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Abstract

Let C denote the claw K1,3, N the net (a graph obtained from a K3

by attaching a disjoint edge to each vertex of the K3), W the wounded
(a graph obtained from a K3 by attaching an edge to one vertex and
a disjoint path P3 to a second vertex), and Zi the graph consisting of
a K3 with a path of length i attached to one vertex. For k a fixed
positive integer and n a sufficiently large integer, the minimal number
of edges and the smallest clique in a k-connected graph G of order
n that is CY -free (does not contain an induced copy of C or of Y )
will be determined for Y a connected subgraph of either P6, N , W , or
Z3. It should be noted that the pairs of graphs CY are precisely those
forbidden pairs that imply that any 2-connected graph of order at least
10 is hamiltonian. These extremal numbers give one measure of the
relative strengths of the forbidden subgraph conditions that imply a
graph is hamiltonian.

1 Introduction

We will deal only with finite graphs without loops or multiple edges. Nota-
tion will be standard, and we will generally follow the notation of Chartrand
and Lesniak in [3] and Bondy and Murty in [2]. Given a graph F , a graph G
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is said to be F -free if there is no induced subgraph of G that is isomorphic
to F . We will denote by F ≤ G that F is an induced subgraph of G.
The graph F is generally called a forbidden subgraph of G. In the case of
forbidden pairs of graphs, say F and H, we will simply say the graph is
FH-free, as opposed to {F,H}-free. The degree of a vertex v in a graph G
will be denoted by d(v), and the minimum and maximum degree of vertices
in G will be denoted by δ(G) and ∆(G) respectively. The independence
number of G will be denoted by α(G).

Singletons and forbidden pairs of connected graphs that imply that a
2-connected graph is hamiltonian have been characterized. Also, similar
characterizations have been given for other hamiltonian properties such as
traceable, pancyclic, cycle extendable, etc. A collection of graphs that are
frequently used as forbidden in results of this type are pictured in Figure 1.
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Figure 1

The following result, which extends the results of Bedrossian in [1], gives all
forbidden pairs that imply hamiltonicity in 2-connected graphs. A survey
of results of this kind for other hamiltonian type properties can be found
in [6], and a more general survey on claw-free graphs can be found in [7].

Theorem 1 [8]. Let X and Y be connected graphs with X,Y 6≤ P3, and let
G be a 2-connected graph of order n ≥ 10. Then, G being XY -free implies
that G is hamiltonian if, and only if, up to the order of the pairs, X = C
and Y is a subgraph of either P6, N,W , or Z3.
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The well known degree type conditions that imply that a graph is hamil-
tonian, such as Dirac’s in [4], Ore’s in [10], or many of the other degree
conditions that followed these two conditions, also imply that the graph is
very dense. One motivation, among many others, to look at forbidden sub-
graph conditions is that they do not, at least on the surface, require that
the graph be so dense. Thus, it is natural to examine the number of edges
in a graph and the clique size of the graph forced by the forbidden subgraph
conditions that imply hamiltonicity, or other hamiltonian type properties.
This is the objective of this paper.

The number of edges in a graph G will be denoted by e(G), and the
clique number will be denoted ω(G). The number of edges e(G) or the
clique size ω(G) implied in the case of forbidden pairs X and Y (neither
of which is a P3) such that XY -free implies that a 2-connected graph G is
hamiltonian, varies significantly. We will see that for some forbidden pairs
the graph G can be very sparse, but some forbidden pairs imply that the
graph has many edges.

In the next sections we will investigate the number of edges e(G) and the
clique number ω(G) implied by the pairs of forbidden subgraphs that imply
a graph is hamiltonian (see Theorem 1). For some forbidden subgraph pair
conditions on a graph G exact bounds will be given, and in other cases we will
give reasonable bounds on e(G) and ω(G). More specifically, in Section 2 we
will deal with forbidden subgraphs that imply the graph is relatively dense,
in Section 3 forbidden pairs that imply only a moderate number of edges will
be considered, and in Section 4 forbidden subgraph pairs that place minimal
density conditions on a graph G will be investigated.

Actually the extremal numbers for larger classes of forbidden subgraphs
can be considered. For i ≥ 1 the graph Zi will denote the graph obtained
by identifying the endvertex of a path of length i with one of the vertices of
a triangle. For i, j ≥ 1, the generalized bull Bi,j is the graph obtained by
attaching two vertex disjoint paths of lengths i and j to distinct vertices of
a triangle. Thus B1,1 is the Bull and B1,2 is the Wounded W . Likewise, the
generalized net Ni,j,k can be defined for i, j, k ≥ 1.

The forbidden claw C does not imply the existence of many edges or
large cliques, even in the presence of a connectivity condition. The following
result makes this precise.

Theorem 2. Let G be a k-connected C-free graph of order n. If n is suffi-
ciently large, then ω(G) ≥ d(k + 2)/2e and e(G) ≥ kn/2. These results are
sharp for k even, and nearly sharp for k odd.
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Proof. Since G is k-connected, each vertex must have degree at least k,
which implies that e(G) ≥ kn/2. If k ≤ 4, then the C-free property implies
that G has a clique with at least (k+2)/2 vertices, so we assume that k ≥ 5.
If G has a vertex v of degree at least k2, then the neighborhood N(v) of v
contains a Kk, since α(N) < 3 from the C-free property and r(K3,Kk) ≤ k2

(see [9]). Thus, we can assume that ∆(G) < k2. Thus, G has large diameter,
say d, since at most k2i vertices can be within a distance i of any vertex of
G and n the order of G is large.

Select a diameter path P = (x0, x1, · · · , xd). No vertex y 6∈ P can be
adjacent to more than 3 vertices of P , otherwise, P would not be a diameter
path. If y is adjacent to precisely one vertex on P and that vertex is xi for
some 1 ≤ i < d, then there would be a claw centered at xi. Also, if y is
adjacent to precisely xi and xi+2 with 1 ≤ i ≤ d − 2, then there is a claw
centered at xi. We can assume that y is adjacent to two or three consecutive
vertices on the path P , if it has at least one adjacency on P .

Choose a vertex xi near the middle of the path P , and let N denote
the neighborhood of xi off of the path P . Partition N into three sets: N 0

are those vertices adjacent to each of xi−1, xi, xi+1, N− are those vertices
adjacent to xi, xi−1 and possibly xi−2, and N+ are those vertices adjacent
to xi, xi+1 and possibly xi+2. Note that to avoid a claw, each of the sets
N−, N0, N+ induces a complete graph. Thus, if N 0 = ∅, we can assume
that with no loss of generality that |N−| ≥ (k−2)/2, and so N−∪{xi−1, xi}
induces a complete graph with at least (k + 2)/2 vertices. Thus, we can
assume that N 0 6= ∅. If some vertex y ∈ N 0 is not adjacent to some vertex
y− ∈ N− and also to some vertex y+ ∈ N+, then there would be a claw
centered at xi unless y− and y+ are adjacent. However, in this case there
would be a claw centered at xi−1 unless y− is adjacent to xi−2. Likewise, y+

must be adjacent to xi+2. This gives a contradiction to the fact that P is a
distance path, because the path xi−2, xi−1, xi, xi+1, xi+2 could be replaced by
the shorter path xi−2, y

−, y+, xi+2. Therefore, we can assume that N 0 can be
partitioned into N 0

−∪N0
+, where each vertex in N 0

− is adjacent to each vertex
in N−, and correspondingly each vertex in N 0

+ is adjacent to each vertex in
N+. Hence, one of the sets N− ∪ N0

− ∪ {xi−1, xi} or N+ ∪ N0
+ ∪ {xi, xi+1}

induces a complete graph with at least (k + 2)/2 vertices.

To see the sharpness consider the graph H = C
dk/2e
n . It is easily

checked that H is a 2dk/2e-connected C-free graph with e(H) = 2dk/2en
and ω(H) = d(k + 2)/2e. This completes the proof of Theorem 2.
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2 Forbidden Subgraphs that Imply Dense Graphs

The only single forbidden graph F that implies that a 2-connected F -free G
is hamiltonian, or has any of the other common hamiltonian type properties,
is F = P3. Clearly any connected P3-free graph G must be complete, so this
is an example of a forbidden subgraph condition that forces extreme density.

Another well known example that implies the graph is dense is the case
of CZ1-free graphs. This fact is part of the folklore of the discipline, but for
sake of completeness, we give the result and its short proof here.

Theorem 3. If G is a connected CZ1-free graph of order n with ∆(G) ≥ 3,
then G = Kn − M , when M is a matching (possibly empty) in G.

Proof. Consider a maximum clique H in G, which has m ≥ 3 vertices,
since ∆(G) ≥ 3, and G is C-free. Each vertex of G adjacent to a vertex in
H must be adjacent to precisely m − 1 vertices; otherwise, there is either a
larger clique or an induced Z1. A vertex a distance 2 from H immediately
gives a Z1, so each vertex of G not in H is adjacent to m − 1 vertices of
H. Likewise, to avoid a Z1 or a C, distinct vertices not in H must avoid
different vertices of H and must be adjacent. This completes the proof of
Theorem 3.

As a consequence of Theorem 3 we have that any 2-connected CZ1-free
graph G must have e(G) ≥ n(n − 2)/2 and ω(G) ≥ n/2. The next theorem
is another example of a forbidden pair of subgraphs that implies the graph
is dense.

Theorem 4. Let G be a k-connected graph (k ≥ 1) of order n ≥ k + 1 that
is CP4-free. Then, ω(G) ≥ dn/2e, and e(G) ≥ d(n2 + (2k − 2)n − 2k2)/4e
if k ≤ n/2 and e(G) ≥ nk/2 if k > n/2. Also, the lower bound for ω(G)
is sharp for k ≤ n/2 and each of the bounds for e(G) is sharp for the
appropriate range.

Before completing the proof of Theorem 4, we will give a structure theorem
for CP4-free graphs that will be useful in the proof of Theorem 4.

Theorem 5. If G is a connected CP4-free graph, then the complement G is
just a vertex disjoint union of complete bipartite graphs (possibly all trivial).

Proof. We will first show that G has two disjoint cliques that span the
vertices of G. This will be done by induction, and it is trivial for n ≤ 4.
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One characterization of a P4-free graph G is that there is always a partition
of any set of vertices of G into two sets A and B such that there are either
no edges between A and B or all of the edges are in between A and B. This
can be verified with a straightforward induction proof. Since G is connected,
there must be such a partition, say A∪B, of all of the vertices of G such that
all of the edges between A and B are in.

Now, the graph spanned by A, which we will just denote by A, is P4-
free and the independence number α(A) ≤ 2, since G is C-free. This implies
than A is P4-free and also K3-free. Thus, A is bipartite, and so A is spanned
by two cliques.

Thus, we let A = A1 ∪ A2, where both A1 and A2 are both cliques and
disjoint. The same is true of B, so B = B1 ∪ B2 such that both B1 and B2

are cliques. This gives that both A1 ∪B1 and A2 ∪B2 span cliques, and so,
G has two disjoint cliques, say R and S, that span G, which was the claim.
Consider the graph G, which is a bipartite graph with only edges between
the sets R and S. Since P4 is self-complementary, G is also P4-free. Thus,
G must be a a vertex disjoint union of complete bipartite graphs to avoid
an induced P4. This completes the proof of Theorem 5.

Proof of Theorem 4. From Theorem 5 we have the structure of G,
which is Kn − (B1 ∪B2∪ · · · ∪Bt) for some collection of vertex disjoint com-
plete bipartite graphs Bi. Let b1, b2, · · · , bt be the number of vertices in the
bipartite graphs Bi respectively, and we can assume that b1 ≤ b2 ≤ · · · ≤ bt.

Clearly ω(G) ≥ dn/2e, since one of the cliques R or S will have at least
that number of vertices. Determining the minimum number of edges in the
graph e(G) is equivalent to determining the maximum number of possible
edges in the bipartite graphs B1 ∪ B2 ∪ · · · ∪ Bt. Observe that G being
k-connected is equivalent to bt ≤ n − k.

If k ≤ n/2, then under these conditions, to maximize the number of
edges in B1 ∪ B2 ∪ · · · ∪ Bt, one should choose t = 2 with b1 = k and
b2 = n − k. Also, each of the bipartite graphs B1 and B2 should be as
balanced as possible, and so B1 = Kbk/2c,dk/2e and B2 = Kb(n−k)/2c,d(n−k)/2e .
This implies that the graph Kn − (B1 ∪B2) has at least

(n
2

)−bk/2cdk/2e −
b(n−k)/2cd(n−k)/2e = d(n2 +(2k − 2)n− 2k2)/4e edges. If k ≥ n/2, then
each vertex must have degree at least k, and so clearly e(G) ≥ nk/2.

To see the sharpness of the result for k ≤ n/2, consider the graph H
of order n obtained from a C4 by replacing the vertices around the cycle
with cliques of orders bk/2c, d(n − k)/2e, dk/2e, b(n − k)/2c respectively,
and replacing each edge with the appropriate complete bipartite graph. The
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graph H is CP4-free, ω(G) = dn/2e, and e(G) = d(n2 +(2k− 2)n− 2k2)/4e.
If k > n/2, then let H = Kn − (B1 ∪ B2 ∪ · · · ∪ Bt) where the Bi’s are
chosen such that each vertex of H has degree at least k but is as small as
possible. Therefore, the number of vertices in each part of Bi will be at
most n − k − 1 and each Bi will be as balanced as possible. For values of k
and n with appropriate divisibility properties this will give a regular graph
of order k. This verifies the sharpness of the result and completes the proof
of Theorem 4.

The extremal results for CZ2-free graphs are very similar to those for CP4-
free graphs for sufficiently large order graphs, as the next result indicates.
Of course, any CP4-free graph is certainly CZ2-free, so it is natural to expect
some relationship between these extremal graphs.

Theorem 6. Let G be a k-connected CZ2-free graph with k ≥ 2 and
δ(G) ≥ 3. Then, for n sufficiently large, e(G) ≥ d(n2 + (2k − 2)n − 2k2)/4e
and ω(G) ≥ cn1/2 for some constant c. The lower bound on e(G) is sharp,
and the lower bound for ω(G) is at most c(log n)n2/3.

Proof. The sharpness for the lower bounds on the number of edges in
CZ2-free graphs comes from the examples given in the proof of Theorem 4,
since CP4-free implies CZ2-free. Recall that these examples came from a
C4 by replacing the vertices around the cycle with cliques of orders bk/2c,
d(n − k)/2e, dk/2e, b(n − k)/2c respectively, and replacing each edge with
the appropriate complete bipartite graph. A bound on ω(G) comes from a
result by Spencer which is stated in [5] and implies that the Ramsey number
r({C3, C4},Kn) > c(n/ log n)3/2 for some constant c. This implies that there
is a graph H of order c(n/ log n)3/2 with clique number ω(H) < n. Also,
since there is no C3 in H, H is C-free, and, since H does not contain a C4,
this implies that H is Z2-free. Therefore for n sufficiently large there is a
graph L of order n that is CZ2-free for which ω(L) ≤ c(log n)n2/3.

To verify the lower bound for e(G), consider a smallest minimal vertex
cut S for the CZ2-free graph G. Let A and B be the two components of
G−S. (Note that since S is a minimal cut, each vertex of S has a adjacency
in each component of G − S, and thus the C-free property implies there
are just 2 components.) The C-freeness also implies that the neighborhood
in A (or in B) of a vertex x ∈ S induces a complete graph. We will first
consider the case when |A| ≥ 2 and |B| ≥ 3. If a vertex x has at least two
adjacencies in A, say a1, a2, then x must be adjacent to all of the vertices
in B. Otherwise, there would be an Z2 using a1, a2, x and a neighbor of x



20 R. Faudree and A. Gyárfás

in B along with an appropriate non-neighbor. This argument is symmetric
with respect to A and B. So, if any vertex in x ∈ S has two adjacencies in
either A or B, then x will be adjacent to all of the vertices in A ∪ B, and
each of A and B is a complete graph. Under the assumption that there is
such a vertex x, and if a vertex y ∈ S has just one adjacency b ∈ B, then
there will be an induced Z2 using a triangle in B (recall that B is complete)
containing b, y, and a vertex in A. Likewise, y adjacent to one vertex in A
will result in a Z2 with y on the triangle. Thus, we can conclude that each
vertex in S is adjacent to each vertex in A ∪ B, if at least one vertex of S
has 2 adjacencies in A or B.

If each vertex of S has only one adjacency in each of A and B, then B
could contain no triangle, for this would give immediately an induced Z2.
Also, this implies that each vertex in B has degree at most 2 relative to
B, and so B is either a path or a cycle. In either case, this would give an
induced C centered in B and using a vertex of S. From this contradiction
we can conclude that each vertex of S is adjacent to each vertex of A ∪ B.

Since G is k-connected, S has at least k vertices. Also, since G is
C-free, S contains no triangles, and thus the number of edges in S is at
most d|S|/2eb|S|/2c. Thus if |A ∪ B| ≥ k, the number of edges in G is
at most d|S|/2eb|S|/2c + d|A ∪ B|/2eb|A ∪ B|/2c. This gives the required
bound on e(G), since the number of edges in G will be minimized by having
dk/2ebk/2c + d(n− k)/2eb(n − k)/2c edges in G. If |A∪B| < k, then select
a smallest minimal cutset D of S. Thus, S −D = S1 ∪S2, where S1 and S2

are complete graphs. Note that |S1 ∪ S2| ≥ k, for otherwise each vertex in
S would have degree at least n − 2k, which easily gives the required bound
on e(G). Now, the number of edges in G is at most |S1||S2| + d|A ∪ B ∪
D|/2eb|A ∪ B ∪ D|/2c. Just as before, this implies the required bound for
e(G), and so we have completed the proof of the case when |A| ≥ 2 and
|B| ≥ 3.

Note that if |A| = 2 and |B| = 2, then |S| = n − 4, and this implies
that δ(G) ≥ n − 4. Clearly in this case the required bound for e(G) is
satisfied since n is sufficiently large. Therefore we can assume that one of
the components remaining after the deletion of a smallest minimal cutset
has just one vertex.

Select a smallest minimal cutset S. By assumption, one of the compo-
nents of G − S will be a single vertex, which we will denote by v. Thus
d(v) = δ(G) < (n + 2k)/2. Let A be the other component. If some vertex
x ∈ S has only one adjacency y ∈ A, then a triangle in A will result in an
induced Z2. If there is no triangle in A, then each vertex in A has degree
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at most 2 relative to A, which implies a large independent set and so an
induced C, since each of the vertices in A are adjacent to all but at most 2
of the vertices of S. Thus we can assume that each vertex of S has at least
2 adjacencies in A.

We next consider the case when some vertex x ∈ S has neighborhood
B in A, and that |B| ≤ |A| − 2. If there is a vertex in z ∈ A which is a
distance 2 from B in A, say with path (z, y, b), then there will be an induced
Z2 unless y is adjacent to each vertex in B. Since G is CZ2-free, the vertex
y can have no other adjacencies in A except for {z} ∪ B, and for the same
reason no other vertex in A−B can be adjacent to a vertex in B. Likewise,
the vertex z can have no additional adjacencies in A, and so z is adjacent
to all of the vertices in S except for x. Since G is C-free, there are no edges
between B and S − {x}, which implies that {x, y} is a minimal cutset in
G with components with at least 2 and 3 vertices respectively. This case
has already been considered, so, we can assume there are no vertices in A a
distance 2 from B. Thus, each vertex in A is adjacent to some vertex in B.

If y and z are vertices of A − B, then their neighborhoods in B are
disjoint, for otherwise there would be either a C or a Z2. Also, for the
same reason (existence of either an induced C or Z2), there can be no edges
in A − B unless there are just 2 vertices in A − B that dominate all of
the vertices in B. Any vertex of S adjacent to all vertices of A except for
possibly one would imply a C, so no such vertices exists. Therefore, each
vertex in S must have a neighborhood with the same property as that of x.
Thus, we can conclude that all of the vertices of S are adjacent to precisely
the vertices B in A, since B is the only possible neighborhood with the
required property. To avoid a C, the vertices in S must also have complete
neighborhoods, so G has a clique with vertices S ∪ B, and the remaining
vertices have disjoint neighborhoods with at least 3 vertices in the clique.
Hence the clique S ∪ B has at least 3n/4 vertices, and this implies that
e(G) >

(3n/2
2

) ≥ (9n2)/32 − 3n/8, gives the required bound for e(G), since
n is large.

We are left with the case in which each vertex of S is adjacent to all but
possibly 1 vertex of A. In this case in G there are at most n edges in A, at
most 2n edges between S ∪{v} and A, and no more than |S|2/4 edges in S.
If |S| > (n + 2k)/2, then each vertex in G has degree at least (n + 2k)/2
and this gives the required bound on e(G). If |S| ≤ (n + 2k)/2, then G has
at most (n + 2k)2/8 + 3n edges, and so again G has the required number of
edges. This verifies the lower bound for e(G).

The lower bound on e(G) implies there is a vertex v of G of degree at
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least n/2. Let H be the graph spanned by the vertices in the neighborhood
of v. Since G is C-free, there is no K3 in H, and so H must contain a clique
with at least

√

n/2 vertices since r(K3,Kt) ≤ t2 (see [9]). This completes
the proof of Theorem 6.

3 Forbidden Subgraphs that Imply Moderate Density

For both paths Pm with m ≥ 5 and Zm for m ≥ 3 the density implied by
the property of graphs being CPm-free or CZm-free graphs depends on m.
We will not be able to give precise results in this case, but we will be able
give some reasonable bounds, when the graph is of sufficiently large order.
We start with the following result for paths.

Theorem 7. Let m ≥ 5 be an odd integer, and G be a CPm-free connected
graph of order n. If n is sufficiently large, then ω(G) ≥ c1n

2/(m−1) and

e(G) ≥ c2n
1+1/(2(m−1)/2−1) for some constants c1 and c2 that do not de-

pend on n. Also, the bounds for ω(G) and e(G) are of the correct order of
magnitude.

Proof. For ease of calculation, we will let m = 2t + 1 with t ≥ 2. We
will first assume that G does not have ω(G) ≥ c1n

1/t, and show that this
leads to a contradiction. Select an arbitrary vertex v of G, and consider
the sets N1, N2, · · · , Nt−1, where Ni denotes the vertices in G that are a
distance i from v. Also, let N0 = {v}. Observe that since G is C-free,
α(N1) ≤ 2. Therefore, if |N1| ≥ (cn)2/t, then G will contain a K(cn)1/t , since

r(K3,Kp) < p2. Also, note for 1 ≤ i < t−1 that the neighborhood in Ni+1 of
any vertex x ∈ Ni is complete, for otherwise there would be a claw centered
at x with 2 vertices in Ni+1 and one in Ni−1. Thus, by assumption, each
vertex in Ni has less than (cn)1/t adjacencies in Ni+1. This implies that
|Ni+1| ≤ ((cn)1/t − 1)|Ni|, and so |N0 ∪ N1 ∪ · · · ∪ Ni| ≤ (cn)(i+1)/t. In
particular, |N0 ∪ N1 ∪ · · · ∪ Nt−1| ≤ cn. Thus, for appropriate c there is
a longest distance path P = (x1, x2, · · · , xp) with p ≥ t + 1, and of course
p < m since P is an induced path.

Now select a series of sets M1,M2, · · · where Mi is the set of vertices that
are a distance i from the set of vertices in P . Just as before, M1 < pcn2/t

and each vertex in Mi has less than (cn)1/t adjacencies in Mi+1. This implies
that |Mi+1| ≤ ((cn)1/t −1)|Mi|, and so |M0 ∪M1∪ · · · ∪Mt−1| ≤ cmn. Thus
there is for some r a longest distance path P1 = (y1, y2, · · · , yq = xr) with
q ≥ t + 1. Therefore the graph H spanned by P ∪ P1 is induced except



Extremal Problems for Forbidden Pairs ... 23

possibly for the additional edges xr−1yq−1 and xr+1yq−1. Note also that
q < m, since P1 is also an induced path. Starting with H form a third
distance path P2, which also will have s ≥ t+1 vertices. If the last point on
P2 is some yk on P1, then by the choice of P1, we must have k ≥ s ≥ t + 1.
This will give an induced path with at least 2(t + 1) − 1 ≥ m vertices,
since there will be at most a 2-chord spanned by P2 and the subpath of
P1 preceding yk. If P2 terminates on P , then there will certainly be an
induced Pm using the vertices of P1, P2 and possibly some vertices of P .
This contradiction implies that ω(G) ≥ cn1/t.

We will assume that e(G) < c2n
1+1/(2t−1), and show that this leads

to a contradiction. Select a vertex v of smallest degree in G, which is a
most c′n1/(2t−1) for some constant c′. Just as one done earlier, consider
the sets N1, N2, · · · , Nt−1, where Ni denotes the vertices in G that are a
distance i from v. Also, let N0 = {v}, and let ni = |Ni| for 1 ≤ i ≤ t − 1.
Observe that since G is C-free, the neighborhood in Ni+1 of a vertex in
Ni induces a complete graph for i ≥ 1. Using this fact we will verify an
upper bound for each ni for i ≥ 2. Note that the average degree in N2 of
the vertices in N1 is at least n2/n1. In fact we can find disjoint subsets
of the neighborhoods of vertices in N1 that span N2 and average at least
n2/n1 vertices. Therefore by just counting the edges in the complete graph
neighborhoods of the vertices in N1 and using a convexity argument, there
must be at least n1(n2/n1+1)(n2/n1)/2 ≥ n2

2/(2n1) edges in N2 and between
N1 and N2. This gives the inequality n2

2/(2n1) < e = e(G), which implies
that n2 <

√
2n1e. More generally, the same argument gives that ni+1 <√

2nie for 1 ≤ i < t. It follows that for each 2 ≤ i ≤ t,

ni < (2e)(2
i−1−1)/2i−1

n
1/2i−1

1 .

More specifically, using the assumption that e < c2n
1+(1/(2t−1)) and the fact

that n1 ≤ c′n1+(1/(2t−1)), this gives that

nt < (2e)(2
t−1−1)/2t−1

n
1/2t−1

1 ≤ cn1+(1/(2t−1))−(1/2t−1) = cnβ,

where c depends on the constant c2 and β < 1. It follows immediately that
|{v} ∪N1 ∪N2 · · ·Nt| ≤ c∗nβ for some constant c∗. Therefore, there is some
vertex in G at at distance at least t + 1 from v.

Select some longest distance path P with at least p ≥ t + 2 vertices.
Just as in the case of the proof for ω(G), start with the vertices P and let
Mi denote the vertices of G at a distance i from P , and let mi = |Mi|.
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A repeat of the previous argument involving the sets Ni will give

mt < p(2e)(2
t−1−1)/2t−1

n
1/2t−1

1 ≤ cn1+(1/(2t−1))−(1/2t−1) = cnβ ,

and so there is a path of longest distance path P1 from P with at least
q ≥ t + 1 vertices. Just as before, the graph H spanned by these two paths
is induced except possibly for two edges. A repeat of this procedure starting
with H will give another distance path P2 from H with at least t+1 vertices.
A repeat of the previous argument used for ω(G) implies that G must have
an induced path with at least 2t + 1 vertices. This contradiction implies
that e(G) ≥ c2n

1+1/(2t−1).
To show that the lower bound for ω(G) has the correct order of mag-

nitude, consider the following ”tree like” graph. Start with a Kc1n1/t and

make each vertex of this complete adjacent to c2n
1/t different vertices that

form a complete graph as well. Do this until there are t levels. For each
1 ≤ i ≤ t there should be approximately ni/t vertices at that level. Appro-
priate choice of the constants ci will yield a graph H1 with n vertices. Also,
the graph H1 is C-free, the longest induced path has 2t = m − 1 vertices,
and ω(H1) = cn1/t = cn2/(m−1) for some constant c.

To show that the lower bound for e(G) has the correct order of magni-
tude, consider a tree like graph with t levels just like the one considered for
ω(G), except that the size of the complete graphs will vary depending on
the level in the graph. For convenience let γ = (1 + (1/(2t − 1))/2. Then,
for 1 ≤ i ≤ t the complete graphs at level i will have cin

γ/2i−1
vertices.

Therefore the order of magnitude of the number of vertices at level i will be
n((2i−1)/2i−1)γ and the order of magnitude of the number of edges at each
level will be n2γ . Thus, appropriate choice of the constants ci will yield a
CPm-free graph H2 of order n with cn2γ = cn1+(1/(2t−1)) edges for some
constant c. This completes the proof of Theorem 7.

Since any Pm-free graph is clearly Pm+1-free, there is the immediate corollary
to the proof and examples from Theorem 7.

Theorem 8. Let m ≥ 6 be an even integer, and G be a CPm-free connected
graph of order n. If n is sufficiently large, then ω(G) ≥ c1n

2/m and e(G) ≥
c2n

1+1/(2m/2−1) for some constants c1 and c2 that do not depend on n. Also,
ω(G) ≤ c1n

2/(m−2) and e(G) ≤ c2n
1+1/(2(m−2)/2−1).

Note that if G is a Pm-free graph, then G is also a Zm−2-free graph, since
Pm is an induced subgraph of Zm−2. Again, a corollary of the examples and
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proof of Theorem 7 gives immediately the following result. The same proof
techniques used for CPm-free graphs will also work for Zm−2-free graphs
that have at least one vertex of degree at least 3, so we will not repeat them
again.

Theorem 9. Let m ≥ 3, and let G be a CZm-free connected graph of order
n for n sufficiently large with ∆(G) ≥ 3 (G is not Cn or Pn). If m is odd,

then ω(G) ≥ c1n
2/(m+1) and e(G) ≥ c2n

1+1/(2(m+1)/2−1), and the bounds
for ω(G) and e(G) are of the correct order of magnitude for odd m. If m

is even, then ω(G) ≥ c1n
2/(m+2) and e(G) ≥ c2n

1+1/(2(m+2)/2−1) for some
constants c1 and c2 that do not depend on n. Also, ω(G) ≤ c1n

2/m and

e(G) ≤ c2n
1+1/(2m/2−1).

The connectivity, other than just being connected, does not play a role in
any of the results of this section. Note that the examples given in the lower
bounds can easily be modified to give an fixed connectivity k that does
not depend on n. Thus, one could assume that all graphs considered were
k-connected.

4 Forbidden Subgraphs and Sparse Graphs

Forbidding the pairs CW , CN , and CB, or more generally forbidding Ba,b

or Na,b,c graphs for integers a, b, c ≥ 1 in a 2-connected C-free graphs G of
order n does not imply that G has many edges or a large clique. The cycle
Cn does not contain any of these graphs as induced subgraphs, and it clearly
has a minimum number of edges and clique size for a hamiltonian graph. To
avoid this trivial case, we will consider only graphs with minimum degree at
least 3. The following Theorem 10 shows that the forced clique size is just 3,
and the number of edges implied by the forbidden subgraph condition is
linear in the number of vertices n. In fact, even if the connectivity k = κ(G)
is increased (but is fixed and is not a function of the order n of the graph),
the clique size is still bounded by k + 1 and number of edges is still linear
in n. This is indicated in Theorems 10, 11, and 12, which follow.

Theorem 10. If G is a 2-connected (or in fact just 1-connected) graph of
order n with δ(G) ≥ 3 that is CBa,b-free, or CNa,b,c-free for a, b, c ≥ 1, then
ω(G) ≥ 3 and e(G) ≥ d3n/2e. Also, the lower bounds for ω(G) and e(G)
are sharp.
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Proof. The minimum degree condition implies that G must have at least
d3n/2e edges, and the claw-free condition along with δ(G) ≥ 3 implies that
G must contain a K3. To see that the bounds given are sharp, observe that
the graph G1 pictured in Figure 2 is a 2-connected CBa,b-free, and CNa,b,c-
free graph for a, b, c ≥ 1 with ω(G1) = 3 and e(G1) = 3n/2 for n divisible
by 4. Thus, the bounds cannot be improved, and this completes the proof
of Theorem 10.

Since any CNa,b,c-free graph is a C-free graph and the upper bound example
in Theorem 2 was also Na,b,c-free, then the following is a direct consequence
of Theorem 2.
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Figure 2

Theorem 11. Let k ≥ 3 and let G be a k-connected CNa,b,c-free graph for
a, b, c ≥ 1 of order n. If n is sufficiently large, then ω(G) ≥ d(k + 2)/2e
and e(G) ≥ dkn/2e. Also, these lower bounds for ω(G) and e(G) cannot be
improved.

The following result gives the corresponding extremal result for generalized
Bulls that the previous result gave for generalized Nets.

Theorem 12. Let k ≥ 3 and let G be a k-connected CBa,b-free graph of
order n for a, b ≥ 1. If n is sufficiently large, then ω(G) ≥ 2dk/2e and
e(G) ≥ d(3k − 2)n/4e. Also, these lower bounds for ω(G) and e(G) cannot
be improved for k even.

Proof. For k even and 2n divisible by k, consider the graph G which has
a vertex set which is partitioned into 2n/k sets X1, X2, · · · , X2n/k each with
k/2 vertices such that each set Xi ∪ Xi+1 (with the indices taken modulo
2n/k) induces a complete graph on k vertices. It is straightforward to check
that G is CB-free (and hence CBa,b-free for a, b ≥ 1), e(G) = (3k − 2)n/4,
and ω(G) = k.
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Consider a k-connected graph G that is CBa,b-free. We will show for n
sufficiently large that ω(G) ≥ 2dk/2e and e(G) ≥ d(3k − 1)n/2e. We will
first show that if this is not true, then G will have a very large diameter. If
there is a vertex u of G of degree at least (k + 1)2, then the neighborhood
N of u has no K3 since G is C-free. Thus, N will contain a clique with
at least k + 1 vertices since |N | > r(K3,Kk+1) (see [9]). In this case G
has large diameter since ∆(G) ≤ (k + 1)2 implies this for n large. Now,
consider the case when e(G) < (3k − 2)n/4. Select a vertex v of smallest
degree in G, which is a most 3k/2. As has been done several times earlier,
consider the sets N1, N2, · · · , Nj · · ·, where Nj denotes the vertices in G that
are a distance j from v. Also, let N0 = {v}, and let nj = |Nj | for 1 ≤ i.
Observe that since G is C-free, the neighborhood in Ni+1 of a vertex in Ni

induces a complete graph for i ≥ 1. The average degree in N2 of the vertices
in N1 is at least n2/n1. Therefore by counting the edges in the complete
graph neighborhoods of the vertices in N1 and using a convexity argument,
there must be at least n1(n2/n1 + 1)(n2/n1)/2 ≥ n2

2/(2n1) edges in N2 and
between N1 and N2. This gives the inequality n2

2/(2n1) < e = e(G), which
implies that n2 <

√
2n1e < 3k

√
n/2. More generally, the same argument

gives that ni+1 <
√

2nie for 1 ≤ i < t. It follows that for each 2 ≤ i ≤ t,

ni < 3kn(2i−1)/2i/2.

This impies that the diameter is a function of n, and so is large if n is
sufficiently large.

Select a diameter path P = (x0, x1, · · · , xd). Let x be a vertex not on P
that is adjacent to a vertex on P . We will assume that a ≤ b. The vertex
x can be adjacent to a most 3 vertices, for otherwise the length of the path
would be shortened. Also, if x is adjacent to xi for (0 < i < d), then to
avoid a claw centered at xi, x must be adjacent to either xi−1 or xi+1. Also,
if x is adjacent to just 2 vertices, say xi and xi+1, with (a ≤ i < d − a),
then there will be an induced Ba,b using x and vertices on the path P .
Therefore, we can assume that each vertex x that is adjacent to a vertex xi

for (a ≤ i < d − a) must be adjacent to precisely 3 consecutive vertices on
the path P . A corresponding adjacency pattern must be true at the end of
the path P as well. Thus, we have a collection of sets N1, N2, · · · , Nd−1 such
that each vertex in Ni is adjacent to precisely xi−1, xi, xi+1 if a ≤ i < d − a
and the remaining Ni’s are adjacent to xi, xi+1 and possibly xi−1. Denote
the vertices adjacent to precisely {x0, x1} by N0 and the vertices adjacent
to just x0 by N−

0 . There are the corresponding sets Nd and N+
d . All of the
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Ni’s induce complete graphs, because there would be a claw otherwise. This
includes N−

0 and N+
d as well.

For each i let N ∗
i = Ni ∪ {xi}. If a ≤ i < d − a and there are vertices

yi ∈ N∗
i and yi+1 ∈ N∗

i+1, that are not adjacent, then there is an induced Ba,b

using yi, yi+1 and vertices on the path P . Therefore all the edges between
N∗

i and N∗
i+1 are in G. A vertex adjacent to a vertex of N ∗

i for (a ≤ i < d−a)
that is not on the path P and not in any N ∗

j for (0 < j < d) would imply a
claw centered in N ∗

i . Hence the graph spanned by N ∗
a ∪N∗

a+1 ∪ · · · , N ∗
d−a−1

has no outside adjacencies except for N−
0 ∪N∗

0 ∪N∗
a−1∪N∗

d−a∪· · ·∪N+
d . For

a ≤ i ≤ d− a− 3 the vertices N ∗
i ∪N∗

i+2 form a cut set that separates N ∗
i+1

from the remainder of the graph, and so |N ∗
i ∪N∗

i+2| ≥ k. Therefore there is
some (in fact many) j for which |N ∗

j | ≥ dk/2e, and this implies that either
|N∗

j−1 ∪ N∗
j | ≥ 2dk/2e or |N ∗

j ∪ N∗
j+1| ≥ 2dk/2e, which gives the required

clique of order at least 2dk/2e.
If the vertices N ∗

a ∪ N∗
a+1 ∪ · · · ∪ N ∗

d−a form a set of cut vertices of G,
then this implies for a < i ≤ d − a − 1, that the set N ∗

i is a vertex cut of
G, and so |N ∗

i | ≥ k. Thus, each of the vertices in N ∗
a ∪ N∗

a+1 ∪ · · · , N ∗
d−a

have degree at least 2k, in fact at least 3k − 1, except for the vertices in Na

and Nd−a. This clearly implies that e(G) > d(3k − 2)n/4e. Therefore we
can assume that there is a path Q from xa−1 to xd−a+1 that is disjoint from
N∗

a ∪ N∗
a+1 ∪ · · · ∪ N ∗

d−a. Pick Q to be such a distance path, which must be
of length at least d − 2a.

The path Q will have the same properties as P , so there will be a
family of sets that correspond to the sets N ∗

i . In fact the path induced by
P and Q from a vertex in the middle of P to the middle of Q will have
the same property. The immediate consequence of this is that there is a
cycle C = (y1, y2, · · · , yp, y1) in G with d < p ≤ 2d with corresponding sets
M∗

i associated with each of the vertices yi, and the M ∗
i ’s have the same

properties as the N ∗
j ’s. Thus, each vertex in G will be in some M ∗

i . In
particular M ∗

i ∪M∗
i+2 is a cut set for G and so must have at least k vertices.

This implies that the sum of the degrees of the vertices in G is at least
(3k/2 − 2)n, and this which would occur if and only if each of the sets M ∗

i

had k/2 vertices. Therefore, e(G) ≥ (3k− 2)n/4, which completes the proof
of Theorem 12.
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