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Abstract

In this paper, we propose a generalization of well known kinds of
perfectness of graphs in terms of distances between vertices. We in-
troduce generalizations of α-perfect, χ-perfect, strongly perfect graphs
and we establish the relations between them. Moreover, we give suf-
ficient conditions for graphs to be perfect in generalized sense. Other
generalizations of perfectness are given in papers [3] and [7].
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1. Introduction

We consider only simple graphs which have no loops and multiple edges and
we generally follow the standard terminology of Berge [1]. Let G be a graph
with the vertex set V (G) and the edge set E(G). By a path joining vertices
x1 and xn in the graph G we mean a sequence of vertices x1, . . . , xn such
that (xi, xi+1) ∈ E(G), for i = 1, . . . , n − 1, n ≥ 2. We will denote it by
(x1, . . . , xn) or sometimes by Px1xn . A path with x1 = xn is called a cycle.
Recall that the distance dG(x, y) of two vertices x and y in G is meant as the
length (i.e., the number of edges) of the shortest path joining x and y in G.
If G is connected, then dG(x, y) is finite. By Cn, n ≥ 3 we denote a graph
called an n-cycle, if V (Cn) can be so arranged as a sequence x1, . . . , xn,
then E(Cn) = {(xi, xi+1); i = 1, . . . , n and xn+1 = x1}. Analogously we
define a graph called an n-path, n ≥ 2 and we denote it by Pn. By 〈V1〉G
we will denote a subgraph of G induced by V1 ⊂ V (G). If H is a subgraph
of G induced by some subset, then we shall briefly write H ≤ G. We say
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that G is R-free if it does not contain induced subgraphs isomorphic to a
given graph R. Note also that the words maximum and minimum refer to
the cardinality of a set with a prescribed property. Also as usual the word
maximal refers to set-inclusion. Let k be a fixed positive integer such that
k ≥ 1. We say that a subset Q ⊆ V (G) is a k-distance clique of (or in) G if

(1) for any x, y ∈ Q, dG(x, y) ≤ k and

(2) 〈Q〉G is connected.

Denote by Ck(G) the family of all maximal k-distance cliques of G. Note
that 1-distance clique is a clique of G. We say that S ⊂ V (G) is a k-stable

transversal of G if for each Q ∈ Ck(G), |S ∩ Q| = 1. This implies that for
every x, y ∈ S, dG(x, y) > k. A subset of vertices which has such a property
we will call a k-distance stable set in G. The k-distance chromatic number

χk(G) of G is the smallest cardinality among partitions of the V (G) into
k-distance stable sets. The minimum number of k-distance cliques which
cover V (G) we denote Θk(G). Moreover, ωk(G) denotes the cardinality of
the maximum k-distance clique and αk(G) is the cardinality of the maximum
k-distance stable set.

Note that χ1(G) is the chromatic number χ(G), 1-stable set is a stable
set in a graph, Θ1(G) is the minimum number of cliques which cover V (G),
ω1(G) is the maximum cardinality of a clique and α1(G) is the stability
number of the graph G.

We say that a graph G is a clique-tree if

(3) G is connected and

(4) G is Cn-free, for n ≥ 4 and

(5) for any two cliques Qi, Qj ∈ C1(G), |Qi ∩ Qj| ≤ 1 and

(6) for an arbitrary clique Q ∈ C1(G), 1 ≤ |Q ∩
⋃

Q′∈C1(G),Q′ 6=Q

Q′| ≤ 2.
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Note that trees are clique-trees. Another example of a clique-tree is on
Figure 1.

For k ≥ 1 by a k-th power of a graph G we mean a graph Gk such that
V (Gk) = V (G) and (x, y) ∈ E(Gk) if and only if dG(x, y) ≤ k.
Note that G1 is isomorphic to G.

For k ≥ 1 we define three classes of graphs Pχk
, Pαk

and PkS in the
following way:

(7) G ∈ Pχk
if and only if for each H ≤ G, χk(H) = ωk(H),

(8) G ∈ Pαk
if and only if for each H ≤ G, αk(H) = Θk(H),

(9) G ∈ PkS if and only if for each H ≤ G, H has a k-stable transversal.

Note that if k = 1, then we obtain the well-known classes of graphs, namely
Pχ1 is a class of χ-perfect graphs, Pα1 is a class of α-perfect graphs and P1S

is a class of strongly perfect graphs. For more information about α-perfect,
χ-perfect and strongly perfect graphs the reader is refered to [1], [2], [5],
[6], [8].

The dependencies between these classes are known.

Theorem 1 [5]. A graph is α-perfect if and only if it is χ-perfect.

As a consequence: a graph which is α-perfect and χ-perfect was called per-

fect.

Theorem 2 [2]. A strongly perfect graph is perfect.

In other words, Pχ1 = Pα1 ⊃ P1S .
At the beginning we recall some classical results concerning perfect and

strongly perfect graphs which will be used in our further investigations. For
convenience, we put P = Pχ1 = Pα1 and SP = P1S .

Theorem 3 [2]. If G is P4-free, then G ∈ SP.

Theorem 4 [2]. If G is triangulated, then G ∈ SP.

Theorem 5 [1]. If G ∈ P, then G is C2n+1-free, for n ≥ 2.

2. Results

Throughout this section, we assume that k ≥ 1. The aim of this section is
to formulate the dependencies between classes Pχk

, Pαk
and PkS , for k ≥ 1.

We also give some examples of graphs belonging to these classes.
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Theorem 6. If G is connected and |V (G)| ≤ k+1, then G ∈ Pχk
∩Pαk

∩PkS.

Theorem 7. For any t ≥ 2, Pt ∈ Pχk
∩ Pαk

∩ PkS.

A necessary condition for a graph to belong to Pχk
∪Pαk

∪PkS in the next
theorem is given.

Theorem 8. If G ∈ Pχk
∪ Pαk

∪ PkS, then G is Cn(k+1)+r-free, for k ≥ 1,
n ≥ 2 and 0 < r ≤ k. Moreover, the graph Cn(k+1)+r is a minimal (with

respect to the number of edges by a fixed number of vertices) forbidden sub-

graph.

Proof. For k = 1 the result follows from Theorem 2 and 5.

Let k ≥ 2 and assume that G has Cn(k+1)+r, k ≥ 1, n ≥ 2, 0 < r ≤ k,
as induced subgraph.

1) It is evident that χk(Cn(k+1)+r) = k + r + 1 and ωk(Cn(k+1)+r) = k + 1,
so Cn(k+1)+r 6∈ Pχk

.

2) Analogously we show that Cn(k+1)+r 6∈ Pαk
, because αk(Cn(k+1)+r) = n

and Θk(Cn(k+1)+r) = n + 1.

3) Suppose to the contrary that Cn(k+1)+r ∈ PkS. This implies that
Cn(k+1)+r has a k-stable transversal S. Let x, y ∈ S, then dCn(k+1)+r

(x, y)
≥ k + 1. Suppose that there exist vertices xi, xj ∈ S such that
dCn(k+1)+r

(xi, xj) = l, where k + 1 < l < 2(k + 1). This means
that there exists a path joining vertices xi and xj whose inner vertices
xi+1, xi+2, . . . xi+l−1 do not belong to S. Moreover, it may be noted that the
vertices xi+1, xi+2, . . . xi+k+1 constitute a k-distance clique Q of Cn(k+1)+r

which has no common vertex with the set S. This contradicts the assump-
tion that S is a k-stable transversal of Cn(k+1)+r.

In conclusion: for any two vertices belonging to any k-stable transversal
of Cn(k+1)+r holds either dCn(k+1)+r

(xi, xj) = k + 1 or dCn(k+1)+r
(xi, xj) ≥

2(k + 1) and there exists in the shortest path joining xi, xj at least one
vertex which belongs to S.

As a consequence: if xt ∈ S, where 1 ≤ t ≤ n(k+1)+r, then xt+p(k+1) ∈
S for p = 1, 2, . . . , n − 1. If t + p(k + 1) > n(k + 1) + r, then xt+p(k+1) =
xt+p(k+1)−(n(k+1)+r). Note that

dCn(k+1)+r
(xt, xt+(n−1)(k+1)) = min{k + r + 1, (n − 1)(k + 1)}

=

{

k + 1, if n = 2,
k + r + 1, if n > 2.
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In other words, in both the cases there exists a path (xt+(n−1)(k+1),
xt+(n−1)(k+1)+1, . . . , xt+n(k+1)+r = xt) of length k + r + 1 not containing in-
ner vertices from the set S. Choose k +1 vertices from this path and form a
k-distance clique Q′ = {xt+(n−1)(k+1)+1, . . . , xt+(n−1)(k+1)+k+1 = xt+n(k+1)}.
Because of S ∩ Q′ = ∅ we obtain a contradiction to the assumption that S
is a k-stable transversal of Cn(k+1)+r. Finally, Cn(k+1)+r 6∈ PkS.

Of course, Cn(k+1)+r is a minimal forbidden subgraph for classes Pχk
,

Pαk
and PkS because every its induced proper connected subgraph H ≤

Cn(k+1)+r is a path or an isolated vertex. So H ∈ Pχk
, Pαk

and H ∈ PkS,
which completes the proof.

Theorem 9. Let m be an integer, m ≥ 3 and k ≥ 1. Cm ∈ Pχk
∩Pαk

∩PkS if

and only if m ≤ 2k+1 or there exists an integer n ≥ 2 such that m = n(k+1).

Proof. If m = n(k + 1) + r, n ≥ 2, 0 < r ≤ k, then Cm 6∈ Pχk
∩Pαk

∩PkS

from Theorem 8. Now, suppose that m ≤ 2k + 1 or m = n(k + 1) and
H ≤ Cm. Consider two cases:

Case 1. H is a proper subgraph of Cm.
If H is isomorphic to Pt, where 1 < t < m−1, then from Theorem 7 we have
that χk(H) = ωk(H), αk(H) = Θk(H) and H has a k-stable transversal.
For disconnected subgraphs we prove analogously for each component. If H
is totaly disconnected, then χk(H) = ωk(H) = 1, αk(H) = Θk(H) = |V (H)|
and V (H) is a k-stable transversal.

Case 2. H is isomorphic to Cm.
If m ≤ 2k + 1, then Cm is a k-distance clique. From this fact it follows that
χk(H) = |V (H)| = ωk(H), αk(H) = 1 = Θk(H) and an arbitrary vertex
from V (H) is a k-stable transversal of H.

If m = n(k + 1) for n ≥ 2, then χk(H) = k + 1 = ωk(H), αk(H) = n =
Θk(H) and St = {xt, xt+(k+1), . . . , xt+(n−1)(k+1)} for t = 1, . . . , k.

Thus the theorem is proved.

Theorem 10 [4]. If G is connected, then for k ≥ 2, χk(G) = k + 1 if and

only if

(a) |V (G)| = k + 1 or

(b) G is isomorphic to Pm, for m ≥ k + 1 or

(c) G is isomorphic to Cn(k+1), for n ≥ 1.

As a consequence of Theorems 6, 7, 9 and 10 is the following statement.
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Corollary 1. If χk(G) = k + 1, then G ∈ Pχk
∩ Pαk

∩ PkS .

Now we establish dependencies between distance perfectness of G and
perfectness of Gk, for k ≥ 1.

Considering G and Gk immediately gives:

(10) S ⊂ V (G) is a k-distance stable set in G if and only if S is a stable set
in Gk.

(11) If Q is a (maximal) k-distance clique of G, then Q is a (maximal) clique
of Gk.

For (11) the opposite implication is not true because if Q is a clique of Gk,
then 〈Q〉G is not connected in the general case. For example (see Figure 2):
{x1, x3, x5} is a clique in G2, but it is not 2-distance clique in G because
〈{x1, x3, x5}〉G is disconnected.
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Figure 2

The converse implication holds only for special classes of graphs. All this
together yields that distance perfectness of G is not equivalent to perfectness
of Gk.

Theorem 11. For n ≥ 1, Ck
n(k+1) ∈ SP if and only if n = 1, 2.

Proof. For k = 1 the result follows from Theorem 9.

Suppose that k ≥ 2 and n = 1, 2. Then by the definition of the k-th
power of a graph we obtain that Ck

n(k+1) does not have the graph P4 as

induced subgraph. Hence, by Theorem 3 Ck
n(k+1) ∈ SP . Now assume that

k ≥ 2, n ≥ 3 and let V (Cn(k+1)) = {x1, x2, . . . , xn(k+1)}. There are integers
t, r such that t ≥ n, 0 ≤ r < k and n(k + 1) = tk + r. It is not difficult to
observe that the graph Ck

n(k+1) has an induced subgraph C isomorphic to
an m-cycle Cm, namely:

1) if t is odd and r = 0 (i.e., n(k + 1) = tk, so 3 ≤ n < t), then V (C) =
{x1, x1+k, . . . , x1+tk = x1} and C is isomorphic to Cm for m = t ≥ 5, or
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2) if t is odd and r = 1, then V (C) = {x1, x1+k, . . . , x1+(t−3)k , x1+(t−3)k+1,
x1+(t−2)k+1, x1+(t−2)k+2, x1+(t−1)k+2, x1+tk+1 = x1} and C is isomorphic to
Cm for m = t + 2 ≥ 5, or

3) if t is odd and 1 < r < k, then V (C) = {x1, x1+k, . . . , x1+(t−1)k,
x1+(t−1)k+1, x1+tk+1, x1+tk+r = x1} and C is isomorphic to Cm for m =
t + 2 ≥ 5.

4) if t is even and r = 0, then V (C) = {x1, x1+k, . . . , x1+(t−2)k, x1+(t−2)k+1,
x1+(t−1)k+1, x1+tk = x1} and C is isomorphic to Cm for m = t + 1 ≥ 5, or

5) if t is even and r 6= 0, then V (C) = {x1, x1+k, . . . , x1+tk, x1+tk+r = x1}
and C is isomorphic to Cm for m = t + 1 ≥ 5.

Consequently, Ck
n(k+1) has Cm, m ≥ 5 as induced subgraph, hence

Ck
n(k+1) 6∈ SP by Theorem 2 and 5. Thus the theorem is proved.

In the same way we can prove the following theorem.

Theorem 12. For k ≥ 2 a graph Ck
n(k+1) ∈ P if and only if n = 1, 2.

Corollary 2. The following equivalence is true only for n = 1, 2

Cn(k+1) ∈ Pχk
∩ Pαk

∩ PkS if and only if Ck
n(k+1) ∈ P ∩ P1S = SP .

Theorem 13. Let T be a tree. A subset Q ⊂ V (T ) is a maximal k-distance

clique of T if and only if Q is a maximal clique of T k, for k ≥ 1.

Proof. For k = 1 the theorem is obvious.

Let k ≥ 2. If Q is a maximal k-distance clique of T , then Q is a maximal
clique of T k by (11).

Conversely we assume that Q is a maximal clique in T k. We shall show
that Q is a maximal k-distance clique of T . From the definition of the k-th
power of a graph it follows that if x, y ∈ Q, then dT (x, y) ≤ k. Moreover,
if Q is a maximal subset with this property in T k, then it is maximal in T .
Hence it remains to show that the induced subgraph 〈Q〉T is connected.
Assume that |Q| ≥ 2 and 〈Q〉T is disconnected. Let Q =

⋃n
i=1 Qi, where

〈Qi〉T is connected and 〈Qi ∪ {v}〉T is disconnected for v ∈ Qj, j 6= i. In
consequence, there exist two vertices, say x ∈ Qi and y ∈ Qj not joined by
a path in 〈Q〉T . But there exists a path of length at most k joined x and y
in T . Then we deduce that there is a vertex z ∈ Pxy and z ∈ V (T )\Q. From
the fact that z 6∈ Q it follows that there exists u ∈ Q such that dT (z, u) > k,
because Q is maximal. This implies the existence of a path Pxu in T of
length greater than k. Because in a tree every pair of vertices is joined by
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exactly one path, so dT (x, u) > k but this cannot occur since x, u ∈ Q, so
dT (x, u) < k.

Theorem 14. Let T be a tree. Then T ∈ Pχk
∩ Pαk

∩ PkS if and only if

T k ∈ SP, for k ≥ 1.

The proof is straightforward using Theorem 13 and applying (10).
It is well known, see [1], that for an arbitrary k ≥ 1, T k is triangulated

and by Theorem 4, T k ∈ SP ⊂ P.
All this together gives

Corollary 3. For k ≥ 1, T ∈ Pχk
∩ Pαk

∩ PkS.

Theorem 15. If G is a clique-tree, then G ∈ PkS.

Proof. If G is a clique, then of course G ∈ PkS .
If G is a tree, then the result follows from Corollary 3. Assuming that G

is not a tree and G is not a clique, we consider the following contraction of
G to a tree. Create a subset R ⊂ V (G) in the following way. Let Q ∈ C1(G)
be an arbitrary maximal clique of G. There are two cases to establish.

Case 1. If 〈Q〉G is isomorphic to K2, then Q ⊂ R.

Case 2. Suppose that 〈Q〉G is not isomorphic to K2. Then by the
definition of a clique-tree it follows that for any Qi ∈ C1(G), Qi 6= Q we
must have |Q ∩ Qi| ≤ 1. Let Q1, Q2, . . . , Qt, t ≥ 1 be cliques such that
|Q ∩ Qi| = 1 (Since G is connected and G is not a clique, there exists at
least one such clique). Moreover, 1 ≤ |Q ∩ (Q1 ∪ . . . ∪ Qt)| ≤ 2 by (6).

If |Q∩ (Q1 ∪ . . .∪Qt)| = 2, then Q∩ (Q1 ∪ . . .∪Qt) ⊂ R. If |Q∩ (Q1 ∪
. . . ∪Qt)| = 1, then (Q ∩ (Q1 ∪ . . . ∪Qt)∪ {x}) ⊂ R where x is an arbitrary
vertex of Q such that x 6∈ Q∩ (Q1∪ . . .∪Qt). Of course, a subgraph induced
by a subset R is connected and it does not contain cycles, i.e., 〈R〉G is a
tree. So 〈R〉G has a k-stable transversal S, it follows from Corollary 3. From
this fact it follows that every maximal k-distance clique Q′ of 〈R〉G meets S.
Moreover, for every maximal k-distance clique Q∗ ⊂ V (G) of a clique-tree
there exists a maximal k-distance clique Q′ ⊂ R such that Q′ ⊆ Q∗. So, for
each Q∗ ⊂ V (G), Q∗ ∩ S 6= ∅. Hence S is a k-stable transversal of a clique-
tree. Since any induced proper subgraph H of a clique-tree is a clique-tree,
the existence of k-distance stable transversal of H is assured.

Thus G ∈ PkS which proves the theorem.
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For a fixed positive integer k ≥ 2 we construct special graphs G1, G2 and G3.
Let G and R be two disjoint copies of a 2(k + 1)-cycle C2(k+1), on the

vertex sets V (G) = {x1, . . . , x2(k+1)} and V (R) = {x′
1, . . . , x

′
2(k+1)} and the

edge sets E(G) = {(xi, xi+1); i = 1, 2, . . . , 2(k + 1) and x2(k+1)+1 = x1} and
E(R) = {(x′

i, x
′
i+1); i = 1, 2, . . . , 2(k + 1) and x′

2(k+1)+1 = x′
1}.

Consider two cases:

(12) If k is even, then we identify vertices xi and x′
i for i = 1, 2 + k

2 , k + 3.
The resulting graph we denote by G1.

(13) If k is odd, then we identify vertices xi and x′
i for i = 1, 2, 3+ k−1

2 , k+3
and replace multiple edges with end vertices x1 and x2 by an edge. The
resulting graph we denote by G2.

(14) By the graph G3 we will mean a graph obtained from k(k + 1)-cycle
Ck(k+1) by adding k+1 vertex disjoint paths of length k such that each path
starts in a vertex x1+tk for t = 0, 1, . . . k.
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Theorem 16. PkS ⊂ Pχk
if and only if k = 1.

Proof. If k = 1, then SP ⊂ Pχ1 = P by Theorem 2. Assuming that k is
fixed and k > 1, we shall show that there is a graph G such that
(15) G ∈ PkS and G 6∈ Pχk

.
It turns out if k is even, then the graph G1 (see Figure 3) constructed

above satisfies condition (15).
Let H be an arbitrary induced subgraph of G1. Consider the following

cases:

Case 1. H has exactly two 2(k + 1)-cycles as induced subgraphs. Then
H is isomorphic to G1, hence it is easy to see that S = {x2+ k

2
, x3+ 3k

2
} is a

k-stable transversal of G1.

Case 2. H has exactly one 2(k + 1)-cycle as induced subgraph.

In this case we have the following possibilities:

Subcase 2.1. H has exactly two (k + 2)-cycles as induced subgraphs.
Then H does not have any 2k-cycle (in otherwise there exist two 2(k + 1)-
cycles). Then S = {x1, x2+k}.

Subcase 2.2. H has less than two (k + 2)-cycles as induced subgraphs.
Then either S = {x1, x2+k} or S = {x1, x

′
2+k}.

Case 3. H has no induced 2(k + 1)-cycle.
In this case we have the following possibilities:

Subcase 3.1. H has exactly two (k + 2)-cycles as induced subgraphs.
Analogously as in 2.1.

Subcase 3.2. H has exactly one (k + 2)-cycle as induced subgraph.
Denote by xiPxj subgraph induced by subset {xi, xi+1, . . . xj} of vertices
placed on the n-cycle. Suppose that H has an induced (k + 2)-cycle and
an induced 2k-cycle. V (C2k) and V (Ck+2) are k-distance cliques of H, so
k-stable transversal of x1Px3+k is a k-stable transversal of C2k. Analogously
k-stable transversal of x1Px2+ k

2
is a k-stable transversal of Ck+2. We can

consider a subgraph H ′ ≤ H such that V (H ′) = (V (H) \ V (x1Px2+ k
2
∪

x1Px3+k)) ∪ {x1, x2+ k
2
, x3+k}. Of course H ′ is an acyclic graph because

we delete a part of each cycle in H. So by Corollary 3, H ′ has a k-stable
transversal S. The same set S is a k-stable transversal of H.

If H does not have an induced 2k-cycle, than we prove analogously.
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Subcase 3.3. H has no induced (k + 2)-cycle.

If H has 2k-cycle, then we prove analogously as in Subcase 3.2.

If H has no cycle, then H is acyclic. So from Corollary 3, H has a k-stable
transversal.

All this together gives that G1 ∈ PkS for even k.

To prove the remaining part of the theorem we observe that the maximum
k-distance clique Q of G1 is in the form Q = {x2, x

′
2, x3, x

′
3, . . . , x(2+ k

2
)−1,

x′
(2+ k

2
)−1

, x2+ k
2
, x(2+ k

2
)+1, x

′
(2+ k

2
)+1

, . . . , x(3+k)−1, x
′
(3+k)−1} and ωk(G1) =

2k + 1.

Of course, Q is coloured by 2k + 1 distinct colours and assume that
vertex x2+ k

2
∈ Q has a colour ϕ. Consider vertices x3+ 3k

2
and x′

3+ 3k
2

. It

should be noted that the distance between an arbitrary vertex from Q and
x3+ 3k

2
or x′

3+ 3k
2

is less than or equal to k+1. Moreover, there exists only one

vertex x2+ k
2
, such that dG1(x2+ k

2
, x3+ 3k

2
) = k + 1 and dG1(x2+ k

2
, x′

3+ 3k
2

) =

k + 1. So we can colour the vertex x3+ 3k
2

also by ϕ. But for x′
3+ 3k

2

we have

used a new colour not used for colouring Q. From this fact it follows that
χk(G1) > 2k + 1. Hence G1 6∈ Pχk

.

Now assume that k is odd and consider graph G2 (see Figure 3).
To prove that G2 ∈ PkS we use the same method as for the graph G1.
As the maximum k-distance clique which realizes ωk(G2) = 2k we
can take Q = {x2, x3, x

′
3, . . . , x(3+ k−1

2
)−1, x

′
(3+ k−1

2
)−1

, x3+ k−1
2

, x(3+ k−1
2

)+1,

x′
(3+ k−1

2
)+1

, . . . , xk+2, x
′
k+2}. Evidently Q is coloured by 2k distinct colours

and let x3+ k−1
2

has a colour ϕ, then proving analogously as for G1 we obtain

that either x4+ 3k−1
2

or x′
4+ 3k−1

2

have to be coloured by a new colour not used

for Q. Consequently, χk(G2) > 2k, so G2 6∈ Pχk
for an odd k.

Thus the theorem is proved.

Theorem 17. PkS ⊂ Pαk
if and only if k = 1.

Proof. If k = 1, then PkS ⊂ Pαk
= P by Theorem 2.

We shall show that there exists a graph G such that G ∈ PkS and
G 6∈ Pαk

. As the graph G we can take a graph G3 (see Figure 3). First, we
shall show that G3 ∈ PkS.

Let H ≤ G3 be an induced subgraph of G3. Consider two cases:

Case 1. H has an induced k(k + 1)-cycle.
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If H is isomorphic to G3, then H has a k-stable transversal of the form S =
{x ∈ V (G3);x = x1+t(k+1) for t = 0, 1, . . . , (k − 1)} ∪ {x ∈ V (G3);x = xt,m

for t = 1, 2, . . . , k and m = k + 1 − dG3(x1, x1+tk)/k}.
If H is connected and not isomorphic to G3, then the k-stable transversal

of H is S′ = S ∩ V (H).

Case 2. H has no induced k(k + 1)-cycle.
In this case H is acyclic and by Carollary 3 it has a k-stable transversal. All
this together gives that G3 ∈ PkS .

Now we prove that G3 6∈ Pαk
. The k-stable transversal S obtained

in Case 1 is the maximum k-stable set in G3, so αk(G3) = 2k. The
number θk(G3) = 2k + 1 is realized by a family of k-distance cliques
Qi = {x1+i(k+1), . . . , x1+i(k+1)+k} for i = 0, 1, . . . , k − 1 and Q′

i =
{x1+i(k+1), x1+i(k+1),1, . . . x1+i(k+1),k}, i = 0, 1, . . . , k.

All this together leads to αk(G3) < θk(G3) and this shows that G3 6∈
Pαk

. Thus the theorem is proved.

Theorem 18. Pαk
= Pχk

if and only if k = 1.

Proof. If k = 1, then Pαk
= Pχk

= P from Theorem 1.
We shall show that if k > 1, then Pχk

6⊂ Pαk
. In other words, it suffices

to show that for k > 1 there exists a graph G such that G ∈ Pχk
and

G 6∈ Pαk
.

From the proof of Theorem 17 we have that G3 6∈ Pαk
. It remains

to prove that G3 ∈ Pχk
. Let Q be a k-distance clique of the form Q =

{x1+k−a, . . . , x1+k, . . . , x1+k+b} ∪ {x1+k,1, . . . , x1+k,a} where a = b = k
2 for

an even k or a = k−1
2 , b = k+1

2 for an odd k (see Figure 3). Then each
maximal k-distance clique of G3 induces a subgraph isomorphic to 〈Q〉G3 .
To prove that for an arbitrary H ≤ G3, χk(H) = ωk(H) we consider the
following cases.

Case 1. H is isomorphic to G3.
Then for an even k, χk(H) = 3k+2

2 = ωk(H) and χk(H) = 3k+1
2 = ωk(H)

for an odd k. The function which realizes the colouring of H is of the form
f : V (H) → {0, 1, . . . , χk(H) − 1} and

f(xn) = i, for n = i(mod(k + 1)), i = 0, 1, . . . , k,
f(xi+tk,m) = k + m, for m = 1, . . . , a, t = 0, . . . , k,
f(xi+tk,m) = f(x1+tk+a+1), for m = a + 1, . . . , k, t = 0, . . . , k.

Case 2. H has one induced k(k + 1)-cycle and H is not isomorphic
to G3.
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Let P be a longest induced path in H such that E(P )∩E(Ck(k+1)) = ∅ and
the length of this path is p.

For p ≥ a, we prove analogously as in Case 1.
If 0 ≤ p < a, then χk(H) = k + 1 + p = ωk(H) and the colouring

realizes function g : V (H) → {0, 1, . . . , χk(H) − 1} where g(v) = f(v) for
v ∈ V (H) ⊂ V (G3).

Case 3. H is acyclic.
From Corollary 3 we have that χk(H) = ωk(H).

Thus the theorem is proved.

From the proof of Theorem 18 it follows

Corollary 4. Pχk
6⊂ Pαk

for k > 1.

References

[1] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.

[2] C. Berge and P. Duchet, Strongly perfect graphs, Ann. Discrete Math. 21 (1984)
57–61.

[3] A.L. Cai and D. Corneil, A generalization of perfect graphs — i-perfect graphs,
J. Graph Theory 23 (1996) 87–103.

[4] F. Kramer and H. Kramer, Un Probléme de coloration des sommets d’un
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