d(v, w)$. Then $\{u, v, w\}$ is the unique minimum geodetic set containing $\{u, v\}$, implying that $f\left(C_{n}\right)=2$.
It was shown in [1] that $g\left(C_{n}\right)=g\left(C_{n} \times K_{2}\right)$, where $C_{n} \times K_{2}$ is the Cartesian product of C_{n} and K_{2}. A proof similar to that of Theorem 2.2 gives $f\left(C_{n}\right)=$ $f\left(C_{n} \times K_{2}\right)$. It is easy to verify that for $n \geq 4$ the geodetic number of the wheel $W_{n}=C_{n}+K_{1}$ of order $n+1$ is $\left\lceil\frac{n}{2}\right\rceil$ and that $f\left(W_{n}\right)=f\left(C_{n}\right)$.

We have determined the forcing geodetic numbers of trees and cycles. A closely related class of graphs is the unicyclic graphs. A graph is unicyclic if it is connected and contains exactly one cycle.

Theorem 2.3. Let G be a unicyclic graph that is not a cycle. If the cycle C of G has length k, and ℓ is the greatest order of a path on C every vertex of which has degree 2 in G, then

$$
f(G)= \begin{cases}0, & \text { if } \ell \leq(k-2) / 2 \text { or if } \ell=k-1 \text { is odd }, \\ 1, & \text { otherwise. }\end{cases}
$$

Proof. Let $C: v_{1}, v_{2}, \cdots, v_{k}, v_{1}$ and let W be the set of all end-vertices of G. Assume, without loss of generality, that $P: v_{1}, v_{2}, \cdots, v_{\ell}$, where $\operatorname{deg} v_{i}=2$ for $i=1,2, \cdots, \ell$. So $\operatorname{deg} v_{k} \geq 3$ and $\operatorname{deg} v_{\ell+1} \geq 3$. If $\ell \leq(k-2) / 2$, then W is the unique minimum geodetic set of G and so $f(G)=0$. Therefore, we assume that $\ell \geq(k-1) / 2$. Since $I(W)=V(G)-V(P)$, it follows that W is not a geodetic set of G, so $g(G) \geq|W|+1$. Assume first that $\ell=k-1$. If ℓ is odd, then $W \cup\left\{v_{\frac{\ell+1}{2}}\right\}$ is the unique minimum geodetic set of G and so $f(G)=0$. On the other hand, if ℓ is even, then there are pairs v_{i}, v_{j} of vertices with $1 \leq i<j \leq \ell$ such that $W \cup\left\{v_{i}, v_{j}\right\}$ is a minimum geodetic set. However, there is only one such set containing v_{ℓ}, namely, $W \cup\left\{v_{\frac{\ell}{2}}, v_{\ell}\right\}$ and so $f(G)=1$. Hence we assume that $(k-1) / 2 \leq \ell \leq k-2$. If ℓ is odd, then both $W \cup\left\{v_{\frac{\ell+1}{2}}\right\}$ and $W \cup\left\{v_{\frac{\ell_{-1}}{2}}\right\}$ are minimum geodetic sets of G; while if ℓ is even, then $W \cup\left\{v_{\frac{\ell}{2}}\right\}$ and $W \cup\left\{v_{\frac{\ell+2}{2}}\right\}$ are minimum geodetic sets of G. In either case, $f(G)=1$.

Next we determine the geodetic and forcing geodetic numbers of the hypercubes Q_{n}, where $n \geq 2$. The hypercube Q_{n} can be considered as that graph whose vertices are labeled by the binary n-tuple ($a_{1}, a_{2}, \cdots, a_{n}$) (that is a_{i} is 0 or 1 for $1 \leq i \leq n)$ and such that two vertices are adjacent if and only if their corresponding n-tuples differ in precisely one position.

Theorem 2.4. For $n \geq 2, g\left(Q_{n}\right)=2$ and $f\left(Q_{n}\right)=1$.
Proof. Since every minimum geodetic set of Q_{n} is of the form

$$
S=\left\{\left(a_{1}, a_{2}, \cdots, a_{n}\right),\left(1-a_{1}, 1-a_{2}, \cdots, 1-a_{n}\right)\right\}
$$

where $a_{1}, a_{2}, \cdots, a_{n} \in\{0,1\}$, it follows that $g\left(Q_{n}\right)=2$. Certainly, Q_{n} has more than one minimum geodetic set and every minimum geodetic set S is the unique minimum geodetic set containing $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$. Therefore, $f\left(Q_{n}\right)=1$.

Next, we study the forcing numbers of complete bipartite graphs. Let $1 \leq$ $r \leq s$ be two integers. It was shown in [1] that $g\left(K_{r, s}\right)=s$ if $r=1$; while $g\left(K_{r, s}\right)=\min \{r, 4\}$, if $r \geq 2$.

Theorem 2.5. Let $K_{r, s}$ be a complete bipartite graph with $r+s \geq 2$ and $1 \leq r \leq s$. Then

$$
f\left(K_{r, s}\right)=\left\{\begin{array}{llll}
0, & r=1 & \text { or } & r=2,3 \quad \text { and } r<s \\
1, & r=2,3 & \text { and } & r=s \\
3, & r=4, & & \\
4, & r \geq 5
\end{array}\right.
$$

Proof. Let $V_{1}=\left\{u_{1}, u_{2}, \cdots, u_{r}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}, \cdots, v_{s}\right\}$ be the partite sets of $G=K_{r, s}$. If $r=1$, then G is a tree and its forcing geodetic number is 0 .

We first assume that $r \in\{2,3\}$. If $r<s$, then G has a unique minimum geodetic set, namely V_{1}, and so the forcing geodetic number is 0 by Lemma 1.1. If $r=s$, then G has two distinct minimum geodetic sets, namely V_{1} and V_{2}. So the forcing geodetic number is at least 1 by Lemma 1.1. Certainly, for each $v \in V_{i}$ with $i=1,2$, the set V_{i} is the unique minimum geodetic set containing v. So the forcing geodetic number is 1 .

Next we assume that $r=4$ and so $g(G)=4$. If $r=s$, then V_{1}, V_{2}, and $S=\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ are minimum geodetic sets of G. All other minimum geodetic sets are similar to S. Since V_{1} is the unique minimum
geodetic set containing $\left\{u_{1}, u_{2}, u_{3}\right\}$ and V_{1} is not the unique minimum geodetic set containing any 2 -element or 1 -element subset of V_{1}, it follows that $f_{G}\left(V_{1}\right)=3$. Similarly, $f_{G}\left(V_{2}\right)=3$. Moreover, since S is not the unique minimum geodetic set containing any of its proper subsets, $f_{G}(S)=4$. Therefore, $f(G)=3$. If $r<s$, then V_{1} and $S=\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ are minimum geodetic sets of G. All other minimum geodetic sets are similar to S. Since $f_{G}\left(V_{1}\right)=3$ and $f_{G}(S)=4$, it follows that $f(G)=3$.

Finally, we assume that $r \geq 5$. Then every minimum geodetic set S of G is of the form $S=\left\{u_{i_{1}}, u_{i_{2}}, v_{j_{1}}, v_{j_{2}}\right\}$, where $1 \leq i_{1}<i_{2} \leq r$ and $1 \leq j_{1}<j_{2} \leq s$. Since S is not the unique minimum geodetic set containing any of its proper subsets, $f(G)=4$.

3. Graphs with Prescribed Geodetic and Forcing Geodetic Numbers

We have already noted that if G is a graph with $f(G)=a$ and $g(G)=b$, then $0 \leq a \leq b$. We now establish a converse result beginning with the case where $a \neq b$.

Theorem 3.1. Every pair a, b of integers with $0 \leq a<b$ can be realized as the forcing geodetic number and geodetic number, respectively, of some graph.

Proof. We have already seen that if $G=K_{b}$, then $f(G)=0$ and $g(G)=b$. Thus, we assume that $0<a<b$. We consider two cases.

Case 1. $a=1$.
If $b=2$, then every even cycle has forcing geodetic number 1 and geodetic number 2 . So we assume that $b \geq 3$. Consider the graph G of Figure 3 .

We first show that $g(G)=b$. Let $U=\left\{u_{1}, u_{2}, \cdots, u_{b-2}\right\}$ be the set of end-vertices of G. Since $U \cup\left\{v_{3}, x\right\}$ is a geodetic set of G, it follows that $g(G) \leq b$. On the other hand, by Corollary B, every minimum geodetic set of G includes U. Moreover, it is routine to verify that for each $z \in V(G)-U$, the set $U \cup\{z\}$ is not a geodetic set of G, implying that $g(G) \geq b$. Therefore, $g(G)=b$.

Next we show that $f(G)=1$. Since $U \cup\left\{v_{3}, x\right\}$ and $U \cup\left\{v_{3}, y\right\}$ are two distinct minimum geodetic sets of G, it follows that $f(G) \geq 1$ by Lemma 1.1. Moreover, $S=U \cup\left\{v_{3}, x\right\}$ is the unique minimum geodetic set containing $\{x\}$. This implies that $f_{G}(S)=1$. Therefore, $f(G)=1$.

Figure 3. The graph G with $g(G)=b$ and $f(G)=1$
Case 2. $a \geq 2$.
First assume that $b=a+1$. We consider the graph G of order $2 a+4$ shown in Figure 4.

Figure 4. The graph G with $g(G)=f(G)+1$
We first show that $g(G)=a+1$. Since $\left\{u_{2}, u_{3}, \cdots, u_{a+1}, v_{1}\right\}$ is a geodetic set of G, it follows that $g(G) \leq a+1$. Next we show that $g(G) \geq a+1$. For every i with $1 \leq i \leq a+1$, each of u_{i} and v_{i} lies only on geodesics with initial or terminal vertex u_{i} or v_{i}. This implies that if W is a minimum geodetic set of G, then W contains at least one vertex from each set $\left\{u_{i}, v_{i}\right\}$, where $1 \leq i \leq a+1$, implying that $g(G) \geq a+1$. Therefore, $g(G)=a+1=b$
and $W \subseteq V(G)-\{x, y\}$. Furthermore, $W \neq\left\{u_{1}, u_{2}, \cdots, u_{a+1}\right\}$ and $W \neq$ $\left\{v_{1}, v_{2}, \cdots, v_{a+1}\right\}$.

Next we show that $f(G)=a$. Again, let W be a minimum geodetic set of G. Since $W \cap\left\{u_{1}, u_{2}, \cdots, u_{a+1}\right\} \neq \emptyset$ and $W \cap\left\{v_{1}, v_{2}, \cdots, v_{a+1}\right\} \neq \emptyset$, it follows that W is not the unique minimum geodetic set containing any of its subsets W^{\prime} with $\left|W^{\prime}\right|<a$. So $f_{G}(W) \geq a$ for every minimum geodetic set W of G. Therefore, $f(G) \geq a$. On the other hand, $W=\left\{u_{2}, u_{3}, \cdots, u_{a+1}, v_{1}\right\}$ is the unique minimum geodetic set containing $\left\{u_{2}, u_{3}, \cdots, u_{a+1}\right\}$, implying that $f_{G}(W)=a$. Therefore, $f(G)=a$.

Figure 5. The graph G with $g(G)=b$ and $f(G)=a$
We now assume that $b \geq a+2$. Consider the graph of Figure 5. We first show that $g(G)=b$. Since

$$
S=\left\{u_{2}, u_{3}, \cdots, u_{a+1}, v_{1}, w_{1}, w_{2}, \cdots, w_{b-a-1}\right\}
$$

is a geodetic set, $g(G) \leq b$. Next we show that $g(G) \geq b$. By Corollary B , the end-vertices $w_{1}, w_{2}, \cdots, w_{b-a-1}$ belong to every geodetic set of G. Moreover, as above, for every i with $1 \leq i \leq a+1$, each of u_{i} and v_{i} lies only on geodesics with initial or terminal vertex u_{i} or v_{i}. This implies that every minimum geodetic set of G must contain at least one vertex from each set $\left\{u_{i}, v_{i}\right\}$, where $1 \leq i \leq a+1$. Therefore, $g(G) \geq(b-a-1)+(a+1)=b$.

Next we show that $f(G)=a$. Every minimum geodetic set S of G has the form

$$
S=U \cup V \cup W
$$

where $U \subseteq\left\{u_{1}, u_{2}, \cdots, u_{a+1}\right\}, V \subseteq\left\{v_{1}, v_{2}, \cdots, v_{a+1}\right\}$ and $W=\left\{w_{1}, w_{2}, \cdots\right.$, $\left.w_{b-a-1}\right\}$ with $U \neq \emptyset$ and $V \neq \emptyset$. This implies that if S is a minimum geodetic set of G and $S^{\prime} \subseteq S$ with $\left|S^{\prime}\right|<a$, then S is not the unique minimum geodetic set containing S^{\prime}. Therefore, $f(G) \geq a$. On the other hand, the set

$$
S=\left\{u_{2}, u_{3}, \cdots, u_{a+1}, v_{1}, w_{1}, w_{2}, \cdots, w_{b-a-1}\right\}
$$

is the unique minimum geodetic set containing $\left\{u_{2}, u_{3}, \cdots, u_{a+1}\right\}$, implying that $f_{G}(S)=a$. Therefore, $f(G)=a$.

Next we show that if a connected graph of order at least 2 has its geodetic number equal to its forcing geodetic number, then this number exceeds 2. First observe that $2 \leq g(G) \leq n$ for every connected graph of order $n \geq 2$. Therefore, the case $f(G)=g(G)=1$ is impossible for any connected graph of order at least 2 .

Theorem 3.2. If G is a connected graph with geodetic number 2 , then $f(G)<2$.

Proof. Let $\{u, v\}$ be a minimum geodetic set of G. Then $d(u, v)=\operatorname{diam} G$ and every vertex of G lies on some $u-v$ geodesic of G. If $f(G)=2$, then there exists $x \neq v$ such that $\{u, x\}$ is also a minimum geodetic set of G. However, the fact that x lies on some $u-v$ geodesic of G implies that $d(u, x)<d(u, v)=\operatorname{diam} G$, which is a contradiction.
We have seen in Theorem 3.2 that $f(G)<g(G)$ if $g(G)=2$. Next we show that every integer $a \geq 3$ is simultaneously realizable as both the geodetic number and forcing geodetic number of some connected graph.

Theorem 3.3. For every integer $a \geq 3$, there exists a connected graph G such that

$$
g(G)=f(G)=a .
$$

Proof. For each integer $a \geq 3$, we construct a graph G_{a} with $f\left(G_{a}\right)=$ $g\left(G_{a}\right)=a$. We consider two cases, according to whether a is even or a is odd.

Case 1. $a=2 k$, where $k \geq 2$.
We have seen in Theorem 2.5 that if $5 \leq r \leq s$, then $f\left(K_{r, s}\right)=g\left(K_{r, s}\right)=4$. So we may assume that $k \geq 3$. For $k=3$, let F_{1} and F_{2} be two copies of
$K_{5,5}$ with $V\left(F_{1}\right)=X \cup Y$ and $V\left(F_{2}\right)=U \cup V$, where $X=\left\{x_{1}, x_{2}, \cdots, x_{5}\right\}$, $Y=\left\{y_{1}, y_{2}, \cdots, y_{5}\right\}, U=\left\{u_{1}, u_{2}, \cdots, u_{5}\right\}$, and $V=\left\{v_{1}, v_{2}, \cdots, v_{5}\right\}$ are the respective partite sets of F_{1} and F_{2}. Then the graph G_{6} is formed from F_{1} and F_{2} by adding the edge $x_{5} u_{1}$. The graph G_{6} is shown in Figure 6.

Figure 6. The graph G_{6}
We first show that $g\left(G_{6}\right)=6$. Since

$$
S=\left\{x_{1}, y_{1}, y_{2}, u_{5}, v_{4}, v_{5}\right\}
$$

is a geodetic set of G_{6}, it follows that $g\left(G_{6}\right) \leq 6$. Assume, to the contrary, that $g\left(G_{6}\right)<6$. Let W be a geodetic set of G_{6} with $|W|=5$. We claim that W must contain at least one vertex from each set of X, Y, U, and V. Assume, to the contrary, that this is not the case. There are two subcases.

Subcase 1.1. $W \cap X=\emptyset$.
Observe that in this subcase, each vertex $y_{i}(1 \leq i \leq 5)$ only lies on those geodesics with initial or terminal vertex y_{i}. Then $W=Y$ as $|W|=|Y|$. However, $I(Y)=V\left(F_{1}\right) \neq V\left(G_{6}\right)$, contradicting the fact that W is a geodetic set of G_{6}.

Subcase 1.2. $W \cap Y=\emptyset$.
Since each vertex $x_{i}(1 \leq i \leq 4)$ lies only on those geodesics with initial or terminal vertex x_{i}, it follows that $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subset W$. So $W=\left\{x_{1}, x_{2}, x_{3}, x_{4}, v\right\}$ for some $v \in V\left(G_{6}\right)-\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. It is routine to verify that W is not a geodetic set of G_{6} for each vertex v of G_{6}.

Therefore, W contains at least one vertex from each of X, Y, U, and V. Without loss of generality, let $W=\left\{u, v_{1}, x, y_{1}, w\right\}$, where $x \in X, u \in U$,
$w \in V\left(G_{6}\right)-\left\{u, v_{1}, x, y_{1}\right\}$. There are only three possible choices for u and x that are not equivalent, namely (1) $u=u_{1}$ and $x=x_{5}$, (2) $u \neq u_{1}$ and $x=x_{5}$, and (3) $u \neq u_{1}$ and $x \neq x_{5}$. It can be verified that W is not a geodetic set of G_{6} in any of these cases, implying that $g\left(G_{6}\right) \geq 6$ and so $g\left(G_{6}\right)=6$.

Next we show that $f\left(G_{6}\right)=6$. Vertices of $U-\left\{u_{1}\right\}$ (of $X-\left\{x_{5}\right\}$) are interior vertices only for geodesics with initial and terminal vertex in V (in Y). Vertices of V (of Y) are interior vertices only for geodesics with an end-vertex in U (in X). From this it is clear that $\left|S \cap\left(U-\left\{u_{1}\right\}\right)\right|=$ $\left|S \cap\left(X-\left\{x_{5}\right\}\right)\right|=1$ and $|S \cap V|=|S \cap Y|=2$, implying that S is not the unique minimum geodetic set containing any of its proper subsets. Therefore, $f\left(G_{6}\right)=6$.

We can now extend G_{6} to construct a graph $G_{2 k}$ for all $k \geq 4$. Let $F_{1}, F_{2}, \cdots, F_{k-1}$ be $k-1$ copies of $K_{5,5}$. For each i with $1 \leq i \leq k-1$, assume that the partite sets of F_{i} are $U_{i}=\left\{u_{i 1}, u_{i 2}, \cdots, u_{i 5}\right\}$ and $V_{i}=$ $\left\{v_{i 1}, v_{i 2}, \cdots, v_{i 5}\right\}$. Then the graph $G_{2 k}$ is formed from $F_{1}, F_{2}, \cdots, F_{k-1}$ by adding the $k-2$ new edges $u_{i 5} u_{i+1,1}$ between F_{i} and F_{i+1}, where $1 \leq i \leq$ $k-2$. Then every minimum geodetic set of $G_{2 k}$ contains exactly one vertex from each of $U_{1}-\left\{u_{15}\right\}$ and $U_{k-1}-\left\{u_{k-1,1}\right\}$ and exactly two vertices from each set $V_{i}, 1 \leq i \leq k-1$. Therefore, $g\left(G_{2 k}\right)=f\left(G_{2 k}, g\right)=2 k$.

Case 2. $a=2 k+1$, where $k \geq 1$.
For $k=1$, let the graph G_{3} be obtained from the cycle $C_{9}: u_{1}, u_{2}, x_{1}, v_{1}, v_{2}$, $y_{1}, w_{1}, w_{2}, z_{1}, u_{1}$ by adding three new vertices x_{2}, y_{2}, z_{2} and the six edges $x_{2} u_{2}, x_{2} v_{1}, y_{2} v_{2}, y_{2} w_{1}, z_{2} w_{2}$, and $z_{2} u_{1}$. The graph G_{3} is shown in Figure 7 .

Figure 7. The graph G_{3} with $g\left(G_{3}\right)=f\left(G_{3}\right)=3$
Since the diameter of G_{3} is 4 and there are exactly two geodesics between every two vertices at distance 4 in G_{3}, there is no 2-element geodetic set
in G_{3}. Hence $g\left(G_{3}\right) \geq 3$. On the other hand, $\left\{u_{1}, v_{1}, w_{1}\right\}$ is a geodetic set of G_{3} and so $g\left(G_{3}\right)=3$. Since the minimum geodetic sets of G_{3} are precisely those that have the form $\{u, v, w\}$, where $u \in\left\{u_{1}, u_{2}\right\}, v \in\left\{v_{1}, v_{2}\right\}$ and $w \in\left\{w_{1}, w_{2}\right\}$, it follows that $f\left(G_{3}\right)=g\left(G_{3}\right)=3$.

We now assume that $k=2$ and construct a connected graph G_{5}. Define the vertex set of G_{5} to consist of five mutually disjoint sets $V_{i}=$ $\left\{v_{i 1}, v_{i 2}, \cdots, v_{i 5}\right\}, 1 \leq i \leq 5$, such that $v_{i p}$ is adjacent $v_{j q}$ if and only if $j-i= \pm 1(\bmod 5)$. Thus the graph G_{5} is actually the composition $C_{5}\left[5 K_{1}\right]$.

We first show that $g\left(G_{5}\right)=5$. Since $\left\{v_{11}, v_{21}, \cdots, v_{51}\right\}$ is a geodetic set, $g\left(G_{5}\right) \leq 5$. We show now that every minimum geodetic set W contains exactly one vertex from each set $V_{i}(1 \leq i \leq 5)$. Assume, to the contrary, that this is not the case. We consider two subcases.

Subcase 2.1. There exists exactly one set $V_{i}, 1 \leq i \leq 5$, such that $V_{i} \cap W=\emptyset$, say $V_{i}=V_{1}$. Since either $\left|V_{3} \cap W\right|=1$ or $\left|V_{4} \cap W\right|=1$, it follows that either $V_{2} \nsubseteq I(W)$ or $V_{5} \nsubseteq I(W)$, which is a contradiction.

Subcase 2.2. There are two distinct sets $V_{i}, V_{j}, 1 \leq i, j \leq 5$, such that $V_{i} \cap W=\emptyset$ and $V_{j} \cap W=\emptyset$. We first assume that $j-i= \pm 1(\bmod 5)$, say $V_{i}=V_{1}$ and $V_{j}=V_{2}$. Since $V_{i} \subseteq I(W)$ for $i=1,2$, we must have $\left|W \cap V_{5}\right| \geq 2$ and $\left|W \cap V_{3}\right| \geq 2$. But then $V_{3} \cup V_{5} \nsubseteq I(W)$, a contradiction. Otherwise, we may assume that $V_{1} \cap W=V_{3} \cap W=\emptyset$. However, then, either $W=V_{2}$ or $V_{2} \nsubseteq I(W)$, both of which are impossible.

Hence $g\left(G_{5}\right)=5$ and every minimum geodetic set of G_{5} contains exactly one vertex from each set $V_{i}(1 \leq i \leq 5)$. Therefore, $f\left(G_{5}\right)=5$.

We now assume that $k \geq 3$. Let $U_{1}=\left\{u_{11}, u_{12}, \cdots, u_{15}\right\}$ and $V_{1}=$ $\left\{v_{11}, v_{12}, v_{13}, v_{14}\right\}$ be the partite sets of the graph $K_{4,5}$ and let

$$
M=\left\{u_{11} v_{11}, u_{12} v_{12}, u_{13} v_{13}, u_{14} v_{14}\right\}
$$

be a maximum matching of $K_{4,5}$. Now let $H=K_{4,5}-M$. We construct the graph $G_{2 k+1}$ from the graph $G_{2 k}$ in Case 1 by replacing F_{1} by H, but the construction is otherwise the same. The graph G_{7} is shown in Figure 8.

It can be verified that any subset of $V\left(G_{2 k+1}\right)$, consisting of one vertex of $U_{k-1}-\left\{u_{k-1,1}\right\}$, two vertices of each set $V_{1}, V_{2}, \ldots, V_{k-1}$, and two vertices of $U_{1}-\left\{u_{15}\right\}$, is a minimum geodetic set of $G_{2 k+1}$. Therefore, $g(G)=f(G)=$ $1+2(k-1)+2=2 k+1$. This completes the proof.

Figure 8. The graph G_{7}

Acknowledgements

The authors are grateful to the referees whose valuable suggestions resulted in completing Theorem 3.3 and producing a better organized and improved paper.

References

[1] G. Chartrand, F. Harary and P. Zhang, The geodetic number of a graph, Networks (to appear).
[2] G. Chartrand, F. Harary, and P. Zhang, On the hull number of a graph, Ars Combin. (to appear).

Received 15 April 1998
Revised 11 January 1999

